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SUMMARY

‘‘Triple-defective’’ (3d) mice carrying a mutation in
UNC93B1, a chaperone for the endosomal nucleic
acid-sensing (NAS) Toll-like receptors TLR3, TLR7,
and TLR9, are highly susceptible to Toxoplasma
gondii infection. However, none of the single or
even the triple NAS-TLR-deficient animals recapitu-
lated the 3d susceptible phenotype to experimental
toxoplasmosis. Investigating this further, we found
that while parasite RNA and DNA activate innate
immune responses via TLR7 and TLR9, TLR11 and
TLR12 working as heterodimers are required for
sensing and responding to Toxoplasma profilin.
Consequently, the triple TLR7/TLR9/TLR11-deficient
mice are highly susceptible to T. gondii infection,
recapitulating the phenotype of 3d mice. Humans
lack functional TLR11 and TLR12 genes. Consis-
tently, human cells produce high levels of proinflam-
matory cytokines in response to parasite-derived
RNA and DNA, but not to Toxoplasma profilin, sup-
porting a more critical role for NAS-TLRs in human
toxoplasmosis.

INTRODUCTION

Natural infection with Toxoplasma gondii has been described in

more than 300 mammal and 30 avian species. While felines are

the definitive hosts, mice—the cats’ prey—are the natural inter-

mediate hosts and main reservoirs of this coccidian parasite.

Even though humans are considered ‘‘accidental’’ intermediate

hosts, one-third of the world population carries a chronic and

asymptomatic infection with T. gondii (Robert-Gangneux and

Dardé, 2012). However, in immune-compromised individuals,

the dormant parasite becomes highly virulent, leading to reacti-

vation of the chronic infection and causing severe disease and

lethality (Weiss and Dubey, 2009).
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Host resistance to T. gondii infection is primarily dependent on

T-cell-mediated immunity, and most attention has been focused

on IFNg-producing CD4+ T helper type 1 (Th1) and CD8+ T

effector lymphocytes that are critical for the resolution of acute

illness and to prevent reactivation of latent infection (Denkers

and Gazzinelli, 1998). In addition, activation of MyD88, an

universal adaptor for all Toll-like receptors (TLRs) (except

TLR3) (Gazzinelli and Denkers, 2006; Takeuchi and Akira,

2010), is essential for the optimal production of IL-10, IL-12,

TNF-a, and IFNg, all of which are important mediators of host

survival during primary infection with T. gondii (Scanga et al.,

2002; Sukhumavasi et al., 2008). While the three latter cytokines

(Gazzinelli et al., 1994; Suzuki, 1999) are critical to control para-

site growth through activation of effector mechanisms such as

inducible GTPases (Howard et al., 2011), IL-10 prevents an

excessive inflammatory response that is lethal to the host (Gaz-

zinelli et al., 1996).

As for the pathogen-associated molecular patterns (PAMPs)

that activate TLRs during T. gondii infection, important pieces

of the puzzle are still missing. Several parasite products,

including glycosylphosphoinositol (GPI) anchors, and heat

shock protein were shown to activate TLR2 and TLR4. Yet,

mice lacking such TLRs have a rather mild or no phenotype

upon T. gondii infection (Aosai et al., 2006; Debierre-Grockiego

et al., 2007). Importantly, the T. gondii profilin-like protein

(TgPRF) was shown to activate TLR11, and gene-target disrup-

tion of TLR11 results in a partial defect of IL-12 production and

increased number of cysts in the brain from mice infected with

T. gondii (Plattner et al., 2008; Yarovinsky et al., 2005). However,

none of these mice recapitulate the profound phenotype

observed in MyD88 knockout (KO) mice infected with T. gondii

(Melo et al., 2010; Scanga et al., 2002; Sukhumavasi et al.,

2008), suggesting that other members of the TLR family are

involved.

The ‘‘triple D’’ (3d) mouse expresses an UNC93B1 missense

mutant that is incapable of binding the nucleic-acid sensing

(NAS) TLRs (i.e., TLR3, TLR7, and TLR9) (Brinkmann et al.,

2007; Tabeta et al., 2006), and therefore, to mediate their trans-

location from the endoplasmic reticulum (ER) and consequent

activation into the endolysosomes (Kim et al., 2008). We have
nc.
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Figure 1. T. gondii RNA and DNA Activate Host Cells via TLRs

(A) Confocal microscopy of immortalized TLR9�/� macrophages stably ex-

pressing TLR9-GFP and infected with CMTPX-stained T. gondii. Acidic

compartments were stained with LysoTracker White-Blue. Arrows indicate

internalized parasites.

(B) Immortalized WT, TLR7 KO, and TLR9 KO macrophages were stimulated

with T. gondii RNA at 2 mg/ml complexed with DOTAP (Roche). CpG ODN

(3 mM) and R848 (2 mM) were used as positive controls.

(C) DCswere stimulated with T. gondiiDNA complexedwith DOTAP at 10, 5, 1,

and 0.1 mg/ml. CpG ODN 1826 was used as positive control at the same

concentrations.

(D) DCs were stimulated with CpGODN 1826 as positive control and T. gondii-

derived oligonucleotides containing B-class mouse-like stimulatory CpG

motifs at 3 mM (black circles), 1 mM (dark gray), 0.3 mM (light gray), and 0.1 mM

(white circles). Cytokine levels were measured in the tissue culture superna-

tants at 24 hr after stimulation.

(B–D) Data are represented as mean ± SD of three independent experiments

(*0.01 < p < 0.05, **0.001 < p < 0.01, ***p < 0.001). See also Table S1.
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shown that 3d mice are highly susceptible to infection with

T. gondii, presenting a profound impairment of IL-12 and conse-

quent delay in IFNg production (Melo et al., 2010). In the current

study, we further defined the role of endosomal TLRs during

infection with T. gondii. Our data indicate that TLR7 and TLR9

recognize Toxoplasma RNA and DNA, respectively. On the

other hand, we found that both TLR11 and TLR12 are required
Cell H
for UNC93B1-dependent cellular responses to TgPRF. We also

report that the triple TLR7/TLR9/TLR11-deficient mice are

highly susceptible to T. gondii infection, recapitulating the

phenotype of 3d mice. It is noteworthy that while the mouse

genome encodes 13 TLRs, the human genome lacks functional

TLR11, TLR12, and TLR13 (Roach et al., 2005). Consistently,

human cells produce high levels of proinflammatory cytokines,

including IL-12 and TNF-a, in response to parasite-derived

RNA and DNA, but not to TgPRF. Hence, our results support

the hypothesis that NAS-TLRs play an important role in human

toxoplasmosis.

