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a b s t r a c t

Designing a marine monitoring program that detects CO2 leaks from subsea geological storage projects is
challenging. The high variability of the environment may camouflage the anticipated anisotropic signal
from a leak and there are a number of leak scenarios. Marine operations are also costly constraining the
availability of measurements. A method based on heterogeneous leak scenarios and anisotropic pre-
dictions of chemical footprint under varying current conditions is presented. Through a cost function
optimal placement of sensors can be given both for fixed installations and series of measurements during
surveys. Ten fixed installations with an optimal layout is better than twenty placed successively at the
locations with highest leakage probability. Hence, optimal localizations of installations offers cost
reduction without compromising precision of a monitoring program, e.g. quantifying and reduce prob-
abilities of false alarm under control. An optimal cruise plan for surveys, minimizing transit time and
operational costs, can be achieved.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

All geological CO2 storage projects need a surface monitoring
program with four main objectives; 1) maximize assurance of
storage integrity, 2) assure that a leak will likely be detected, 3)
continue to build an accurate baseline to capture trends and natural
variability, and 4) to prevent unjustified accusations of adverse
effects from the storage project (EU Commission, 2011; Blackford
et al., 2015a). The 2011 incident at the Weyburn project is an
example of the latter (Boyd et al., 2013).

With proper selection and operational procedures geological
CO2 storage projects will be designed not to leak. Geological
monitoring of the reservoir, complex and overburden will be the
primary monitoring strategy to assure operations according to
plans and to detect any adverse events. Still, due to precision and
resolution, there will always be an uncertainty that CO2 migrates
toward the surface undetected.

Transport of the CO2 within the formation might find other
potential pathways like fractures and/or faults or the CO2 might
create new pathways (Oldenburg and Lewicki, 2006). Leaks
al).
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following weakness zones in geological structures or old wells
might cause high flux rates of CO2 far away from the injection site.
More diffusive leaks can be caused by CO2 migrating through the
overburden reaching the surface over a relatively large area. Leak
scenarios will be an intrinsic component in site characterization
and lay the ground for risk and impact assessments necessary for
obtaining a permit.

The site specific spatial and temporal evolution of the CO2 plume
within the storage complex determines the area to be monitored.
The anisotropic evolution of the Sleipner plume (see e.g. Boait et al.
(2012)) illustrate that subsurface monitoring is a prerequisite for
designing a marine monitoring program. For offshore storage pro-
jects a monitoring program for the seafloor and the water column
can be costly, and the marine environment is hostile for
instrumentations.

It is therefore suggested that the seafloor monitoring program
has three levels of modus operandi; 1) anomaly detection modus,
2) confirmation and location modus, and 3) seep quantification
modus. Blackford et al. (2015a) suggest a fourth step; impact
assessment. All modes will have different needs with regards to
instrumentation and data. As an example, location mode will
require current predictions in real time to be able to move up-
stream from a signal, as opposed to the statistical current condi-
tions that is sufficient for the detection modus.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The many pathways to the surface, either already present or mobilized by the
storage project, needs to be identified and leak scenarios defined. In the present study
a synthetic map defining areas of probable leak locations is used. In a (31 � 31) km
synthetic area of the seafloor over a storage site a number of well locations are rep-
resented by black crosses. Under the assumption that a leak is ongoing. The colors
indicates the probability of being the location of the seep. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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The focus here is the detection phase, in which the monitoring
program looks for anomalies in the environment. How can a po-
tential seep be detected, and is it possible to quantify the certainty
of detecting a leak? Answering these questions relies on 1) where
will a leak most likely occur, 2) how will a seep trail materialize in
thewater column, and 3) will it be possible to distinguish the signal
from the background variability?

Leak of CO2 shallower than 500 mwill rise in the water column
as gas bubbles (Alendal and Drange, 2001). Depending on the flux
rate, it might create individual bubbles, bubble trains or bubble
plumes. The dynamics of these regimes are different, with the
plume dynamics being the most challenging to model due to the
two way coupling with the surrounding seawater.

