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INTRODUCTION 

Recently the authors came upon a paper of J. L. Abreu and A. Alonso 
[ 11, where they show that if I~, . . . . X, are vectors in a Hilbert space, then 
inf,,,, IICY= I EiX,//2 d C:= I llXil12 d SUP,,,,, IICY= , E~.Y~II’ where the inf and the 
sup are taken over all the possible sequences s(n) = (8,) . . . . E,) such that 
ei= *l for i= 1, . . . . n. 

They ask the following question: Is the converse of this true? That is, if 
there exists K > 0 such that for all .yl, . . . . X, in a Banach space X, 

is X isomorphic to a Hilbert space’? 
We show here that if K= 1 then X is isometric to a Hilbert space, if 

1 < K < 2 then the space is reflexive, and in general that X is of type 2 - E 
and of cotype 2 + E for every F > 0. Finally, if X is a Banach lattice then X is 
isomorphic to an inner product space independently of the value of K. 

We want to remark that all the terminology and results concerning 
superproperties, finite representability, type and cotype can be found in 
[2, 61, those concerning Banach lattices in [S]. 

We wish to thank A. Alonso for his helpful comments. 
First of all we need the following definition: 

DEFINITION. We will say that a Banach space X has the diagonal bound 
property (DBP) for the constant K, if for all x,, . . . . X, E X 

, 
,=I flnl 
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where the inf and the sup are taken over all the sequences s(n) = {E, , . . . . E, ) 
wheres,=?l, i=l,..,, n. 

1. THE CASES K= 1 AND 1~ Kt2 

THEOREM 1. A real or complex Banach space X is isometricall-v 
isomorphic to an inner product space if and only if DBP holds for K = 1. 

Proof: The proof that DBP holds for a Hilbert space for K= 1 can be 
found in [ 11. Suppose conversely that for every x,. . . . . x,, in X, 

Then, for any two elements X, .Y E X with Ilsll = llyll = 1, 

4=minj/l(?s+~)+(.u-?,)I)‘, ii(.u+.I’)-(x--?‘)II’j 

< lj.K+Jq12+ l~x-~~l/2 

dmax(//(.u+~,)+(.u-~)IJ’, ll(.~+~)-(.~-~)l12}=4 

and this, by a result of M. Day [3] implies that X is an inner product 
space. 

THEOREM 2. Suppose that X has the DBP for 1 6 K-C 2. Then X is 
wflexive. 

Proof Using the terminology and results in [2], we will prove that X is 
uniformly nonsquare and hence reflexive. That is, we have to show that in 
this case there exists 6 > 0 such that for any X, y E X with 

//.~I1 = IIYII = 1, 
11.x - ?‘I1 p> l-6 implies v< l-6. 

2 

Let 6 = 1 - +‘@ > 0 and suppose llx/I = I/y11 = 1 and 11.~ - ~11/2 > 1 - 6. 
Then 

4(1 A)‘+ l&X+~Il’< Ilx-yII?+ Il-u+~I12 

,<Kmax(Il(.u-?‘)+(,~++)lI’, II(x-~)+(x+L’)/I~J=~K. 

Hence Il.u+yli2d4(K-(1 -S)‘)=4(1 -6)’ i.e. 

x + y 

I-II I 2 
<l-d. 
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2. CONSEQUENCES OF THE DBP 

(i) It is easy to see that the diagonal bound property is inherited by 
subspaces. 

(ii) The DBP is stable under isomorphisms; in fact, if T: X-t Y is a 
Banach space isomorphism and X has the DBP for K, then Y has the DBP 
for II TII II T ‘II K. 

(iii) The DBP is a superproperty and since X** is finitely represen- 
table in X, this implies that X ** has DBP for the same K as X. 

(iv) Neither 1,. nor c0 have the DBP for any K. This is obvious, 
for if e, = (0, . . . . 1, 0, . ..). then ilC;=, .sleil12 = 1 for every E, = + 1 but 
C:f= 1 lIeill = n. 

(v) From (i) and (iv) we get that neither I,, nor co can be 
isomorphic to a subspace of X if X has the DBP. 

(vi) From (iii) and (iv) we get that neither 1, nor c0 are finitely 
representable in X, if X has the DBP. 