RESULTS

RNA and DNA Derived from T. gondii Tachyzoites
Activate Host Cells via TLRs
NAS-TLRs are important cognate receptors for viruses, bacteria,

and different protozoan parasites (Alexopoulou et al., 2001; Bar-

tholomeu et al., 2008; Benson et al., 2009; Caetano et al., 2011;

Heil et al., 2004; Hemmi et al., 2000; Parroche et al., 2007). Here,

we exposed immortalized macrophages expressing transgenic

TLR9-GFPwith Red CMTPX-labeled tachyzoites. TLR9-GFP co-

localized with intracellular parasites in the endolysosomal

compartment, but not in the parasitophorous vacuole (PV),

which is lysotracker negative (Figure 1A). We also demonstate

that RNA (Figure 1B) and DNA (Figure 1C) extracted from highly

purified tachyzoites stimulate immortalized macrophages or

DCs, in a TLR7- or TLR9-dependent manner, respectively. Table

S1 (available online) lists a series of (total number of 92) immu-

nostimulatory mouse B class-like CpG motifs encoded in the

Toxoplasma genome. They are potent activators of DCs via

TLR9 (Figure 1D).

Combined Deficiency of NAS-TLRs Does Not
Recapitulate the High Susceptibility of 3d Mice Infected
with T. gondii

We found that none of the single TLR3, TLR7, or TLR9 KOs were

more susceptible to infection with T. gondii (Melo et al., 2010).

Thus, we hypothesize that a combined deficiency of NAS-TLRs

would explain the dramatic phenotype observed in the 3d

mice. However, none of the double TLR3/TLR7, TLR7/TLR9,

TLR7/TLR8, or even the triple TLR3/TLR7/TLR9-deficient mice

had an impaired IL-12 and IFNg production (Figure 2A and

data not shown), or were highly susceptible to T. gondii infection.

Despite this apparently normal IL-12/IFN-g response, few of the

triple TLR3/TLR7/TLR9 KO mice succumbed during an early

stage of infection (Figure 2B), which was associated with an

increased parasitism in peritoneal cells and spleens (Figure 2C),

as well as in the brain (Figure 2D).

Expression of Endosomal TLRs in DCs from Mice
Infected with T. gondii

Because resistance to experimental infection with T. gondii was

only slightly affected in the TLR3/TLR7/TLR9 KOmice, we inves-

tigated the role of other TLRs, whose function is also dependent

on UNC93B1. We generated a molecular tree of mouse TLRs

(Phylogeny.fr), which indicated that TLR12 is closely associated

to TLR11 and TLR13, that are also endosomal TLRs (Shi et al.,

2011; Zhang et al., 2004) (Figure S1). Amino acid sequence
ost & Microbe 13, 42–53, January 16, 2013 ª2013 Elsevier Inc. 43



Figure 2. Mice Deficient in TLR3/TLR7/

TLR9 Are Only Partially Susceptible to

T. gondii Infection

Mice were infected intraperitoneally with 25 cysts

of T. gondii ME49 strain.

(A) Levels of IL-12p40 and IFNg were measured in

the peritoneal cavity exudate and sera at different

times postinfection.

(B) Combined survival data from WT (n = 20), 3d

(n = 16), TLR7/9 (n = 20), and TLR3/7/9 (n = 20)

mice from four independent experiments.

(C) Quantitative real-time PCR analysis was per-

formed on the indicated tissues collected from

animals infected with T. gondii. Data are the mean

of three independent experiments.

(D) Cysts counts in the brain determined at 30 days

postinfection are the mean from four experiments.

(A–D) Data are represented as mean ± SD. Aster-

isks indicate that difference is statistically signifi-

cant, when comparing different mouse lineages

infected with T. gondii, (NS, not significant; *0.01 <

p < 0.05, **0.001 < p < 0.01, ***p < 0.001).
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alignment for TLR11 and TLR12 shows a high degree (35%) of

sequence identity, suggesting the possibility that both of them

may recognize TgPRF.

As both macrophages and DCs are important sources of IL-12

during T. gondii infection in mice, we evaluated the expression of

the endosomal TLRs mRNAs in CD11b+, CD11c+/CD8�, and
CD11c+/CD8+ cells. As shown in Figure 3A, mRNAs of TLR3,

TLR9, TLR11, and TLR12 were expressed in higher levels in the

CD11c+/CD8+ cells, consistent with the hypothesis that this DC

subset is the main source of IL-12 in mice infected with

T. gondii (Mashayekhi et al., 2011; Yarovinsky et al., 2005).

However, a recent study (Goldszmid et al., 2012) indicates that

the main IL-12 source in the peritoneal cavity of infected mice

is the CD11c+CD8� DCs, which we found to express high levels

of TLR3, TLR7, and TLR9, andminimal levels of TLR11 or TLR12.

Thus, we speculate that IL-12 production by CD11c+CD8+ DCs

and CD11c+CD8� DCs is triggered by parasite TgPRF and nu-

cleic acids, respectively. Macrophages also expressed mRNA

for the various endosomal TLRs, but in a lesser amount thanDCs.

To evaluate whether TLR11 and TLR12 are associated with

other endosomal TLRs, HEK293T cells were transiently cotrans-

fected with different Flag-tagged TLRs and TLR11-HA, and

TLR11 immunoprecipitated as bait. As shown (Figure 3B),

TLR3, TLR7, TLR11, and TLR12, but not TLR4, coimmunopreci-

pitated with TLR11. UNC93B1 has been reported to physically
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interact with TLR3, TLR7, TLR9, TLR11,

and TLR13 (Brinkmann et al., 2007; Kim

et al., 2008; Pifer et al., 2011; Tabeta

et al., 2006). Thus, the interpretation of

these results is that when pulling down

TLR11, coimmunoprecipitation of TLR3,

TLR7, TLR11, and TLR12 is observed

because all the endosomal TLRs are

bound to UNC93B1.