In all cases an increase in CO2 concentration is expected in the
vicinity of a leak, with subsequent possible environmental impacts
(Blackford et al., 2010). The spatial extent of area influenced is ex-
pected to be limited (Dewar et al., 2013, 2014), but might become
severe depending on the size of the leakage flux and the dilution
rate in the water column.

Environmental changes might serve as indicators that a leak is
occurring, either through changes in bottom fauna or in the pelagic
ecosystem, and detection of bubbles can be made from ship sonars
(Brewer et al., 2006; Noble et al., 2012). In addition the elevated
concentration of dissolved CO2 can be used as indicators of a leak.

One main challenge will be to define the degree of anomaly
needed in order to mobilize the more expensive confirmation and
localization step, balancing the need for confirmation with the cost
of false alarms. Changes in flux or new occurrences of natural gas
seeps, changes in biota or CO2 concentration can only be distin-
guished if a proper baseline statistic is available.

In the present study elevated CO2 concentrations is used as the
methodology to design a monitoring program. CO2 is naturally
present as dissolved into seawater and an increase of CO2 concen-
tration is expected according to the acidification of marine waters
(Caldeira and Wickett, 2003). Botnen et al. (2015) demonstrated a
stoichiometric approach for detection of small CO2 concentrations
that might stem from seeps, lowering the concentration threshold
for a signal to become statistically significant. This method lies in
between the statistical power analysis for obtaining an environ-
mental baseline (Yang et al., 2011a) and the pure process based
monitoring approach suggested by Romanak et al. (2012).

The marine waters are in constant motion and are characterized
with high variability; Tides change current directions, wind alters
the amount of mixing, and local topography change local current
conditions (Alendal et al., 2005). Footprints of leaks are thus a
varying and highly anisotropic signal depending strongly on the
local oceanic and atmospheric conditions (Alendal et al., 2013;
Greenwood et al., 2015; Ali et al., 2016). This makes designing a
monitoring framework considerably harder compared to when
assuming isotropic signal (Yang et al., 2011b).

Hvidevold et al. (2015) presented a procedure for optimizing the
sensor placement on the seafloor that partly accounts for footprint
anisotropy. The highly anisotropic footprint signal prediction from
a General Circulation model (Alendal et al., 2013; Ali et al., 2016)
was simplified through a least square approximation to an ellipsoid,
generating orthogonal major and minor directions. It was observed
that this procedure reduced the area of detectable concentration
compared to the average field itself.

In this study the same GCM simulations is used and a method to
use the predicted footprints directly is introduced. This method
combined with predicted time-series in an array of 51 � 51 grid
points around the seep location open for other approaches in
designing a monitoring program. Three different methods will be
presented; i) an average method to compare with results from the
previous study (Hvidevold et al., 2015), ii) an event method taking
into account the occasionally elevated concentrations and iii) a
single measurement method. The two former represent fixed in-
stallations, with different approach in data analysis, while the latter
can represent measurements taken during cruises and surveys.

By combining the stoichiometric approach in (Botnen et al.,
2015) and the statistical approach suggested has the potential to
become a powerful tool to discover small leaks fromCCS. Such leaks
matters on an environmental scale and may become harmful for
the environment and contribute to ocean acidification. Very small
natural CO2 leaks from the Jan Mayen fracture zone is proven to be
discovered by using the stoichiometric approach (Botnen et al.,
2015). Here the focus is to arrive to the optimal placement of sen-
sors on the sea floor to obtain an early detection of a potential leak
from subsea geological storage of CO2.

2. Problem definition

It is not the scope to perform a detailed site specific design, nor
is a proper assessment of possible leakage pathways available for
candidate CCS storage sites. Hence, in this study a synthetic area of
31 � 31 km containing 16 randomly placed wells is used. In reality
geological weakness zones needs to be included as well.

Since CO2 might also migrate in the lateral direction during
ascent, the seep is assumed to have a probability of surfacing a
distance from the well, located in x1, according to

pðxÞ ¼ p0 exp

"
�
�
x� x1

s

�2
#
; x2R2: (1)

The value p0 is the probability of leakage through the well and s
describes how quickly this probability levels off. It is assumed that
all wells have the same p0 and sz 0.6 km. This is a simplification, in
reality some wells may reach the storage formation and some will
not.

