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We study the Cauchy]Dirichlet problem for the porous media equation with
nonlinear source term in a bounded subset of R n. The problem describes the
propagation of thermal perturbations in a medium with a nonlinear heat-conduc-
tion coefficient and a heat source depending on the temperature. The aim of the
paper is to extend the unstable set to a part of the positive energy region, a
phenomenon which was known only for linear conduction. Q 2000 Academic Press

1. INTRODUCTION AND MAIN RESULT

We consider the Cauchy]Dirichlet problem for the porous media equa-
tion with source term

¡ my 1 py2< < < < wu s D u u q u u , in 0, ` = V ,.Ž .t~ 1Ž .wu s 0 in 0, ` =  V ,.¢u 0 s u ,Ž . 0

where V is a bounded and smooth subset of R n, n G 1, m ) 0, and p G 2.
Ž . Ž w x.Problem 1 see 9, 21 describes the propagation of thermal perturba-

tions in a medium with a nonlinear heat-conduction coefficient and a heat

1 Work done in the framework of the M.U.R.S.T. project ‘‘Metodi variazionali ed equazioni
differenziali nonlineari.’’
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source depending on the temperature when u G 0. Local existence for0
Ž . Žthe solutions of 1 has been proved when m ) 1 the so-called slow

. w x Ž w x.diffusion case in 9, 14, 16 see also the recent book 21 and, when
Ž . w x0 - m - 1 the fast diffusion case in 6 . More precisely, in the slow

< < my 1 1Ž .diffusion case, if u u g H V and0 0 0

2 m q 1Ž .
p - 1 q m q , 2Ž .

n

local existence of a solution u such that

< < my 1 ` 1 < < Žmy1.r2 ` 2u u g L 0, T ; H V , u u g L 0, T ; L V ,Ž . Ž .Ž .Ž .0

< < Žmy1.r2 2u u g L 0, T = V , 3Ž . Ž .Ž .Ž . t

w x `Ž . Ž w x.has been proved in 9, 16 . If u g L V see 14 , local existence of a0
solution u such that

` < < my 1 2 1u g L 0, T = V , u u g L 0, T ; H V ,Ž . Ž .Ž . Ž .0
4Ž .Žmy1.r2 2< <u u g L 0, T = V ,Ž .Ž .Ž . t

is known, without adding restrictions from above on p. In the fast diffusion
Ž w x. `Ž .case see 6 local existence of a weak solution, when solely u g L V ,0

< < my 1 1Ž .and of a strong solution, when also u u g H V , is proved in the0 0 0
class of functions u such that

< < my 1 2 ` 1 `w xu u g C 0, T ; L V l L 0, T ; H V l L 0, T = V ,Ž . Ž . Ž .Ž .Ž . Ž .0

< < Žmy1.r2 1 2u u g H 0, T ; L V . 5Ž . Ž .Ž .
Global existence has been proved in the quoted papers when p F

� 4 Ž w xmax 2, m q 1 see 21 for a more precise statement in the delicate case
. Žp s m q 1 , while the blow-up of the solutions is proved in the fast

.diffusion case blow-up is proved only for strong solutions , when

� 4p ) max 2, m q 1 , 6Ž .

< < my 1 1Ž .u u g H V , and the initial energy0 0 0

1 m2my1 mqpy1< < 5 5E 0 s = u u y uŽ . Ž . mq py10 0 022 m q p y 1

is negative.
The same type of results holds for the heat equation with source, when

w xm s 1. See, for example, 2, 7, 8, 11, 24 . However, other results are known
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Ž . Žfor the heat equation when 2 - p F 2nr n y 2 the last condition being
. 1Ž .necessary only when n G 3 and u g H V . To describe them let us note0 0

that

1 12 py2 5 5 5 5 5 5E 0 G B u y u [ g u ,Ž . Ž .p p p1 0 02 p

1Ž . pŽ .where B is the optimal constant of Sobolev embedding H V ¨ L V .1 0
Ž5 5 Ž .Then the behavior of the solution u is known when u , E 0 , lies in thep0

Ž .regions of A, B, and C of the plane characterized by see Fig. 1

wA s l, E g 0, ` = R : g l F E - E , l - l ,� 4Ž . Ž .. 1 1

wB s l, E g 0, ` = R : max g l , 0 F E - E , l ) l ,� 4� 4Ž . Ž .. 1 1

wC s l, E g 0, ` = R : g l F E - 0 ,� 4Ž . Ž ..