Next, we purified CD11c+ cells from the

spleens of 3d as well as double TLR7/

TLR9, triple TLR3/TLR7/TLR9, and single
TLR11 KO mice. DCs from 3d mice were responsive to LPS, but

not to R848 (TLR7 agonist), CpG ODN (TLR9 agonist), STAg,

ME49, or recombinant TgPRF (rTgPRF). The lack of TLR11, but

not TLR3/TLR7/TLR9, had a major impact on IL-12 production

by splenic DCs exposed to STAg, ME49, or rTgPRF. Neverthe-

less, compared to rTgPRF, DCs from TLR11 KO or TLR12 KO

mice still produced significant amounts of IL-12 when exposed

to either STAg or ME-49 (Figures 3C and 3D). As expected,

DCs from TLR3/TLR7/TLR9 KOs did not respond to R848 or

CpG ODN, whereas DCs from TLR11 KOs produced high levels

of IL-12 in response to these TLR agonists (Figure 3C). Treatment

with Proteinase K, but not with RNase or DNase, destroyed the

ability of rTgPRF to activate CD11c+ cells (Figure 3D).

Colocalization and Heterodimerization of TLR11
and TLR12
Macrophages were genetically engineered to stably express

color-tagged TLR11 or TLR12 and used to analyze their subcel-

lular distribution by confocal microscopy. We found that in

macrophages, TLR11 and TLR12 colocalize with ER tracker,

but not with cholera toxin (a cell-surface membranemarker) (Fig-

ure 4A). We also transfected HEK293T cells with different combi-

nations of plasmids encoding fluorescent protein-tagged

UNC93B1, TLR11, or TLR12, and they all colocalized in the ER

(Figure 4B). As control, we transfected HEK293T cells with



Figure 3. Endosomal TLRs Are Highly Ex-

pressed in CD8a+ DCs and Upregulated

upon T. gondii Infection

(A) Real-time PCRwas performed to determine the

relative levels of TLR3, TLR7, TLR9, TLR11, and

TLR12 mRNA expressed by CD11b+, CD11c+/

CD8a+, and CD11c+/CD8a� cells sorted from

splenocytes from uninfected controls as well as

infected (5dayspostinfection)WTmice.TLRmRNA

levels were normalized to glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH) mRNA. Data are

represented as mean ± SD of three experiments.

(B) HEK293T cells were transfected with different

pairs of plasmids, total lysates immunoprecipi-

tated (IP) with anti-hemagglutinin (anti-HA, top) or

anti-Flag (bottom), and analyzed by immunoblot

(IB) with anti-Flag (top and bottom). The top

membrane was then stripped and reprobed with

anti-HA to ensure expression of hemagglutinin-

tagged TLR11 (middle).

(C) CD11c+ cells were purified from spleen of WT,

3d, TLR7/TLR9, TLR3/TLR7/TLR9, and TLR11 KO

mice and stimulated with LPS (100 ng/ml) ODN

CpG 1826 (1 mM) or R848 (2 mM), STAg (10 mg/ml),

rTgPRF (10 ng/ml), or infected with ME49 tachy-

zoites (moi 3:1).

(D) CD11c+ cells purified from WT, TLR4, TLR7/

TLR9, and TLR12 KO mice were stimulated with

LPS (100 ng/ml), ODN CpG 1826 (1 mM), STAg

(10 mg/ml), or rTgPRF (10 ng/ml); left untreated; or

treatedwithDNase (100U/ml), RNase (10mg/ml), or

ProteinaseK (10mg/ml). IL-12 levelsweremeasured

in the supernatant at 24 hr after stimulation.

(C–D) Data are represented as mean ± SD of four experiments. Asterisks indicate that difference is statistically significant when comparing cytokines levels from

WT to different KO mice, infected or not infected with T. gondii (*0.01 < p < 0.05, **0.001 < p < 0.01, ***p < 0.001). See also Figure S1.
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a color-tagged TLR4. The pattern of cellular distribution for TLR4

was distinct from TLR11 and TLR12 (Figure 4B). As expected

(Latz et al., 2004), TLR4 was primarily expressed at the surface

membrane of the transfected cells.

Importantly, immortalized macrophages produced high levels

of IL-12 in response to STAg or ME49 tachyzoites when they

were stably transfected with both TLR11 and TLR12, but not

with either TLR11 or TLR12 alone (Figure 4C). As dimerization

appears to be required for PAMP recognition and activation

of TLRs (Latz et al., 2007; Leonard et al., 2008), we used fluo-

rescence resonance energy transfer (FRET) to evaluate the

intermolecular distance between the TIR domains of TLRs.

HEK293T cells were transfected with different combinations

of fluorescent TLRs fused to cerulean (Donor) or citrine

(Acceptor) and protein-protein interaction evaluated. A strong

FRET signal was observed in cells cotransfected with TLR11

and TLR12, but not with either TLR11/TLR11, TLR12/TLR12,

or TLR11/TLR9 stimulated with STAg (Figure 4D) or rTgPRF

(Figure 4D and data not shown). After stimulation with CpG,

we observed a strong FRET signal for TLR9/TLR9 homodimers.

Based on the results described above, we hypothesized that

TLR11 and TLR12 work as heterodimers and that deficiency

of either TLR11 or TLR12 results in impaired IL-12 production

during T. gondii infection. Whether formation of TLR11 and

TLR12 heterodimers is necessary for recognition of bacterial

components (e.g., flagellin) by TLR11 (Mathur et al., 2012;

Zhang et al., 2004) remains to be defined.
Cell H
Quadruple TLR3/TLR7/TLR9/TLR11 KOMice Are Highly
Susceptible to T. gondii Infection
Despite a significant impairment on IL-12 response, TLR11-

deficient mice still produced higher levels than the 3d mice,

being sufficient to induce IFNg (Figure 5A) and protect mice

from death during acute phase of infection (Figure 5B). Never-

theless, TLR11 KOs showed a 4-fold increase in cyst numbers

(Figure 5C). These data left us with the observation that

although the NAS-TLRs and TLR11 are all required for optimal

host responses to T. gondii, neither seemed essential for

survival. Hence, we generated triple TLR7/TLR9/TLR11- and

quadruple TLR3/TLR7/TLR9/TLR11-deficient mice. In contrast

to DCs from TLR11 KO, CD11c+ cells purified from spleens

of either TLR7/TLR9/TLR11 or TLR3/TLR7/TLR9/TLR11 KO

mice did not respond to either STAg or live tachyzoites

(ME49) (Figure 6A). As shown in (Figure 6B and Figure S2A),

the quadruple KO mice had a major defect in IL-12, IL-6,

and MCP1 production, at levels similar to those of 3d mice.