To account for potential unknown pathways a low background
probability is added to the map, assuming a ~10 times higher
probability for leakage in a well compared to the background. Un-
der the assumption that a leak is ongoing within the area proba-
bility field is normalized i.e., the probability that a leak occurs is 1.
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Fig. 1 shows the resulting probabilities.
Simulating a seep is challenging, especially due to the many

different scales that are involved, ranging from 10�2 m (bubble
scale) to 102 � 103 m (scale of dynamically active concentration
field) (Alendal and Drange, 2001; Sato and Sato, 2002; Dewar et al.,
2013, 2014). Away from the dynamically active seep zone the CO2
concentration behaves as a passive tracer, being transported and
further mixed by local currents and turbulence. Locally there might
be strong variations in current conditions and mixing, influenced
by a number of factors such as surface wind, tide (Davies and
Furnes, 1980) and topography (Alendal et al., 2005).

To obtain a footprint a 800 m resolution regional ocean model
(Bergen Ocean Model; BOM) set-up for the North Sea advects and
disperse CO2 as a passive tracer (Alendal et al., 2013; Ali et al., 2016).
The model forcing comprises tide (Davies and Furnes, 1980) (4 tidal
constituents; M2, S2,K1, and N2), river runoff data, and initial and
lateral boundary conditions for salinity and temperature taken
from the UK Metoffice FOAM 7 km model published at (http://
www.myocean.eu/). The atmospheric forcing is based on spring
2012 data, collected and interpolated from The European Centre for
Medium-Range Weather Forecasts (ECMWF, the Centre). In the
vertical 41 sigma-coordinate layers is used, distributed with higher
resolution (1m) near the free surface and the sea floor. In this study
a source term representing a leak rate of 1.74 kg/s, with a flux area
representing one grid cell of (800 � 800) m2 located closest to the
seabed, i.e. the grid-cell closest to the seafloor.

A two months simulation of CO2 seep has been used to gather
time series, with 1 min resolution, in a 51 � 51 grid cell array in the
vicinity of the leakage. Fig. 2 show time series for nine grid cells
closest to the leakage point (blue lines).

The reported precision for measurements of total inorganic
carbon (ct) is ~0.090$10�3 kg/m3 (Dickson et al., 2007), shown as
green line in Fig. 2. In the North Sea the natural variability of ct
between seasons varies between 2.260$10�3 kg/m3 and
4.520$10�3 kg/m3 mainly caused by e.g. changes in biological pro-
cesses (photosyntheses and respiration), air-sea exchange, and
hydrography (salinity variations andmixing betweenwatermasses)
(Omar et al., 2005; Salt et al., 2013).

Omar et al. (2005) and Botnen et al. (2015) developed a
Fig. 2. The time series for the anisotropic CO2 signal along the seafloor for a leakage point (in
for each time step in the grid cell, the red lines show the threshold concentration if environ
the detection threshold if baseline statistics is not available (2.26$10�3 kg/m3). The green lin
interpretation of the references to colour in this figure legend, the reader is referred to the
conceptual model correcting for the natural variability and the
anthropogenic trend based upon a stoichiometric approach. When
contrastingmeasurements with a reference location it is possible to
determine changes in ct that must stem from other sources, like
seeps of CO2. The threshold for detecting anomalies after applying
this conceptual model is ct ¼ 0.226$10�3 kg/m3 (red lines in Fig. 2).
The different concentration lines in Fig. 2 clearly illustrate the
threshold reduction offered.

As a further simplification the constant leakage rate and the
resulting seafloor concentration are independent on leak location.
In reality flux will be dependent on leak location and be time
dependent, and local topography and current variability might alter
the characteristics. For a better description seasonal, spatial vari-
ability and long term trends will have to be accounted for. This will
require availability of the aforementioned current statistics and a
much more comprehensive simulation study.

3. Monitoring design

The main challenge is how and where to do measurements with
the purpose of detecting a leak. Based on the GCM time series
predictions, three different approaches is presented. Each building
on a detection probability function, G(x � xl;ct), that gives the
probability of detecting a leak at xl if a measurement is taken at x
and with a given a detection threshold ct.

