Does the Diagonal Bound Property Imply that X Is a Hilbert Space?

Helga Fetter and Berta Gamboa de Buen

Ceniro de Investigación en Matemúticus, Guanajuato, Gto., México, C.P. 36000

Submilted by Ky Fan
Received June 7, 1987

Introduction

Recently the authors came upon a paper of J. L. Abreu and A. Alonso [1], where they show that if x_{1}, \ldots, x_{n} are vectors in a Hilbert space, then $\inf _{\varepsilon(n)}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{,}\right\|^{2} \leqslant \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \leqslant \sup _{\varepsilon(n)}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{2}$ where the inf and the sup are taken over all the possible sequences $\varepsilon(n)=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ such that $\varepsilon_{i}= \pm 1$ for $i=1, \ldots, n$.
They ask the following question: Is the converse of this true? That is, if there exists $K>0$ such that for all x_{1}, \ldots, x_{n} in a Banach space X,

$$
\frac{1}{K} \inf _{\varepsilon(n)}\left\|\sum_{t=1}^{n} c_{t} x_{i}\right\|^{2} \leqslant \sum_{i=1}^{n}\left\|x_{t}\right\|^{2} \leqslant K \sup _{\varepsilon(n)}\left\|\sum_{t=1}^{n} \varepsilon_{t} x_{t}\right\|^{2},
$$

is X isomorphic to a Hilbert space?
We show here that if $K=1$ then X is isometric to a Hilbert space, if $1 \leqslant K<2$ then the space is reflexive, and in general that X is of type $2-\varepsilon$ and of cotype $2+\varepsilon$ for every $\varepsilon>0$. Finally, if X is a Banach lattice then X is isomorphic to an inner product space independently of the value of K.

We want to remark that all the terminology and results concerning superproperties, finite representability, type and cotype can be found in [2, 6], those concerning Banach lattices in [5].
We wish to thank A. Alonso for his helpful comments.
First of all we need the following definition:
Definition. We will say that a Banach space X has the diagonal bound property (DBP) for the constant K, if for all $x_{1}, \ldots, x_{n} \in X$

$$
\frac{1}{K} \inf _{\varepsilon(n)}\left\|\sum_{i=1}^{n} \varepsilon_{1} x_{i}\right\|^{2} \leqslant \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \leqslant K \sup _{\varepsilon(n)}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{2},
$$

where the inf and the sup are taken over all the sequences $\varepsilon(n)=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ where $\varepsilon_{i}= \pm 1, i=1, \ldots, n$.

1. The Cases $K=1$ and $1<K<2$

Theorem 1. A real or complex Banach space X is isometrically isomorphic to an inner product space if and only if DBP holds for $K=1$.

Proof. The proof that DBP holds for a Hilbert space for $K=1$ can be found in [1]. Suppose conversely that for every x_{1}, \ldots, x_{n} in X,

$$
\inf _{\varepsilon(n)}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{2} \leqslant \sum_{t=1}^{n}\left\|x_{i}\right\|^{2} \leqslant \sup _{\varepsilon(n)}\left\|\sum_{i=1}^{n} \varepsilon_{t} x_{t}\right\|^{2}
$$

Then, for any two elements $x, y \in X$ with $\|x\|=\|y\|=1$,

$$
\begin{aligned}
4 & =\min \left\{\|(x+y)+(x-y)\|^{2},\|(x+y)-(x-y)\|^{2}\right\} \\
& \leqslant\|x+y\|^{2}+\|x-y\|^{2} \\
& \leqslant \max \left\{\|(x+y)+(x-y)\|^{2},\|(x+y)-(x-y)\|^{2}\right\}=4
\end{aligned}
$$

and this, by a result of M. Day [3] implies that X is an inner product space.

Theorem 2. Suppose that X has the DBP for $1 \leqslant K<2$. Then X is reflexive.