MCP1 is an important chemokyne for the recruitment of

inflammatory monocytes and host resistance to T. gondii (Du-

nay et al., 2008). As presented in Figure S2B, by day 3 after

infection, WT mice have an increased number of inflammatory

monocytes, which was not observed in 3d or quadruple KO

mice. The influx of inflammatory monocytes at 3 days post-

challenge was partially reduced in TLR3/TLR7/TLR9 KO mice

and may explain the slight enhancement on susceptibility to

infection (Figure 2). An impairment in IL-12 production by
ost & Microbe 13, 42–53, January 16, 2013 ª2013 Elsevier Inc. 45



Figure 4. Colocalization and Heterodimerization of TLR11 and TLR12

(A) Immortalized macrophages were stably transfected with TLR11-mcherry or TLR12-mcherry and imaged poststaining with Cholera toxin B subunit FITC

conjugate, LysoTracker White-Blue, or ER-Tracker White-Blue.

(B) HEK293T cells transfected with TLR11-mCherry or TLR12-mcherry with UNC93B1-YFP or TLR11-mcherry and TLR12-citrine (left panel) or with TLR4-YFP

and stained with Hoechst 33342 as nuclear marker (right panel).

(C) Immortalized macrophages stably expressing either TLR11, TLR12, or both were stimulated in vitro with STAg (10 mg/ml) or exposed to live tachyzoites (moi

3:1) of the ME49 strain and levels of IL-12p40 measured in the supernatants at 24 hr poststimulation. Data are represented as mean ± SD of three experiments.

(D) HEK293T cells were transfected with the plasmids encoding the proteins indicated in the figure; 48 hr after transfection, cells were left unstimulated or were

stimulated with STAg (10 mg/ml), rTgPRF (100 ng/ml), or CpG 1826 (1 mM) for TLR9/TLR9. FRET between the respective proteins was calculated by measuring

sensitized emission (SE) fluorescence using the FRET SE wizard on the Leica SP2 confocal laser-scanning microscope. For each plasmid combination, cerulean

(represented in red) was used as donor and citrine (represented in green) as acceptor. Data are from one representative experiment of four.
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Figure 5. TLR11 Mice Are Resistant to

T. gondii Infection

Mice were infected intraperitoneally with 25 cysts

ME49 strain of T. gondii.

(A) Levels of IL-12p40 and IFNg were measured in

the peritoneal cavity exudate and sera from unin-

fected as well as infected mice.

(B) Combined survival data from WT (n = 15), 3d

(n = 12), and TLR11 (n = 15) mice from three

independent experiments.

(C) The cyst numbers in the brain were counted at

30 days postinfection and presented asmean from

the three experiments.

(A–C) Data are represented as mean ± SD. Aster-

isks indicate that difference is statistically signifi-

cant, when comparing to unstimulated controls

(NS, not significant; *0.01 < p < 0.05, **0.001 < p <

0.01, and ***p < 0.001).
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DCs and inflammatory monocytes was observed both in 3d

and quadruple TLR3/TLR7/TLR9/TLR11 KO mice (Figure 6C),

causing a delay in IFNg production (Figure 6D). After challenge

with ME49 strain, quadruple KOs were as susceptible as 3d

mice, as indicated by the survival curve and increased parasite

burden in peritoneal cells, spleen, and liver (Figures 6E and

6F). We assume that the influx of neutrophils, inflammatory

monocytes, and DCs in the highly susceptible mutant/KO

mice was too late, and thus, not able to control parasite repli-

cation (Figure S2B). Importantly, as shown in Figure 6G, all 3d

and TLR3/TLR7/TLR9/TLR11 KO mice treated with recombi-

nant IL-12 (rIL-12) survived the experimental infection with

T. gondii.

We also generated the triple TLR7/TLR9/TLR11-deficient

mice, which were as susceptible as the 3d and quadruple KO

mice infected with T. gondii (Figure 6D). As TRIF and type I IFN

are, respectively, the main adaptor molecule and outcome of

TLR3 activation, we performed experimental infections in TLR3

KO, TRIF KO, and Type I IFN receptor KO mice. Our results

show that when compared to WT mice, none of these mice dis-

played enhanced susceptibility to T. gondii infection (Figures

S2C and S2D). Consistently, we were unable to detect any

increase in the production of IFN-a protein in peritoneal fluids,

splenocyte cultures, or sera from WT mice infected with

T. gondii (data not shown).

Human Peripheral Blood Mononuclear Cells Produce
High Levels of IL-12 in Response to T. gondii DNA and
RNA, but Not rTgPRF
TLR11 and TLR12 are not expressed in human cells (Roach et al.,

2005; Zhang et al., 2004). This raised the hypothesis that NAS-

TLRs are the key TLRs sensing T. gondii parasites in human cells.

The results presented in Figure 7A indicate that when compared

to R848 (agonist for human TLR8) and LPS (agonist for TLR4),

STAg is a poor stimulator of IL-12p70, TNF-a, and IL-1b produc-
Cell Host & Microbe 13, 42–5
tion by human PBMCs. Furthermore, we

were unable to detect production of any

cytokine (including IL-12p70) in response

to rTgPRF (Figure 7B). Nevertheless, we

found that parasite RNA and DNA elicited
the production of proinflammatory cytokines, including TNF-a,

IL-12p40, and IL-12p70, which was more pronounced when

PBMCs were primed with IFNg (Figure 7B). We also searched

for immunostimulatory CpG motifs (Table S2) that activate

human TLR9. In the whole genome, we found 363 human B class

CpG motifs and 67 human C class motifs. Synthetic B and C

class-like immunostimulatory oligonucleotides derived from

T. gondii genome induced NF-kB activation in HEK cells (Fig-

ure 7C), as well as proinflammatory cytokines, and in special

IL-12p40/IL-12p70, when human PBMCs were primed with

IFNg (Figure 7D).

DISCUSSION

We hypothesized that a combined deficiency of NAS-TLRs was

responsible for the observed phenotype of 3d mice infected with

T. gondii. Our current report indicates that the extreme suscep-

tibility of 3d mice is due to a combined defect on endosomal

TLRs, but not simply a deficiency of the NAS-TLRs, also

including TLR11 and TLR12. The combined deficiency of endo-

somal TLRs results in a profound impairment of IL-12 production

by both dendritic cells and macrophages, and a subsequent

reduction in the levels of IFNg.