3.1. Three strategies for detecting a leak

3.1.1. The average concentration method
This method uses the average CO2 concentration, CðxÞ, collected

at fixed locations, hence represent instrumentations deployed at
fixed locations over a period of time. The detection probability
function is defined

GAðx; ctÞ ¼
�
1 if CðxÞ>Ct
0 elsewhere

(2)

Fig. 3) shows the average concentration, CðxÞ, for all 51� 51 grid
cells. G(x) have the value 1 if the average CO2 concentration is above
the threshold concentration ct, i.e. inside the blue contour in Fig. 3),
the middle), and the 8 grid cells surrounding it. The blue lines show the concentration
mental baseline is available (ct ¼ 0.226 � 10�3 kg/m3). The black horizontal lines show
e shows instrument accuracy (0.090$10�3). Note the different scaling on the y axis. (For
web version of this article.)

http://www.myocean.eu/
http://www.myocean.eu/


Fig. 3. Simulated average CO2 concentration in the vicinity leakage, the threshold
ct ¼ 0.226 � 10�3 kg/m3 is shown by the blue contour line. The black contour lines
represent the bathymetry in meter illustrating the role of topography in determining
the principal directions of the signal. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. The probability for the footprint to be above the C > 0.226 � 10�3 kg/m3

threshold at any time in the vicinity of the leakage represented by the black cross. The
green contour line represent 0.1, so any measurements taken inside of this contour will
have 10% probability of being above the detection threshold at a given time. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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and zero on the outside.
In Hvidevold et al. (2015) this footprint was used to approximate

an analytical function, introducing additional approaches and
simplifications to the problem. Here the simulated footprint is used
directly. In reality this method will not be used, it is shown here for
comparison with the previous study (Hvidevold et al., 2015). To
wait until the average concentration becomes statistically signifi-
cant will delay the detection, or even prevent, the leak to be
detected.

3.1.2. Single measurement method
In the single measurement method the time series predictions

are used to calculate the relative time the concentration is above
the threshold concentration, ct. The probability, GS(x;ct), is formed
by counting the data points above ct divided by the total amount of
data, i.e a frequentist approach,

GSðx; ctÞ ¼
Pk

l¼1f ðClðx; ctÞÞ
k

where f ðClðx; ctÞÞ

¼
�
1 if ClðxÞ> ct
0 elsewhere

(3)

where k is the number of equidistant data points in the time series.
Rephrased, the function gives the probability of a single mea-

surement at x to be above ct. For instance in the grid cell located at
the leakage point, the center plot in Fig. 2, the concentration is
always above the threshold concentration ct ¼ 0.226 � 10�3 kg/m3,
hence G(xl;ct) ¼ 1. While in the lower left plot the concentration is
often below this ct and the probability for a single measurement to
detect the leak is 0.23. Calculating GS(x;ct) for all 51 � 51 grid cells
gives a probability field around the leakage, Fig. 4.

3.1.3. Event based method
This represent a combination of the two former approaches,

continuous measurements at fixed locations and utilizing GS(x;ct).
A fixed installation might experience periods of increased CO2.

If p is the relative time the concentration is above ct, contours of
constant GS(x;ct) ¼ p represent the boundary for areas with
higher frequency of CO2 concentration above the detection
threshold. To avoid that outliers cause false alarms the concentra-
tion should be above the threshold concentration a given fraction of
the time pt. Hence this method uses the probability function

GEðx; ct ; ptÞ ¼
�
1 if GSðx; ctÞ>pt
0 elsewhere: (4)

The green contour line in Fig. 4 represent pt ¼ 0.1, bounding the
area for which a sensor can detect a leak GE(x;ct,pt) ¼ 1.
3.2. Designing the optimal monitoring system

All three approaches use the assumption that a leak is occurring
within the area shown in Fig.1 and the predicted CO2 concentration
footprint time series, exemplified in Fig. 2, is independent of leak
location. One problem is to invert the probability functions defined
to the area monitored by a measurement taken at a given location.

