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Abstract

We consider the equatorial circular motion of a test particle of specific chargeq � m in the Kerr–Newman geometry of
rotating charged black hole. We find the particle’s conserved energy and conserved projection of the angular moment
black hole’s axis of rotation as corrections, in leading order ofq/m, to the corresponding energy and angular momentum
a neutral particle. We determine the centripetal force acting on the test particle and, consequently, we find a classica
Newtonian potential with which one can mimic this general relativistic problem.
 2005 Elsevier B.V.

In 1924 Manev[1] (see also[2]) introduced a classical potential in order to modify the celestial mechani
accordance with the general-relativistic description. To describe the motion of a particle of massm in the static
field of universal gravitation, due to massM , Manev replaced the massm with m = m0 exp(M/r), wherem0 is an
invariant and unitsG = c = 1 are used. This led to the following modification of Newton’s gravitational law:

(1)F = Mm0

r2

(
1+ 3M

r

)
.

Potential of the type:

(2)V (r) = A
M

r
+ B

M2

r2
,

whereA andB are some real constants andM is the mass of the central body, was originally introduced by New
himself in his Philosophiæ Naturalis Principia Mathematica (Book I, Article IX, Proposition XLIV, Theorem
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Corollary II), in order to describe deviations in the Moon’s orbit from the Keplerian laws. However, modific
of Newtonian physics for mimicking general-relativistic results is attributed to Manev. We will refer to poten
the type(2) as to Manev potential.

Modeling the particle motion in the most general stationary asymptotically-flat space–time—that of Ke
Newman[3–5]—is a fundamental problem with many astrophysical applications. This area has been under
investigation and various pseudo-Newtonian potentials for Kerr[3,5] and Schwarzschild[5,6] geometries have bee
proposed[7]: interesting physical applications, for example, in satellite theory, have been studied in[8], different
mathematical aspects in[9]. In this Letter we model the equatorial circular motion of a lightly charged par
(q/m � 1) in Kerr–Newman geometry by introducing a classical pseudo-Newtonian potential. An imm
area of application of a classical pseudo-Newtonian effective potential of a charged particle is the des
of accretion disks of charged particles around a rotating charged massive centre. In 1989, De Rújula,
and Sarid[10] proposed the idea that dark matter in our Universe is made of charged massive particle
than neutral particles. These authors studied a galactic halo of such charged massive particles togethe
cosmological implications, including galactogenesis. Gould et al.[11] have shown that if charged massive partic
(with masses between 102 GeV and 1016 GeV) made up the dark halo of the Galaxy, then they would be prese
large numbers in disk stars. Charged particles and their effects on galaxies, stars and planets have been
Dimopoulos et al.[12].

Rotating charged black holes are described by the Kerr–Newman geometry[3,4]. The Kerr–Newman metric in
Boyer–Lindquist coordinates[13] (see also[5]), in unitsc = G = 1, is given by:

(3)ds2 = − ∆

ρ2

(
dt − a sin2 θ dφ

)2 + sin2 θ

ρ2

[(
r2 + a2)dφ − a dt

]2 + ρ2

∆
dr2 + ρ2 dθ2,

where

(4)∆ = r2 − 2Mr + a2 + Q2,

(5)ρ2 = r2 + a2 cos2 θ.

In the above,M is the mass of the centre,a > 0—the specific angular momentum of the centre (i.e., ang
momentum per unit mass) andQ—the charge of the centre.

The motion of a particle of massm and chargeq in gravitational and electromagnetic fields is governed by
Lagrangian[14]:

(6)L = 1

2
gij

dxi

dλ

dxj

dλ
− q

m
Ai

dxi

dλ
.

In the above,λ is the proper timeτ per unit massm: λ = τ/m andA is the vector electromagnetic potenti
determined by the black hole’s chargeQ and specific angular momentuma:

(7)Ai dxi = −Qr

ρ2

(
dt − a sin2 θ dφ

)
.

(The magnetic field is due to the dragging of the inertial reference frames into rotation around the black ho
The equations of motion for the particle are:

(8)
d2xi

dτ2
+ Γ i

jk

dxj

dτ

dxk

dτ
= q

m
F i

j

dxj

dτ
,

whereF = dA is Maxwell’s electromagnetic tensor andΓ i
jk are the Christoffel symbols.