Proof. Using the terminology and results in [2], we will prove that X is uniformly nonsquare and hence reflexive. That is, we have to show that in this case there exists $\delta>0$ such that for any $x, y \in X$ with

$$
\|x\|=\|y\|=1, \quad \frac{\|x-y\|}{2}>1-\delta \text { implies } \frac{\|x+y\|}{2} \leqslant 1-\delta .
$$

Let $\delta=1-\sqrt{K / 2}>0$ and suppose $\|x\|=\|y\|=1$ and $\|x-y\| / 2>1-\delta$. Then

$$
\begin{gathered}
4(1-\delta)^{2}+\|x+y\|^{2} \leqslant\|x-y\|^{2}+\|x+y\|^{2} \\
\leqslant K \max \left\{\|(x-y)+(x+y)\|^{2},\|(x-y)+(x+y)\|^{2}\right\}=4 K
\end{gathered}
$$

Hence $\|x+y\|^{2} \leqslant 4\left(K-(1-\delta)^{2}\right)=4(1-\delta)^{2}$ i.e.

$$
\left\|\frac{x+y}{2}\right\| \leqslant 1-\delta
$$

2. Consequences of the DBP

(i) It is easy to see that the diagonal bound property is inherited by subspaces.
(ii) The DBP is stable under isomorphisms; in fact, if $T: X \rightarrow Y$ is a Banach space isomorphism and X has the DBP for K, then Y has the DBP for $\|T\|\left\|T^{-1}\right\| K$.
(iii) The DBP is a superproperty and since $X^{* *}$ is finitely representable in X, this implies that $X^{* *}$ has DBP for the same K as X.
(iv) Neither l_{x} nor c_{0} have the DBP for any K. This is obvious, for if $e_{1}=(0, \ldots, 1,0, \ldots)$, then $\left\|\sum_{i=1}^{n} \varepsilon_{1} e_{i}\right\|^{2}=1$ for every $\varepsilon_{i}= \pm 1$ but $\sum_{i=1}^{n}\left\|e_{i}\right\|^{2}=n$.
(v) From (i) and (iv) we get that neither l_{∞} nor c_{0} can be isomorphic to a subspace of X if X has the DBP.
(vi) From (iii) and (iv) we get that neither $l_{\text {, }}$, nor c_{0} are finitely representable in X, if X has the DBP.

3. What Happens if X Is a Banach Lattice

Theorem 3. If X is a Banach lattice and X has the DBP for some $K \geqslant 1$ then any sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ of mutually disjoint elements of X with $\left\|x_{i}\right\|=1$, $i=1,2, \ldots$, is equivalent to the unit vector basis of l_{2}.

Proof. We observe first, that if x_{1}, \ldots, x_{n} are mutually disjoint elements in X, then $\left|\sum_{i=1}^{n} \varepsilon_{1} x_{i}\right|=\sum_{i=1}^{n}\left|x_{i}\right|$ for any sequence $\varepsilon(n)=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ with $\varepsilon_{i}= \pm 1 \quad i=1, \ldots, n$, and consequently $\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|=\left\|\sum_{i=1}^{n} x_{i}\right\|=$ $\left\|\sup _{1 \leqslant 1 \leqslant n}\left|x_{i}\right|\right\|$. Therefore, if $\left\{a_{i}\right\}_{i=1}^{x}$ is any sequence of scalars, for any n we get

$$
\begin{aligned}
K^{1}\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{2} & =\inf _{\varepsilon(n)} K^{1}\left\|\sum_{i=1}^{n} \varepsilon_{i} a_{i} x_{i}\right\|^{2} \\
& \leqslant \sum_{i=1}^{n}\left\|a_{i} x_{i}\right\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2} \\
& \leqslant K \sup _{\varepsilon(n)}\left\|\sum_{i=1}^{n} \varepsilon_{i} a_{i} x_{i}\right\|^{2}=K\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{2},
\end{aligned}
$$

where the inf and sup are taken over all sequences $\varepsilon(n)=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ with $\varepsilon_{i}= \pm 1, i=1, \ldots, n$.

Theorem 4. If X is a Banach lattice and X has the DBP for some $K \geqslant 1$ then X is order continuous.

Proof. Since by (2.v) X does not contain a sequence of mutually disjoint elements equivalent to the unit vector basis of c_{0}, and X does not contain a subspace isomorphic to l_{x}, we get that X is σ-complete and σ-order continuous. Hence X is order continuous.

Theorem 5. If X is a Banach lattice and X has the DBP for some $K>1$ then X is isomorphic to $L_{2}(\mu)$ for some measure μ. In particular X is isomorphic to an inner product space.

Proof. This follows directly from Theorems 4 and 5 and by a theorem found in [5].

The following result was proved in [1], but here we get it as a corollary.

Corollary 6. If X is a Banach space with an unconditional basis which has the DBP for some K, then X is isomorphic to an inner product space.