Given a measurement at a fixed xa, the probability of detecting a
leak at xl will be G(xa � xl;ct), where G is any of the probability
functions defined earlier. Treating xl as the independent variable
the probability fields of detecting a leak at r ¼ x � xa will be
G(� r;ct), representing a 180� rotation of the anisotropic G contours.
If measurements taken at xa show no indications of a leak the leak
probability map can be updated this new information.

Fig. 5 illustrates this for a single measurement point in a section
of the leak probability map, Fig. 1. The probability of any co-
ordinates being the site of a leak prior to any measurements (a) is
updated with the new belief after measuring no indication of a leak
at xa, white cross, for the different methods. The average method
(b) and the event method (d) rule out a leak in the area monitored,
with the area monitored by the averagemethod being considerably
smaller. If a single measurement stays below the threshold con-
centration a leak can not be ruled out completely, but the proba-
bility mapmay be updated by subtracting G(� (x� xa);ct) as shown
in Fig. 5(c).

The design problem is to localize where to take nmeasurements
in an optimal way. For instance, placing a measurement in a loca-
tion already covered will give low use of that measurement. This is
solved using Matlab's built-in genetic algorithm, ga, with a popu-
lation size of 300 individuals (collections of measurement co-
ordinates). The genetic algorithm will evolve the population of
measurement collections toward higher probable detection. The



Fig. 5. Illustrating the methods by one measurement in a section of the probability map Fig. 1. Upper left (a) show the location of a measurement and the local probability of being
the location of the leak. The remaining subfigure shows the monitored area of measuring at the white cross for (b) the average method, (c) the single method and (d) the event
method. Note that Fig. (d) shows a larger spacial area than (a), (b) and (c).
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benefit of this method is the global search space offered, avoiding
getting trapped in local optimums.

4. Results

Fig. 6 show the probability to detect a leakage as function of
number of measurements for the differentmethods, demonstrating
the ability of the procedure to quantify the leak detection capability
of a measurement grid.

The average method is very conservative in the sense that
average concentration must become statistically significant before
a leakage is detected. In reality a fixed installation will detect a
leakage immediate once the measurements becomes significantly
different from the natural variability. This is also illustrated by the
small area covered in Fig. 5(b).

Fig. 6 also show that fixed installations (event) gives much
higher detection probability than single measurements, given
similar amount of measurements. For instance placing 2 fixed in-
stallations is better than taking 7 single measurements, and
Fig. 6. The probability of detecting a leakage as function of number of measurements,
using detection threshold ct ¼ 0.226$10�3 kg/m3.
requiring a detection probability of 80% only 12 fixed installations is
needed compared to 60 single measurements. This is due to the fact
that fixed installations represent many measurements taken at the
same position, and hence increase the probability of capture pe-
riods of elevated CO2 concentrations. Due to logistics and cost it
might still be beneficial to rely on cruises and taking point mea-
surements and the method has the ability to locate where these
should be taken.

Due to the many simplifications and assumptions made the
numerical values should be used with caution. Still it is interesting
to see how much better an optimal layout of measurements will
perform compared to an intuitive approach with successively
selecting locations based on highest remaining probability of leaks,
Table 1. For instance, the event based method using 10 locations
with an optimal layout is much better than using 20 measurements
with the intuitive layout.

The optimal layout for the three methods, using four and ten
Table 1
The probability to detect leakage using optimal layout, column 3, and intuitive
layout by selecting successively the location with highest probability of being the
location of the leak, column 4. Column 1 gives number of measurements and the
detection method is shown in column 2.

Measurements Method Optimal [%] Intuitive [%]

2 Event 27.5 24.0
4 Event 45.4 33.2
10 Event 76.3 60.8
15 Event 94.3 64.9
20 Event 98.2 70.5
2 Single 9.7 9.1
4 Single 17.0 13.8
10 Single 33.1 30.8
15 Single 40.7 41.7
20 Single 61.7 48.0
2 Average 7.6 5.8
4 Average 12.2 10.9
10 Average 25.3 22.5
15 Average 31.4 29.7
20 Average 35.3 32.1



Fig. 7. Optimal layout for 4 measurements, top row, and 10 measurements, bottom row. In the left most figures the event based method is used, in the middle column the average
method is used and to the right side single measurement method is used. The white crosses show the action location.
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measurements, is shown in Fig. 7. For the average method the area
covered by the measurement is almost as big as the leakage
probability area surrounding a well, and the optimal layout is to
cover a newwell location for each newmeasurement, therefore it is
almost similar to the intuitive strategy as can also be read from
Table 1.