For Kerr–Newman geometry, the geodesic equations(8) can be written as[15] (see also[16]):

(9)ρ2 dt = −a2E sin2 θ + aJ + r2 + a2 [
E

(
r2 + a2) − Ja − qQr

]
,

dλ ∆
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(10)ρ2 dr

dλ
= ±

√[
E

(
r2 + a2

) − Ja − qQr
]2 − ∆

[
m2r2 + (J − aE)2 + K

]
,

(11)ρ2dθ

dλ
= ±

√
K − cos2 θ

[
a2

(
m2 − E2

) + 1

sin2 θ
J 2

]
,

(12)ρ2dφ

dλ
= −aE + J

sin2 θ
+ a

∆

[
E

(
r2 + a2) − Ja − qQr

]
,

whereE = ∂L/∂ṫ is the conserved energy of the particle,J = ∂L/∂φ̇ is the conserved projection of the particle
angular momentum on the axis of the black hole’s rotation (dots denote differentiation with respect toλ). K is
another conserved quantity given by:

(13)K = p2
θ + cos2 θ

[
a2(m2 − E2) + 1

sin2 θ
J 2

]
.

Herepθ is theθ -component of the particle’s four-momentum:pθ = ∂L/∂θ̇ .
The radial equatorial (θ = π/2) motion of the particle can be modelled as a one-dimensional motion

classical particle in effective potentialV (r) determined from(10):

(14)
1

2

(
dr

dλ

)2

= V (r) = 1

2ρ4

[[
E

(
r2 + a2) − Ja − qQr

]2 − ∆
[
m2r2 + (J − aE)2]].

We now focus on circular orbits in the equatorial plane. For circular orbits,dr/dλ = 0, both instantaneously and
all subsequent times (orbit at a perpetual turning point)[17,18]. This implies:

(15)V (r) = 0,

(16)
dV (r)

dr
= 0.

Eqs.(15) and (16)can be viewed as a system of simultaneous equations from which one can determine t
served energyE of the particle and the conserved projectionJ of the particle’s angular momentum on the axis
the black hole’s rotation in terms of the parametersM , Q, a, q, andm. These equations are non-linear and we w
not be looking for their general solution. Instead, we will assume that the particle’s specific charge is sm
q/m � 1, and we will expandE andJ , as functions ofq/m, with m fixed, in Taylor series nearq/m = 0:

(17)E

(
q

m

)
= E(0) + E′(0)

(
q

m

)
+ O

[(
q

m

)2]
≡ E0 + qE1 + O

[(
q

m

)2]
,

(18)J

(
q

m

)
= J (0) + J ′(0)

(
q

m

)
+ O

[(
q

m

)2]
≡ J0 + qJ1 + O

[(
q

m

)2]
.

In the above expansions, one can identifyE(0) ≡ E0 as the conserved energy andJ (0) ≡ J0 as the conserve
projection of the angular momentum of a neutral particle in Kerr–Newman geometry. These are known[19]:

(19)
E0

m
= r2 − 2Mr + Q2 ± a

√
Mr − Q2

r

√
r2 − 3Mr + 2Q2 ± 2a

√
Mr − Q2

,

(20)
J0

m
= ±a(Q2 − 2Mr) + (a2 + r2)

√
Mr − Q2

r

√
r2 − 3Mr + 2Q2 ± 2a

√
Mr − Q2

.

The upper sign corresponds to direct orbit (J > 0), while the lower sign corresponds to retrograde orbit (J < 0).
The above expressions are valid forr > Q2/M . In addition, the conditionM2 � a2 + Q2 is necessary for th

existence of a horizon (i.e., a black hole solution) in Kerr–Newman geometry[5]. Orbits do not exist for all value
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of r > Q2/M . The question of existence and stability of bound circular orbits of neutral particles in Kerr–Ne
geometry, as well as the thresholds for photon, marginally stable and marginally bound orbits are analyse[19]
(see also[17] for rotating black holes). Our goal is to find a classical pseudo-Newtonian potential for modelli
circular orbital motion of a lightly charged particle (q/m � 1) in Kerr–Newman geometry by seeking expansi
for large values ofr (i.e., far from the black hole) which are above the threshold of a marginally stable orbi
within our approximation, all orbits are stable.