3. WHAT HAPPENS IF X Is A BANACH LATTICE 

THEOREM 3. If X is a Banach lattice and X has the DBP for some K > 1 
then any sequence {xi) ,^=, of mutually disjoint elements of X with IIxil( = 1, 
i = 1, 2, . . . . is equivalent to the unit vector basis of 1,. 

Proof: We observe first, that if x1, . . . . x,, are mutually disjoint elements 
in X, then Ix:‘=, &,x,1 =Cr=, IxiJ for any sequence E(n) = (E,, . . . . E,} 
with E, = + 1 i = 1, . . . . n, and consequently 11x:1= I sixil( = ilC;=, x,11 = 
II SUP , S ,~,, (x,1 /I. Therefore, if {a,>;=, is any sequence of scalars, for any n 
we get 

where the inf and sup are taken over all sequences E(n) = {E,, . . . . E,} with 
Ed= +l, i= 1, . . . . n. 

THEOREM 4. Zf X is a Banach lattice and X has the DBP for some K B 1 
then X is order continuous. 
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Proof. Since by (2.~) X does not contain a sequence of mutually 
disjoint elements equivalent to the unit vector basis of cO, and X does not 
contain a subspace isomorphic to I,,, we get that X is a-complete and 
a-order continuous. Hence X is order continuous. 

THEOREM 5. If X is a Banach lattice and X has the DBP for some K> 1 
then X is isomorphic to L2(p) f or some measure p. In particular X is 
isomorphic to an inner product space. 

Proof. This follows directly from Theorems 4 and 5 and by a theorem 
found in [S]. 

The following result was proved in [ 11, but here we get it as a corollary. 

COROLLARY 6. Zj’X is a Banach space with an unconditional basis which 
has the DBP for some K, then X is isomorphic to an inner product space. 

ProoJ This follows readily from the fact that every Banach space with 
an unconditional basis can be viewed as a Banach lattice. 

4. THE GENERAL CASE 

DEFINITION 7. (a) Let p be such that 1 d p < 2. We say that a Banach 
space X is of type p, if there exists a constant C such that for any finite 
family .Y,, . . . . I,, of points in X, 

\ II = I II c,nj II / 

where E(n) ranges over all sequences 

E(n) = {E,, . . . . E,] with 

Similarly 
(b) If 2 d q we say that a Banach 

~,=+_l,i=l,..., n. 

space X is of cotype q if there is a 
constant D such that for all n 3 1 and all points x,, . . . . x, we have 

where E(n) is as above. 

It is not difficult to show that a Hilbert space is of type 2 and cotype 2. 
What is more surprising is the fact that a Banach space which is of type 2 
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and cotype 2 is isomorphic to a Hilbert space. This result is due to 
Kwapien [4]. 

THEOREM 8. If X is a Banach space with the DBP for some K, then X is 
of type 2 - & and of cotype 2 + E for every E > 0. 

Proof: Pisier [6] showed that if p(X) = sup(r: X is of type r} and 
q(X) = inf{ q: X is of cotype q}, then p(X) = inf{ r: 1, is finitely representable 
in X} and q(X) = sup{s: l,Y is finitely representable in X}. From Corollary 6 
and the fact that for 1 Q r < KYZ, I, has an unconditional basis, it follows that 
I, does not have the DBP if r # 2. Also from (2.~) we know that I, does 
not have the DBP. 

Since the DBP is a superproperty, (2.iii), this means that I, is not finitely 
representable in X for r # 2. Hence p(X) = q(X) = 2, which proves the 
theorem. 

Observe that there are spaces X such that X has type 2 -E and cotype 
2 + E for every E > 0 which are not isomorphic to a Hilbert space. In [S], 
for instance, it is shown that there exists a sequence of integers {k,};=, 
and a sequence of numbers {p,}, with pn + 2 so that X= (C,“=, 0 I;;) is 
not isomorphic to 1, but X is of type 2 - E and cotype 2 + E for every E > 0. 
Note, however, that this space does not have the DBP for any K. 

As we mentioned in (2.iii), if X has the DBP then X** also has the DBP, 
and hence X** also is of type 2 - E and cotype 2 + E for every E > 0. 

It is also true that in this case X* is of type 2 -E and cotype 2 + E for 
every E > 0; Pisier [7]. 
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