One measurement can cover several wells if the event based
method is used. Therefore it is not necessarily optimal to place
measurements directly on well locations. Single measurement
method require clustering of measurements in order to optimize
detection. In addition the preferred location is downstream due to
the anisotropy seen in Fig. 4.
Fig. 8. The shortest travel route when taking measurements after optimal layout for
twenty locations, red circles. Minimum travel distance is 99 km, using the same start
and the end location blue start. The black crosses show the well locations. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
5. Discussion

The results presented here are based on many simplifications
and short cuts due to lack of information and data. Still it is
demonstrated that combining proper site characterization, envi-
ronmental baseline statistics and leak footprint predictions can be
combined to optimize the required marine monitoring program.

At the moment the necessary information to perform a real
design at a real site is lacking and hence the possibility of
demonstrating the concept in-situ. To perform a more compre-
hensive design for a future storage project will require a thorough
geological survey identifying potential leakage pathways, including
mutual propensity to leak, to get a more realistic probability map
(Fig. 1). In addition a proper environmental baseline is needed for
better detection limit, as part of this baseline spatial and temporal
current statistics should be gathered for reliable footprint
prediction.

The aimmust be to get involved in future storage demonstration
projects with the purpose of assuring that necessary information is
gathered during site characterization and selection. However, these
demonstration storage sites will be designed to not leak and cannot
be used to test the concept. Such test will require in-situ experi-
ments, like the QICS experiment (Blackford et al., 2015b), or use of
natural gas seeps. In any case it will require resources that are not
available for the moment.

Higher confidence in the monitoring program is achieved
through quantification of the degree of certainty when a leak is
indicated. Such indication will mobilize extra resources to confirm
and localize a potential leak. The operations might become costly
and false alarms should be avoided. On the other hand it is
necessary to act on indicators of leaks in order to identify and
mitigate impacts. Through the certainty quantification offered by
the method suggested here it is possible to judge the likelihood of
an indication being a false alarm.

Cost for operation and installation has not been considered in
this study. Assuming the optimal measurement layout has been
chosen, minimizing the travel distance between these locations
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will save time and cost. This will be true for installations requiring
ships, operating gliders or other new technologies. This is exem-
plified in Fig. 8 show the shortest travel route for the single mea-
surement methods for twenty locations, using the same start and
stop location, blue star, using the genetic algorithm.

Acknowledgement

This work has been funded by SUCCESS centre for CO2 storage
under grant 193825/S60 and the CLIMIT program under grant
254711/E20 from Research Council of Norway (RCN). In addition,
the research leading to these results has received funding from the
European Community's Seventh Framework Programme (FP7/
2007-2013) under grant agreement no [265847].

References

Alendal, G., Berntsen, J., Engum, E., Furnes, G.K., Kleiven, G., Eide, L.I., 2005. Influ-
ence from ‘ocean weather’on near seabed currents and events at Ormen Lange.
Mar. Pet. Geol. 22 (1), 21e31.

Alendal, G., Dewar, M., Ali, A., Evgeniy, Y., Vielst€adte, L., Avlesen, H., Chen, B., 2013.
Technical Report on Environmental Conditions and Possible Leak Scenarios in
the North Sea. Tech. Rep. D3.4, ECO2 deliverables. http://www.eco2-project.eu.

Alendal, G., Drange, H., 2001. Two-phase, near-field modeling of purposefully
released CO2 in the ocean. J. Geophys. Res. 106 (C1).

Ali, A., Frøysa, H.G., Avlesen, H., Alendal, G., Jan. 2016. Simulating spatial and
temporal varying CO 2signals from sources at the seafloor to help designing
risk-based monitoring programs. J. Geophys. Res.-Oceans 121 (1), 745e757.