In our previous study (Melo et al., 2010), we suggested, as an

alternative mechanism, that UNC93B1 was directly mediating

control of tachyzoite replication in the PV. However, induction

and translocation of iGTPases to the PV are normal, and

IFNg-activated macrophages from 3d mice effectively

controlled parasite replication (Melo et al., 2010). In addition,

macrophages lacking functional TLRs, including NAS-TLRs,

are not more permissive to parasite growth in vitro. To test

this hypothesis in vivo, we generated mixed chimeras and

observed that in vivo parasite replication was equal in cells

from WT and 3d mice (data not shown). UNC93B1 is also

involved in antigen crosspresentation (Tabeta et al., 2006),
3, January 16, 2013 ª2013 Elsevier Inc. 47



Figure 6. Quadruple Deficient Mice Have an Impaired IL-12 and Early IFNg Production and Are Highly Susceptible to T. gondii Infection

(A) CD11c+ cells were purified from spleen of WT, TLR7/TLR9/TLR11, TLR3/TLR7/TLR9/TLR11, and TLR11 KO mice and stimulated with LPS (100 ng/ml), ODN

CpG 1826 (1 mM), R848 (2 mM), STAg (10 mg/ml), or infected with ME49 tachyzoites (moi 3:1). Data are represented as mean ± SD of two experiments.

(B) Levels of IL-12p40weremeasured in the peritoneal cavity exudate and sera from uninfected controls and infectedmice. Data are represented asmean ± SD of

four experiments.

(C) Mice infected with T. gondii were sacrificed at 5 days postinfection and peritoneal cells analyzed for IL-12 cellular source by intracellular cytokine staining.

Dendritic cells (top) were gated for CD11c+/MHC-II+. Inflammatory monocytes (bottom) were gated first for GR1+ and then for CD11b+/F4/80+. Both populations

were stained for IL-12p70. Data are from one representative experiment of three that yielded similar results.

(D) Levels of IFNg present in the peritoneal cavity exudate and sera from uninfected controls and infected mice. Data are represented as mean ± SD of four

experiments.

(E) Combined survival data from WT (n = 15), 3d (n = 10), TLR7/9/11 KO (n = 10), and TLR3/7/9/11 KO (n = 15) mice from at least two independent experiments.

(F) Quantitative real-time PCR analysis was performed on the indicated tissues collected from animals infected with T. gondii. Data are represented asmean ± SD

of three independent experiments.
(legend continued on next page)
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but we have no indication that activation of CD8+ T lympho-

cytes is impaired in 3d mice infected with intracellular proto-

zoan parasites (Caetano et al., 2011; Melo et al., 2010). Hence,

we propose that the main cause of the enhanced susceptibility

of 3d mice to T. gondii infection is the defective activation of

endosomal TLRs, impaired IL-12 production, and inadequate

development of protective immunity.

As observed for other intracellular protozoan parasites (Bar-

tholomeu et al., 2008; Caetano et al., 2011; Parroche et al.,

2007), we report that Toxoplasma-derived DNA and RNA induce

the production of proinflammatory cytokines by macrophages

and DCs. However, the triple TLR3/TLR7/TLR9 KO mice are

only slightly more susceptible to infection with T. gondii. In addi-

tion, mice deficient in TLR11, which is activated by TgPRF in an

UNC93B1-dependent manner (Pifer et al., 2011), survive the

acute infection with T. gondii (Yarovinsky et al., 2005). This

complicated scenario convinced us to generate the quadruple

TLR3/TLR7/TLR9/TLR11 and triple TLR7/TLR9/TLR11 KO mice

that upon infection with T. gondii recapitulated the 3d pheno-

type, resulting in a profound impairment of the IL-12/IFN-g

axis, and unhampered parasite growth.

Importantly, two studies reported that TLR9 is partially respon-

sible for the development of an optimal antiparasite Th1

response and intestinal pathology, when mice are per-orally in-

fected with cysts of the ME49 strain of T. gondii (Benson et al.,

2009; Minns et al., 2006). The interpretation of these results is

that DNA of the intestinal microflora serves as a natural adjuvant

for mucosal immunity (Hall et al., 2008). However, the adjuvant

effect of the intestinal microflora is not observed when mice

are infected intraperitoneally (Benson et al., 2009). Since our

main interest was to identify the innate immune receptors for

T. gondii, we used the intraperitoneal infection to avoid the inter-

ference of the gut microbiota. Hence, collectively, our results

indicate that in addition to TLR11, TLR7, and TLR9 are also

important sensors of Toxoplasma tachyzoites.

The high similarity of TLR11 and TLR12 found in a phylogenetic

analysis led us to query if they had similar function, as previously

observed for TLR1, TLR2, and TLR6 (Roach et al., 2005; Trianta-

filou et al., 2006). Indeed, TLR11 and TLR12 colocalized with

UNC93B1 in transfected HEK293T cells, and FRET between

TLR11/TLR12 was induced upon activation with Toxoplasma

extracts or rTgPRF. This result was not observed when the

TLRs were expressed alone, suggesting that homodimerization

does not occur. Together, our biochemical, cellular, and immu-

nological assays strongly suggest that both TLR11 and TLR12

are endosomal TLRs and act as heterodimers in the recognition

of Toxoplasma molecules. Thus, we propose that in mice the

primary role of UNC93B1 in host resistance to T. gondii infection

is to mediate translocation and function of TLR7, TLR9, TLR11,

and TLR12.

The endosomal localization of TLR11 and TLR12, in contrast to

the surfacemembrane TLRs that recognize cell wall components

of bacteria (i.e., TLR1, TLR2, TLR4, TLR5, and TLR6), is an
(G) WT, 3d, and TLR3/TLR7/TLR9/TLR11 KO were infected i.p. with the ME49 str

IL-12p70 or vehicle for 6 consecutive days, and mortality was evaluated. Data

Asterisks indicate that difference is statistically significant, when comparing differe

See also Figure S2.
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important finding. The current report further emphasizes that

despite the presence of ligands for surface membrane TLRs

(Gazzinelli and Denkers, 2006), endosomal TLRs are the critical

ones for the in vivo sensing of intracellular protozoan parasites.