Proof. This follows readily from the fact that every Banach space with an unconditional basis can be viewed as a Banach lattice.

4. The General Case

Definition 7. (a) Let p be such that $1 \leqslant p \leqslant 2$. We say that a Banach space X is of type p, if there exists a constant C such that for any finite family x_{1}, \ldots, x_{n} of points in X,

$$
\left(2^{-n} \sum_{n=1}^{2^{n}}\left\|\sum_{\alpha(n)} \varepsilon_{i} x_{i}\right\|^{p}\right)^{1 / p} \leqslant C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}
$$

where $\varepsilon(n)$ ranges over all sequences

$$
\varepsilon(n)=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\} \quad \text { with } \quad \varepsilon_{i}= \pm 1, i=1, \ldots, n
$$

Similarly
(b) If $2 \leqslant q$ we say that a Banach space X is of cotype q if there is a constant D such that for all $n \geqslant 1$ and all points x_{1}, \ldots, x_{n} we have

$$
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{4}\right)^{1 / q} \leqslant D\left(2^{-n} \sum_{n=1}^{2^{n}}\left\|\sum_{\varepsilon(n)} \varepsilon_{i} x_{i}\right\|^{\varphi}\right)^{1 / 4}
$$

where $\varepsilon(n)$ is as above.
It is not difficult to show that a Hilbert space is of type 2 and cotype 2. What is more surprising is the fact that a Banach space which is of type 2
and cotype 2 is isomorphic to a Hilbert space. This result is due to Kwapien [4].

Theorem 8. If X is a Banach space with the DBP for some K, then X is of type $2-\varepsilon$ and of cotype $2+\varepsilon$ for every $\varepsilon>0$.

Proof. Pisier [6] showed that if $p(X)=\sup \{r: X$ is of type $r\}$ and $q(X)=\inf \{q: X$ is of cotype $q\}$, then $p(X)=\inf \left\{r: l_{r}\right.$ is finitely representable in $X\}$ and $q(X)=\sup \left\{s: l_{s}\right.$ is finitely representable in $\left.X\right\}$. From Corollary 6 and the fact that for $1 \leqslant r<\infty, l_{r}$ has an unconditional basis, it follows that l_{r} does not have the DBP if $r \neq 2$. Also from (2.v) we know that l_{∞} does not have the DBP.

Since the DBP is a superproperty, (2.iii), this means that l_{r} is not finitely representable in X for $r \neq 2$. Hence $p(X)=q(X)=2$, which proves the theorem.

Observe that there are spaces X such that X has type $2-\varepsilon$ and cotype $2+\varepsilon$ for every $\varepsilon>0$ which are not isomorphic to a Hilbert space. In [5], for instance, it is shown that there exists a sequence of integers $\left\{k_{n}\right\}_{n=1}^{\infty}$ and a sequence of numbers $\left\{p_{n}\right\}$, with $p_{n} \rightarrow 2$ so that $X=\left(\sum_{n=1}^{\infty} \oplus l_{p_{n}}^{k_{n}}\right)$ is not isomorphic to l_{2} but X is of type $2-\varepsilon$ and cotype $2+\varepsilon$ for every $\varepsilon>0$. Note, however, that this space does not have the DBP for any K.

As we mentioned in (2.iii), if X has the DBP then $X^{* *}$ also has the DBP, and hence $X^{* *}$ also is of type $2-\varepsilon$ and cotype $2+\varepsilon$ for every $\varepsilon>0$.

It is also true that in this case X^{*} is of type $2-\varepsilon$ and cotype $2+\varepsilon$ for every $\varepsilon>0$; Pisier [7].

References

1. J. L. Abreu and A. Alonso, Sobre una condición para que un espacio de Banach sea de Hilbert, Aportaciones Mat. Soc. Mat. Mex. (1984), 1-7.
2. B. Beauzamy, "Introduction to Banach spaces and their geometry," Mathematics Studies No. 68, 2nd ed., North-Holland, Amsterdam, 1985.
3. M. M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947), 320-337.
4. S. Kwapien, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583-595.
5. J. Lindenstrauss and L. Tzafriri, "Classical Banach Spaces II," Springer-Verlag, New York/Berlin, 1979.
6. G. Pisier, Probabilistic methods in the geometry of Banach spaces, Department of Mathematics, Texas A \& M University.
7. G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. (2) 115 (1982), 375-392.