Blackford, J., Bull, J.M., Cevatoglu, M., Connelly, D., Hauton, C., James, R.H.,
Lichtschlag, A., Stahl, H., Widdicombe, S., Wright, I.C., Jul. 2015a. Marine base-
line and monitoring strategies for Carbon Dioxide Capture and Storage (CCS).
Int. J. Greenh. Gas Control 38, 221e229.

Blackford, J., Stahl, H., Kita, J., Sato, T., Jul. 2015b. Preface to the QICS special issue.
Int. J. Greenh. Gas Control 38, 1e1.

Blackford, J.C., Widdicombe, S., Lowe, D., Chen, B., Sep. 2010. Environmental risks
and performance assessment of carbon dioxide (CO2) leakage in marine eco-
systems. In: Developments and Innovation in Carbon Dioxide (CO2) Capture and
Storage Technology, Volume 2-Carbon Dioxide (CO2) Storage and Utilisation.
Woodhead Publishing Limited, pp. 344e373.

Boait, F.C., White, N.J., Bickle, M.J., Chadwick, R.A., Neufeld, J.A., Huppert, H.E., Mar.
2012. Spatial and temporal evolution of injected CO2 at the Sleipner field, North
Sea. J. Geophys. Res. Solid Earth (1978e2012) 117 (B3).

Botnen, H., Omar, A., Thorseth, I., Johannessen, T., Alendal, G., 2015. The effect of
submarine CO2 vents on seawater: implications for detection of subsea carbon
sequestration leakage. Limnol. Oceanogr. 60 (2).

Boyd, A.D., Liu, Y., Stephens, J.C., Wilson, E.J., Pollak, M., Peterson, T.R., Einsiedel, E.,
Meadowcroft, J., may 2013. Controversy in technology innovation: contrasting
media and expert risk perceptions of the alleged leakage at the Weyburn
carbon dioxide storage demonstration project. Int. J. Greenh. Gas Control 14,
259e269.

Brewer, P.G., Chen, B., Warzinki, R., Baggeroer, A., Peltzer, E.T., Dunk, R.M., Walz, P.,
dec 2006. Three-dimensional acoustic monitoring and modeling of a deep-sea
CO2 droplet cloud. Geophys. Res. Lett. 33 (23), 5.

Caldeira, K., Wickett, M.E., 2003. Oceanography: anthropogenic carbon and ocean
pH. Nature 425 (6956), 365e365.

Davies, A.M., Furnes, G.K., 1980. Observed and computed M2 tidal currents in the
North Sea. J. Phys. Oceanogr. 10 (2), 237e257.

Dewar, M., Sellami, N., Chen, B., 2014. Dynamics of rising CO2 bubble plumes in the
QICS field experiment. Int. J. Greenh. Gas Control. http://dx.doi.org/10.1016/
j.ijggc.2014.11.003.

Dewar, M., Wei, W., McNeil, D., Chen, B., 2013. Small-scale modelling of the phys-
iochemical impacts of CO2 leaked from sub-seabed reservoirs or pipelines
within the North Sea and surrounding waters. Mar. Pollut. Bull. 73, 504e515.
http://dx.doi.org/10.1016/j.marpolbul.2013.03.005.

Dickson, A., Sabine, C., Christian, J.E., 2007. Guide to Best Practices for Ocean CO2
Measurements. PICES Special Publication 3.

EU Commission, 2011. Implementation of Directive 2009/31/EC on the Geological
Storage of Carbon Dioxide, CO2 Storage Life Cycle Risk Management Framework.
Guidance Document 2.

Greenwood, J., Craig, P., Hardman-Mountford, N., Aug. 2015. Coastal monitoring
strategy for geochemical detection of fugitive CO2 seeps from the seabed. Int. J.
Greenh. Gas Control 39, 74e78.

Hvidevold, H.K., Alendal, G., Johannessen, T., Ali, A., Mannseth, T., Avlesen, H., 2015.
Layout of CCS monitoring infrastructure with highest probability of detecting a
footprint of a CO2 leak in a varying marine environment. Int. J. Greenh. Gas
Control 37, 274e279.