The protozoan ligands that are recognized by endosomal TLRs

appear to reside inside the protozoan parasite, DNA, RNA, and

TgPRF, all of which are released from the parasite when it is killed

in the phagolysosome. As shown for TLR9, it is reasonable to

speculate that both TLR11 and TLR12 translocate from the

ER and recognize the parasite components in the endolyso-

somes and not in the PV, which avoids fusion with host cell en-

docytic and exocytic vesicular trafficking pathways (Mordue

et al., 1999). While activation of DCs by TgPRF, STAg, or live

tachyzoites is mediated by UNC93B1, additional experiments

are necessary to confirm the cellular location of TLR11/TLR12

activation.

Another intriguing aspect of the TLR11 and TLR12 biology is

their species specificity. TLR11 in humans is a pseudogene

(Zhang et al., 2004), whereas TLR12 is not present in the human

genome. As mice are the natural intermediate host and highly

exposed to T. gondii infection, we speculate that TLR11 was

not only maintained as a functional receptor but also duplicated

as an important mechanism of host resistance to infection.

Although TLR11 and TLR12 are not involved in recognition of

T. gondii by human cells, one can imagine that they may play

an indirect role in human disease because of the role that mouse

has in transmitting the parasite to cats, which can then transmit

to humans.

It is worth mentioning that in mice TLR8 has no known ligands,

whereas TLR7 is widely expressed and functions as a receptor

for ssRNA (Heil et al., 2004). Complicating matters, human

mDCs and monocytes respond to ssRNA via TLR8. Human

TLR7 is active, however, in pDCs’ (which do not express

TLR8) response to RNA viruses (Forsbach et al., 2008). Thus,

in consideration of the lack of expression of TLR11 and TLR12

in humans, these data led us to speculate that TLR7, TLR8,

and TLR9 are the key TLRs in human toxoplasmosis. Impor-

tantly, human PBMCs from uninfected healthy donors produce

significant levels of IL-1b and TNF-a when stimulated with para-

site-derived DNA and RNA, as well as oligonucleotides contain-

ing CpG motifs derived from Toxoplasma genome. Furthermore,

when primed with IFNg, human PBMCs produced high levels of

IL-12p40/70 upon stimulation with parasite-derived nucleic

acids, but not with STAg or rTgPRF. The precedent for the

importance of IFNg priming in the production of IL-12 also exists

in the rodent model of toxoplasmosis (Gazzinelli et al., 1994;

Goldszmid et al., 2012).

Finally, although it is considered an ‘‘accidental’’ intermediate

host, one-third of the humanpopulation in theworld is chronically

infected with T. gondii (Robert-Gangneux and Dardé, 2012).

While one can imagine the evolutionary pressures that gave

rise to TLR11 in mice, it remains unclear why it was downgraded

to a noncoding gene in humans. Hence, our findings have
ain of T. gondii (n = 5 per group). Mice were treated with 100 ng of recombinant

are from one representative experiment of two that yielded identical results.

nt mouse lineages infected with T. gondii. (**0.001 < p < 0.01, and ***p < 0.001).
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Figure 7. DNA and RNA from T. gondii Activate Human Peripheral Blood Mononuclear Cells

(A) PBMCs purified from blood of clinically healthy donors were stimulated in vitro with STAg (10 mg/ml), CpG ODN 2007 (1 mM), R848 (2 mM), or LPS (100 ng/ml).

Data are represented as mean ± SD.

(B) PBMCs primed or not with recombinant human IFNg (200 U/ml) were stimulated with LPS (100 ng/ml), STAg (10 mg/ml), ME49 RNA (2 mg/ml), ME49 DNA

(5 mg/ml), or rTgPRF (1 mg/ml). Parasite RNA and DNA were complexed with DOTAP (Roche).

(C) HEK293T cells were stimulated with either CpGODN 2007 (B class) or 2395 (C class) as positive controls, or T. gondii-derived oligonucleotides containing B or

C class human-like stimulatory CpG motifs at 3 mM (black circles), 1 mM (dark gray), 0.3 mM (light gray), and 0.1 mM (white circles). Asterisks indicate that

differences are statistically significant when comparing stimulated cells with negative control—ODN 2007GC (top panel).

(D) PBMCs primed or not with recombinant human IFNg (200 U/ml) were stimulated in vitro with either CpG ODN 2007 (B class) or 2395 (C class) as positive

controls, or T. gondii-derived oligonucleotides containing B and C class human-like stimulatory CpG motifs (5 mM). Cytokine levels were measured in the

supernatants at 18 hr after stimulation.

(B–D) Data are represented as mean ± SD of three independent experiments (*0.01 < p < 0.05, **0.001 < p < 0.01, and ***p < 0.001). See also Table S2.
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important implications for human disease. One has to assume

that alternative TLRs are responsible for detecting the parasite,

triggering innate immunity and initiating acquired immunity

during acute toxoplasmosis in humans. The data presented

here show that human PBMCs produce high levels of proinflam-
50 Cell Host & Microbe 13, 42–53, January 16, 2013 ª2013 Elsevier I
matory cytokines, including IL-12, in response to T. gondii RNA

andDNA, but not rTgPRF. Finally, a recent study reports an asso-

ciation of a TLR9 single-nucleotide polymorphism and develop-

ment of ocular toxoplasmosis (Peixoto-Rangel et al., 2009).

Hence, we propose that NAS-TLRs, as well as the signaling
nc.
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pathways they activate, are important determinants of resistance

to infection and the clinical outcome of human toxoplasmosis.

EXPERIMENTAL PROCEDURES

Ethics Statement

All experiments involving animals were performed in accordance with guide-

lines set forth by the American Association for Laboratory Animal Science

(AALAS) and were approved by the Institutional Animal Care and Use

Committee (IACUC A-1817) at the University of Massachusetts Medical

School (UMASSMED). The protocols and consent forms for experiments

with human PBMCs were approved by the Institutional Research Board from

UMASSMED (IRB-UMMS H-12328) and from Centro de Pesquisas René

Rachou–Fundação Oswaldo Cruz (CEP-CPqRR 11/2006), as well as by the

National Ethical Committee (CONEP 13.368) from the Ministry of Health in

Brazil.