Identifying the Keplerian angular momentum distributionJ/E, the centripetal forceF0 acting on the neutra
particle can be expressed as[18]:

F0 = J 2
0

E2
0r3

= r−3
[
a3(Q2 − Mr

) + a
(
Q4 + 4M2r2 − 3Mr3 − 4Q2Mr + 2Q2r2) ± r2∆

√
Mr − Q2

]2

(21)× [
a2(Q2 − Mr

) − (
Q2 − 2Mr + r2)2]−2

.

Returning to the case of charged particle, we substitute the expansions(17) and(18) into Eqs.(15) and (16)and
we discard terms quadratic inq/m. We also use the fact that(19)and(20)are solutions to Eqs.(15) and (16)with
q/m = 0. Thus, Eqs.(15) and (16)become:

(22)
(
r2 + a2)E1 − aJ1 − ∆

J0 − aE0

(r2 + a2)E0 − aJ0
(J1 − aE1) = Qr,

(23)2(M − r)J0J1 − 2aM(J0E1 + E0J1) + 2
(
a2M + a2r + 2r3)E0E1 = −aQJ0 + Q

(
a2 + 3r2)E0.

These are now linear equations and they can be easily solved:

(24)E1 ≡ E′(0)

m
= Q

[±4a(Mr − Q2) + (r2 − 4Mr − a2 + 3Q2)
√

Mr − Q2
]

2r
[±2a(Mr − Q2) + (r2 − 3Mr + 2Q2)

√
Mr − Q2

] ,

J1 ≡ J ′(0)

m
= ± Q

[∓a(r2 − 4Mr + 3Q2 + a2)
√

Mr − Q2
]

2r
[±2a(Mr − Q2) + (r2 − 3Mr + 2Q2)

√
Mr − Q2

]
(25)± Q[(a2 + r2)(r2 − 4Mr + Q2) + 2Mr3 + 3a2Q2]

2r
[±2a(Mr − Q2) + (r2 − 3Mr + 2Q2)

√
Mr − Q2

] .

As before, upper sign corresponds to direct orbit (J > 0), while lower sign corresponds to retrograde orbit (J < 0).
The centripetal force acting on the charged particle is:

(26)F = 1

r3

J 2

E2
= 1

r3

(
J0

E0

)2
(

1+ q
m

J1
J0

1+ q
m

E1
E0

)2

= F0

[
1+ 2

q

m

(
J1

J0
− E1

E0

)
+ O

[(
q

m

)2]]
.

The pseudo-Newtonian potentialVM(r) giving rise to this force is the Manev potential,

(27)VM(r) = −
∫

F dr,

which, upon expansion over the powers of 1/r , results in:

VM(r) =
(

1− q

m

Q

M

)
M

r
+

(
2− 1

2

Q2

M2
− 9

4

q

m

Q

M

)
M2

r2
∓ 12

5

(
1− q

m

Q

M

)
aM3/2

r5/2

+
[
4+ 2

3

a2

M2
− 2

Q2

M2
+ q

m

(
−37

8

Q

M
− 2

3

a2Q

M3
+ Q3

M3

)]
M3

r3

∓
[
8− 2

Q2

+ q
(

−60 Q + 4 Q3 )]
aM5/2
M2 m 7 M 7 M3 r7/2
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charges

apore,
(28)

+
[
8+ 23

4

a2

M2
− 6

Q2

M2
− 1

2

a2Q2

M4
+ 1

2

Q4

M4
+ q

m

(
−569

64

Q

M
− 47

8

a2Q

M3
+ 33

8

Q3

M3

)]
M4

r4
+ · · · .

From this expression it is evident that the leading term is reduced due to Coulomb repulsion if the two
q and Q have the same sign. Opposite charges lead to additional attraction. By settinga = 0 one obtains the
effective pseudo-Newtonian potential for Reissner–Nordstrøm geometry[20], and by further settingQ = 0—for
Schwarzschild geometry[6] (see also[5]).
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