Noble, R.R.P., Stalker, L., Wakelin, S.A., Pejcic, B., Leybourne, M.I., Hortle, A.L.,
Michael, K., sep 2012. Biological monitoring for carbon capture and storage e a
review and potential future developments. Int. J. Greenh. Gas Control 10,
520e535.

Oldenburg, C.M., Lewicki, J.L., 2006. On leakage and seepage of CO2 from geologic
storage sites into surface water. Environ. Geol. 50 (5), 691e705.

Omar, A., Johannessen, T., Bellerby, R.G., Olsen, A., Anderson, L.G., Kivim€ae, C., 2005.
Sea ice and brine formation in Storfjorden: implications for the Arctic winter
time air-sea CO2 flux. In: The Nordic Seas: an Integrated Perspective,
pp. 177e187.

Romanak, K.D., Bennett, P.C., Yang, C., Hovorka, S.D., Aug. 2012. Process-based
approach to CO2 leakage detection by vadose zone gas monitoring at geologic
CO2 storage sites. Geophys. Res. Lett. 39 (15).

Salt, L.A., Thomas, H., Prowe, A., Borges, A.V., Bozec, Y., Baar, H.J., 2013. Variability of
North Sea pH and CO2 in response to North Atlantic oscillation forcing.
J. Geophys. Res. Biogeosci. 118 (2), 1584e1592.

Sato, T., Sato, K., 2002. Numerical prediction of the dilution process and its bio-
logical impacts in CO2 ocean sequestration. J. Mar. Sci. Technol. 6 (4), 169e180.

Yang, Y.-M., Small, M.J., Junker, B., Bromhal, G.S., Strazisar, B., Wells, A., Oct. 2011a.
Bayesian hierarchical models for soil CO2 flux and leak detection at geologic
sequestration sites. Environ. Earth Sci. 64 (3), 787e798.

Yang, Y.-M., Small, M.J., Ogretim, E.O., Gray, D.D., Bromhal, G.S., Strazisar, B.R.,
Wells, A.W., 2011b. Probabilistic design of a near-surface CO 2leak detection
system. Environ. Sci. Technol. 45 (15), 6380e6387.

http://refhub.elsevier.com/S1364-8152(16)30196-7/sref1
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref1
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref1
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref1
http://www.eco2-project.eu
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref3
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref3
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref3
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref4
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref4
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref4
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref4
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref4
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref5
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref5
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref5
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref5
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref5
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref6
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref6
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref6
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref7
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref8
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref8
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref8
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref8
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref8
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref9
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref9
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref9
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref9
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref10
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref10
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref10
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref10
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref10
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref10
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref11
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref11
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref11
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref11
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref12
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref12
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref12
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref13
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref13
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref13
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref13
http://dx.doi.org/10.1016/j.ijggc.2014.11.003
http://dx.doi.org/10.1016/j.ijggc.2014.11.003
http://dx.doi.org/10.1016/j.marpolbul.2013.03.005
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref16
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref16
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref17
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref17
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref17
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref17
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref18
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref18
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref18
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref18
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref18
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref19
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref19
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref19
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref19
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref19
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref19
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref20
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref20
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref20
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref20
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref20
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref20
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref21
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref21
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref21
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref21
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref22
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref22
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref22
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref22
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref22
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref22
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref22
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref23
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref23
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref23
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref23
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref23
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref24
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref24
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref24
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref24
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref24
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref25
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref25
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref25
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref25
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref26
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref26
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref26
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref26
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref26
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref27
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref27
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref27
http://refhub.elsevier.com/S1364-8152(16)30196-7/sref27

	Survey strategies to quantify and optimize detecting probability of a CO2 seep in a varying marine environment
	1. Introduction
	2. Problem definition
	3. Monitoring design
	3.1. Three strategies for detecting a leak
	3.1.1. The average concentration method
	3.1.2. Single measurement method
	3.1.3. Event based method

	3.2. Designing the optimal monitoring system

	4. Results
	5. Discussion
	Acknowledgement
	References