Reagents

All cell culture reagents were obtained from Mediatech. LPS derived from

Escherichia coli strain 0111:B4 was purchased from Sigma and re-extracted

by phenol chloroform to remove lipopeptides as described (Hirschfeld et al.,

2000). R848, a synthetic small molecule agonist for TLR7, was provided by

3M Pharmaceuticals. Phosphorothioate-stabilized unmethylated DNA oligo-

nucleotide-bearing CpG ODN 1826, ODN 2007, and ODN 2395, as well as

ODNs containing CpG motifs identified in T. gondii genome and qPCR

primers, were obtained from Integrated DNA Technologies. Purified rTgPRF

(Skillman et al., 2012) was kindly provided by Dr. David Sibley (Washington

University, St. Louis, MI). Mouse and Human Recombinant Interferon-g

and rIL-12p70 were purchased from eBioscience. ER-Tracker Blue-White

dpx, Lysotracker Blue-White dpx, and Cell Tracker Red CMTPX were ob-

tained from Molecular Probes and Cholera Toxin B Subunit FITC conjugate

from Sigma. Hoechst 33342 to stain the nucleus was bought from Thermo

Scientific. Proteinase K was obtained from Ambion and DNase and RNase

from Promega.

Mice and Parasites

C57BL/6 mice were obtained from The Jackson Laboratory. UNC93B1mutant

(3d) mice were kindly provided by Bruce Beutler at The Scripps Research Insti-

tute, La Jolla, CA (Tabeta et al., 2006). The single TLR3, TLR7, TLR9, and

TLR11 KO mice were kindly provided by Shizuo Akira (Osaka University,

Japan) and Richard Flavell (Yale University), respectively. TLR12 KO mice

were provided by Sankar Ghosh (Columbia University, New York, NY).

Interbreeding single KO animals generated TLR3/7-, TLR7/9-, TLR7/8-,

TLR3/7/9-, TLR7/9/11-, and TLR3/7/9/11-deficient mice. Age-matched (6 to

8 weeks old) and female groups of WT and KO mice were used in all experi-

ments. The ME49 strain was maintained in C57BL/6 mice by serial inoculation

of brain homogenate-containing cysts. ME49 tachyzoites were maintained in

human foreskin fibroblast cells (Hs27) (Lock, 1953) and used to prepare

STAg as previously described (Melo et al., 2010). DNA andRNAwere extracted

by employing DNeasy Blood and Tissue Kit and RNesy Mini Kit from QIAGEN.

Genome-wide Scanning for TLR9-Stimulatory Sequences

Both mouse B-like class and human-like B and C class CpG motifs were

searched in the DNA strands of the assembled contigs of T. gondii ME49

genome downloaded from the ToxoDB website (http://toxodb.org/common/

downloads/), as previously described (Bartholomeu et al., 2008).

Cell Purification

CD11c+ cells were purified using the EasySep mouse CD11c-positive selec-

tion kit according to the manufacturer’s protocol. In some experiments,

CD11c+ cells, purified in magnetic beads, were stained with anti-CD8APC

and sorted in a FACSAria for PE (CD11c+) or PE/APC (CD11c+/CD8+). Cell

purity was checked by FACS.

Measurement of Cytokine Levels

The levels of mouse TNF-a, IFN-g, IL-12, IL-6, and MCP1 were measured by

using DuoSet ELISA kits (R&D Systems). IL-12p70, IL-1b, and TNF-a levels
Cell H
were measured in PBMC culture supernatants by using the Cytometric Bead

Array (CBA) Human Inflammatory Cytokines Kit (BD Bioscience) or ELISA for

IL-12p40 (R&D Systems).

Flow Cytometry

Cells were stained with conjugated antibodies against the surface markers

CD11b, CD11c, GR1, F4/80, and MHC-II (eBioscience). For intracellular

measurement of cytokines, cells cultivated for 8 hr in the presence of GolgiPlug

(BD Bioscience), surface stained, fixed with 4% formaldehyde, permeabilized

with PBS + Tween 20 0.5% and incubated with Phycoerythrina anti-IL-12p70

(BD Biosciences). Subsequently cells were washed and analyzed by flow cy-

tometry in an LSRII cytometer (BD Biosciences).

Quantitative Real-Time PCR

Total DNA from peritoneal exudate cells, spleen, and liver was used for ampli-

fication of T. gondiiB1 gene (Melo et al., 2010). Relative quantification was per-

formed using standard curve analysis of purified parasiteDNA. For TLR expres-

sion, the following primers were used: TLR3 forward, 50-ATAAAATCCTT
GCGTTGCGAAGT�30; TLR3 reverse, 50-TGTTCAAGAGGAGGGCGAATAA-30;
TLR7 forward, 50-TCTTTGGGTTTCGATGGTTTCC-30; TLR7 reverse, 50-GCAGT

CCACGATCACATGGG-30; TLR9 forward, 50-ACGGGAACTGCTACTACAAG

A-30; TLR9 reverse, 50-CCCAGCTTGACAATGAGGTTAT-30; TLR11 forward,

50-AGAGCTGGCTGGTATGTTCC-30; TLR11 reverse, 50-GTGTTCTTGTCAGGT

CCAGAATC-30; TLR12 forward, 50-CCAGGACTGCACCTTTTGG-30; TLR12

reverse, 50-GTGACACTGGTTGTACGCAAT-30.

Immunoprecipitation

HEK293T cells were cotransfected with bait and prey constructs. Forty-eight

hours posttransfection, cells were lysed in Ripa lysis buffer (Sigma) with

Complete Mini Protease Inhibitors (Roche). An equal amount of cell lysate

was used for immunoprecipitation with monoclonal anti-HA (Sigma) bound

to protein A agarose (Invitrogen). Eluted proteins were electrophoresed by

SDS-PAGE, transferred to nitrocellulose (Bio-Rad), and blotted using mono-

clonal antibody anti-HA or anti-Flag (Sigma).

Plasmid Construction and Viral Transduction

TLR11 and TLR12 from InvivoGen plasmids were cloned into mCherry-, Ceru-

lean-, and Citrine-tagged vectors that weremodified from the original pCLXSN

backbone from Imgenex. All tags were fused in the C-terminal portion of the

TLRs. Recombinant retroviruses were produced as previously described

(Mann et al., 1983; Melo et al., 2010).

