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Abstract

We consider the equatorial circular motion of a test particle of specific clyargen in the Kerr—Newman geometry of a
rotating charged black hole. We find the particle’s conserved energy and conserved projection of the angular momentum on the
black hole’s axis of rotation as corrections, in leading ordeg bof:, to the corresponding energy and angular momentum of
a neutral particle. We determine the centripetal force acting on the test particle and, consequently, we find a classical pseudo-
Newtonian potential with which one can mimic this general relativistic problem.
0 2005 Elsevier B.V. Open access under CC BY license,

In 1924 ManeJ1] (see alsd2]) introduced a classical potential in order to modify the celestial mechanics in
accordance with the general-relativistic description. To describe the motion of a particle ofinraske static
field of universal gravitation, due to maas, Manev replaced the masswith m = mgexp(M /r), wheremg is an
invariant and units; = ¢ = 1 are used. This led to the following modification of Newton’s gravitational law:

M M
F= ’;’0(1+3—>. 1)
r r
Potential of the type:
M M?
V(ir)=A—+B—, 2)
r r

whereA andB are some real constants aMtlis the mass of the central body, was originally introduced by Newton
himself in his Philosophige Naturalis Principia Mathematica (Book I, Article IX, Proposition XLIV, Theorem XIV,
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Corollary Il), in order to describe deviations in the Moon’s orbit from the Keplerian laws. However, modification
of Newtonian physics for mimicking general-relativistic results is attributed to Manev. We will refer to potential of
the type(2) as to Manev potential.

Modeling the particle motion in the most general stationary asymptotically-flat space—time—that of Kerr and
Newman[3-5]—is a fundamental problem with many astrophysical applications. This area has been under intense
investigation and various pseudo-Newtonian potentials for Bt and Schwarzschilgh,6] geometries have been
proposed7]: interesting physical applications, for example, in satellite theory, have been stud@ddifferent
mathematical aspects [A]. In this Letter we model the equatorial circular motion of a lightly charged particle
(¢g/m <« 1) in Kerr—-Newman geometry by introducing a classical pseudo-Newtonian potential. An immediate
area of application of a classical pseudo-Newtonian effective potential of a charged particle is the description
of accretion disks of charged particles around a rotating charged massive centre. In 1989, De Rujula, Glashow
and Sarid[10] proposed the idea that dark matter in our Universe is made of charged massive particles rather
than neutral particles. These authors studied a galactic halo of such charged massive particles together with its
cosmological implications, including galactogenesis. Gould ¢1 &].have shown that if charged massive particles
(with masses between4GeV and 18° GeV) made up the dark halo of the Galaxy, then they would be present in
large numbers in disk stars. Charged particles and their effects on galaxies, stars and planets have been studied b
Dimopoulos et al[12].

Rotating charged black holes are described by the Kerr—Newman gedBiéiryThe Kerr—Newman metric in
Boyer—Lindquist coordinatd4 3] (see alsg5]), in unitsc = G =1, is given by:

A . > st 5 p2
2 2, 2 2, 2,92
ds =—p(dt—asmz€d¢) + =3 (% +a®)dp —ade]" + —-dr® + p?d6?, ®)
where
A=r?—2Mr+ad®+ QZ, (4)
p2=r2+a200829. (5)

In the above M is the mass of the centre,> 0—the specific angular momentum of the centre (i.e., angular
momentum per unit mass) am2l—the charge of the centre.

The motion of a particle of mass and charge in gravitational and electromagnetic fields is governed by the
Lagrangiar14]:

1 dx'dx’) ¢q  dxt
=28 T m N a ©

In the above, is the proper timer per unit massn: A = t/m and A is the vector electromagnetic potential,
determined by the black hole’s char@eand specific angular momentum

Or

02

A;dxt = (dt —asirfodg). (7)

(The magnetic field is due to the dragging of the inertial reference frames into rotation around the black hole.)
The equations of motion for the particle are:

dei_,_ ?kdijd_xkzi ijdij, 8)
dr? dr dt m dt
whereF = dA is Maxwell’s electromagnetic tensor am?]k are the Christoffel symbols.
For Kerr—-Newman geometry, the geodesic equat{8psan be written aglL5] (see alsq16]):
dt ) 2 2
p2—=—a2ES|n29+aJ+r +a [E(r2+a2)—Ja—qu], 9)

dxr
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pzj%:i\/[E(rZ—l—az)—Ja—QQr]Z—A[m2V2+(J—aE)2+K]’ (10)
Zd_e_ _ 2(m2 _ 2 i 2
o _:t\/K co§9[a (m?—E )+Sin201 , (11)
2d¢ J o Arni2 oo g
PP =B+ o 2 [E(® +a®) — Ja—qor], (12)

whereE = 3L /37 is the conserved energy of the particle= 9L /3¢ is the conserved projection of the particle’s
angular momentum on the axis of the black hole’s rotation (dots denote differentiation with respgcktas
another conserved quantity given by:

_ .2 2( 2 g2y, L 2
K—pg-l—coszé[a(m E)+sin291]' (13)

Here py is thed-component of the particle’s four-momentup; = 9L /96.
The radial equatorialé(= 7 /2) motion of the particle can be modelled as a one-dimensional motion of a
classical particle in effective potentil(r) determined fron{10):

1(dr\? 1

5 (d_;> —V() = W[[E(rz +a?) = Ja—q0r]* = Alm*r? + () - aE)?] ] (14)
We now focus on circular orbits in the equatorial plane. For circular oditg/A = 0, both instantaneously and at
all subsequent times (orbit at a perpetual turning pqirit)18]. This implies:

V(r)=0, (15)
avir) o, (16)
dr

Egs.(15) and (16)an be viewed as a system of simultaneous equations from which one can determine the con-
served energ¥ of the particle and the conserved projectipof the particle’s angular momentum on the axis of

the black hole’s rotation in terms of the parametéfsQ, a, g, andm. These equations are non-linear and we will

not be looking for their general solution. Instead, we will assume that the particle’s specific charge is small, i.e.,
qg/m <« 1, and we will expandE andJ, as functions of; /m, with m fixed, in Taylor series near/m = 0:

E(%) —E© + E/(0)<%) + 0[(%>2] _ Eo+qE1+ o[(%)z] (17)
J(%) =J(0)+ J’(O)(%) n 0[(%)2] —Jo+qhi+ 0[(%)2}. (18)

In the above expansions, one can identify0) = Eg as the conserved energy ad0) = Jy as the conserved
projection of the angular momentum of a neutral particle in Kerr—Newman geometry. These argk@pwn

Eo  r?—2Mr+ Q*+ay/Mr— Q?
" r\/rz — 3Mr +202 + 2ay/Mr — Q2

Jo _ +a(Q%=2Mr) + (a® +r?)yMr — 02 20)
p :

r\/r2 —3Mr +2024 2a/Mr — Q2

The upper sign corresponds to direct orbit{ 0), while the lower sign corresponds to retrograde orbit(0).
The above expressions are valid for 02/M. In addition, the conditio/? > a2 + Q2 is necessary for the
existence of a horizon (i.e., a black hole solution) in Kerr—Newman georfigtr@rbits do not exist for all values

(19)
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of r > 0%/ M. The question of existence and stability of bound circular orbits of neutral particles in Kerr—Newman
geometry, as well as the thresholds for photon, marginally stable and marginally bound orbits are angly@ed in
(see als¢17] for rotating black holes). Our goal is to find a classical pseudo-Newtonian potential for modelling the
circular orbital motion of a lightly charged particlg fm < 1) in Kerr—Newman geometry by seeking expansions
for large values of (i.e., far from the black hole) which are above the threshold of a marginally stable orbit, i.e.,
within our approximation, all orbits are stable.
Identifying the Keplerian angular momentum distributiép\E, the centripetal forcéyp acting on the neutral
particle can be expressed[ad8]:
2
Fo= EJ2(2,3 = r73[a3(Q2 — Mr) + a(Q4 +AM?r% —3Mr3 — 4Q2Mr + 2Q2r2) + rzA\/m]z
0
x [a®(Q% — Mr) — (% —2Mr +r?)?] 2. (21)

Returning to the case of charged particle, we substitute the expari&iorend (18) into Egs.(15) and (16)and
we discard terms quadratic iy m. We also use the fact thét9) and(20) are solutions to Eqg15) and (16)with
g/m = 0. Thus, Eqs(15) and (16ecome:

Jo—akEp

2 2

Ei1—ali— A J1—akFEy) = Qr, 22
(r*+a°)Ex—al1 (r2+a2)E0—aJo(1 aEp) = Qr (22)
2(M —r)JoJ1 — 2aM(JoE1+ EoJ1) + 2(a®M + a®r + 2r®) EoE1 = —aQJo + Q(a® + 3r%) Eo. (23)

These are now linear equations and they can be easily solved:

_E'0) _ Q[4a(Mr — 0% + (2 — 4Mr — a® + 30%)/Mr — 0?]

F1= 24
1= 2r[+2a(Mr — 0?) + (r2 — 3Mr + 202)/Mr — Q2] (24)
) Q[Fa(r® — 4Mr +30% +a?)y/Mr — 0]
JlE ::I:
m 2r[+2a(Mr — Q?) + (r2 — 3Mr +202)/Mr — Q2]
QL@®+r?)(r2 = 4Mr + 02) + 2Mr® + 34207 (25)

2r[+£2a(Mr — Q2) + (r2 — 3Mr +202)y/Mr — Q2]

As before, upper sign corresponds to direct orbit{ 0), while lower sign corresponds to retrograde orldit{ 0).
The centripetal force acting on the charged particle is:

2
1 J2 1]021+%§—c1, q ()1 Ei a\°
= aln) (i) o[- &) elG) )] -
m Eg

The pseudo-Newtonian potentigj, () giving rise to this force is the Manev potential,

Vu@r) = —f Fdr, (27)
which, upon expansion over the powers @f lresults in:

qg O\ M 102 94 0\M2%2 12 g 0\ aM3?
VM(”:<1“_) *(2“—‘ )Tﬁg(l‘aﬁ)—rs/z

mM)r 2M2 Am M
2 2 2 37 2 2 3 M3
T PO L 0 220,90
8M 3 M M3

3 M2 M2 m r3

02 ¢ ( 600 403%\]aM®?
82—+ |—==+=-=)|—5
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N 23 a? 6Q2 14°0% 10* q( 569Q 474°Q  3303%\1M*
64 M 8 M3 8 M3

8+4M2 M2 2 M*  2M* m r4

(28)
From this expression it is evident that the leading term is reduced due to Coulomb repulsion if the two charges
g and Q have the same sign. Opposite charges lead to additional attraction. By settifjone obtains the
effective pseudo-Newtonian potential for Reissner—Nordstrgm geof2&}yand by further setting) = 0—for
Schwarzschild geometi{] (see alsg5]).
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