Confocal Microscopy

We used an inverted Leica LSM TSC SP2 AOBSmicroscopy and a 1.4 NA 633

plan apochromat objective (Zeiss). Cells were cultured on glass-bottom

35 mm tissue culture dishes (Matek), and dual or triple color images were

acquired by consecutive scanning. For fluorescence resonance energy trans-

fer (FRET) experiments, HEK293T cells were transiently transfected with the

indicated plasmids and 48 hr later stimulated for 4 hr with STAg or rTgPRF,

or for 1 hr with CpG 1826. FRET between the respective proteins was calcu-

lated by measuring sensitized emission (SE) fluorescence using the FRET SE

wizard on the Leica SP2 confocal laser-scanning microscope. In each case,

cerulean-tagged protein acted as the donor fluorophore, whereas the

citrine-tagged protein functioned as the acceptor fluorophore. Excitation

wavelengths for the donor and acceptor were 405 nM and 514 nM, respec-

tively. The FRET efficiency is shown as a color-coded scale of values between

0 and 100%.

Experiments with Human Peripheral Blood Mononuclear Cells

PBMCswere enriched onsite by gradient centrifugation over Ficoll-Paque plus

(GE-Healthcare). Cells were plated at 3 3 105 cells/well and cytokines

measured 18 hr poststimulation with STAg, rTgPRF, CpG oligonucleotides,

R848, LPS, ME49 DNA, or RNA.

Luciferase Assay

HEK293 cells stably expressing human TLR9 and a luciferase gene under the

control of the pELAM promoter-containing NF-kB sites were used for testing

the activity of T. gondii-derived ODNs. We also used pRL vector expressing
ost & Microbe 13, 42–53, January 16, 2013 ª2013 Elsevier Inc. 51
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a Renilla luciferase gene (Promega) for constitutive protein expression, and

assays revealed by Dual luciferase reporter assay system (Promega) substrate

(Bartholomeu et al., 2008; Latz et al., 2007).

Statistical Analysis

All data were analyzed using an unpaired, two-tailed Student’s t test with

a 95% confidence interval (Prism; GraphPad Software, Inc.). All data are rep-

resented as means ± SD.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and two tables and can be

found with this article at http://dx.doi.org/10.1016/j.chom.2012.12.003.

ACKNOWLEDGMENTS

The authors would like to thank A. Cerny for animal husbandry and genotyping,

as well as A. Sher and D. Jankovic for discussions during the development of

this study. We are also grateful to D. Sibley for providing rTgPRF. This work

was supported by the National Institute of Health (NIAID R01 AI071319-01)

and the National Institute of Science and Technology for Vaccines (INCTV/

CNPq/FAPEMIG). W.A.A. and E.R.M. were supported by fellowships from

CNPq (Brazil) and DGAPA (Mexico), respectively.

Received: August 1, 2012

Revised: November 5, 2012

Accepted: December 13, 2012

Published: January 3, 2013

REFERENCES

Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001).

Recognition of double-stranded RNA and activation of NF-kappaB by Toll-

like receptor 3. Nature 413, 732–738.

Aosai, F., Rodriguez Pena, M.S., Mun, H.S., Fang, H., Mitsunaga, T., Norose,

K., Kang, H.K., Bae, Y.S., and Yano, A. (2006). Toxoplasma gondii-derived

heat shock protein 70 stimulates maturation of murine bone marrow-derived

dendritic cells via Toll-like receptor 4. Cell Stress Chaperones 11, 13–22.

Bartholomeu, D.C., Ropert, C., Melo, M.B., Parroche, P., Junqueira, C.F.,

Teixeira, S.M., Sirois, C., Kasperkovitz, P., Knetter, C.F., Lien, E., et al.

(2008). Recruitment and endo-lysosomal activation of TLR9 in dendritic cells

infected with Trypanosoma cruzi. J. Immunol. 181, 1333–1344.

Benson, A., Pifer, R., Behrendt, C.L., Hooper, L.V., and Yarovinsky, F. (2009).

Gut commensal bacteria direct a protective immune response against

Toxoplasma gondii. Cell Host Microbe 6, 187–196.

Brinkmann, M.M., Spooner, E., Hoebe, K., Beutler, B., Ploegh, H.L., and Kim,

Y.M. (2007). The interaction between the ER membrane protein UNC93B and

TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275.

Caetano, B.C., Carmo, B.B., Melo, M.B., Cerny, A., dos Santos, S.L.,

Bartholomeu, D.C., Golenbock, D.T., and Gazzinelli, R.T. (2011).

Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance

to primary infection with Trypanosoma cruzi. J. Immunol. 187, 1903–1911.

Debierre-Grockiego, F., Campos, M.A., Azzouz, N., Schmidt, J., Bieker, U.,

Resende, M.G., Mansur, D.S., Weingart, R., Schmidt, R.R., Golenbock, D.T.,

et al. (2007). Activation of TLR2 and TLR4 by glycosylphosphatidylinositols

derived from Toxoplasma gondii. J. Immunol. 179, 1129–1137.

Denkers, E.Y., and Gazzinelli, R.T. (1998). Regulation and function of T-cell-

mediated immunity during Toxoplasma gondii infection. Clin. Microbiol. Rev.

11, 569–588.

Dunay, I.R., Damatta, R.A., Fux, B., Presti, R., Greco, S., Colonna, M., and

Sibley, L.D. (2008). Gr1(+) inflammatory monocytes are required for mucosal

resistance to the pathogen Toxoplasma gondii. Immunity 29, 306–317.

Forsbach, A., Nemorin, J.G., Montino, C., Müller, C., Samulowitz, U., Vicari,

A.P., Jurk, M., Mutwiri, G.K., Krieg, A.M., Lipford, G.B., and Vollmer, J.

(2008). Identification of RNA sequence motifs stimulating sequence-specific

TLR8-dependent immune responses. J. Immunol. 180, 3729–3738.
52 Cell Host & Microbe 13, 42–53, January 16, 2013 ª2013 Elsevier I
Gazzinelli, R.T., and Denkers, E.Y. (2006). Protozoan encounters with Toll-like

receptor signalling pathways: implications for host parasitism. Nat. Rev.

Immunol. 6, 895–906.

Gazzinelli, R.T., Wysocka, M., Hayashi, S., Denkers, E.Y., Hieny, S., Caspar,

P., Trinchieri, G., and Sher, A. (1994). Parasite-induced IL-12 stimulates early

IFN-gamma synthesis and resistance during acute infection with Toxoplasma

gondii. J. Immunol. 153, 2533–2543.

Gazzinelli, R.T., Wysocka, M., Hieny, S., Scharton-Kersten, T., Cheever, A.,
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