Ž .where l is the absolute maximum point of g and E s g l ) 0. In1 1 1
Ž5 5 Ž .. Ž w x.particular, if u , E 0 g A the solution is global see 24 , while ifp0

Ž5 5 Ž .. Ž w xu , E 0 g B j C blow-up in finite time occurs see 10 and thep0
w x Ž5 5 Ž .. .more recent paper 18 when u , E 0 g B . Actually E in thep0 1

literature quoted has the variational characterization

E s inf sup J lu ,Ž .1
1Ž .ugH V , u/0 l)00

Ž Ž .. 5 5FIG. 1. The four regions A, B, C, and D in the plane l, E 0 , where l s u .p0
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where
1 12 p5 5 5 5J u s =u y u .Ž . 2 p2 p

Simple calculations show that the two characterizations of E agree and1
1Ž . Žthat E is also the Mountain Pass level of the functional J on H V see1 0

.Section 4 below .
The global existence result for initial data in the region A has been

w xextended in 9 to the slow diffusion case, while there are not extensions, in
author’s knowledge, of the blow-up theorem for initial data in the region
B. The aim of this paper is to solve this problem. The method used in the

w xproof is inspired by the arguments of 18 , where the classical convexity
method is adapted to handle with positive initial energy for abstract

w x Ž .evolution equations of hyperbolic type. The main idea in 12 , in which 1
< < my 1is treated by the change of variable ¨ s u u, cannot be extended here

to the important slow diffusion case, due to the singularity that appears in
w xthe transformed equation. However, we adapt the method of 18 using the

change of variable in a somewhat implicit way.
Moreover, with a simple argument, we extend the result to the region

w 2D [ l, E g 0, ` = R : l ) l , E s E .Ž .� 4. 1 1

In order to have an unified proof for the slow and fast diffusion cases,
and to minimize the assumptions on p in the first one, when also

`Ž . Ž .u g L V , we consider distributional solutions of 1 satisfying a regular-0
Ž . Ž . Ž .ity condition weaker than 3 , 4 , or 5 , but strong enough to use the

Žconvexity method. Then we prove a global nonexistence result see Theo-
. Ž .rem 3.1 below for such type of solutions of 1 . In this way we include in

w xour study the solution founded in 9, 14, 16 , and the strong solutions
w x w xfounded in 6 , while weak solutions obtained in 6 are ‘‘too weak’’ to

Ž .prove global nonexistence also for the quoted author! .
This global nonexistence result can be conveniently applied to the local

w x w xsolution founded in 9, 14, 16 , and the strong solutions founded in 6 , to
obtain the following blow-up result.

Ž .THEOREM 1.1. Let u be a solution of 1 whose existence is pro¨ed in one
Ž .of the papers quoted abo¨e. Assume that 6 holds, that

n q 2
p - 1 q m when n G 3 , 7Ž . Ž .

n y 2

< < my 1 1Ž . Ž5 5 Ž ..and that u u g H V , u , E 0 g B j C j D. Thenp0 0 0 0

Ž . Ž . 5 Ž .5i if 2 holds and m G 1, there is T ) 0 such that u t ª `mq 10
as t ª Ty;0
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Ž . `Ž . 5 Ž .5ii if u g L V , then there is T ) 0 such that u t ª ` as`0 1
t ª Ty.1

Ž . Ž .The two different cases i and ii arise from local existence results
available in the literature and quoted above.

The proof of the nonexistence result is given for a type of equations
Ž . Ž . Ž .more general than 1 ; see 8 below, which generalizes 1 in several

directions. First of all it contains the doubly nonlinear operator
Ž < < my 1 . Ž < Ž < < my 1 . sy2 Ž < < my 1 . <.D u u s div = u u = u u , which appears in impor-s

Ž w xtant equations modeling turbulent filtration see 4 and the references
w x.therein; see also 17, 20 . Moreover, the evolution operator could be also

time-dependent.

2. PRELIMINARIES

We consider the problem

¡ my 1< < wr t u s D u u q f x , u , in 0, ` = V ,Ž . Ž . .Ž .t s~ 8Ž .wu s 0 in 0, ` =  V ,.¢u 0 s u ,Ž . 0

where V is a bounded and smooth subset of R n as before, m ) 0, s ) 1,
1, `w . < < my 1 1, sŽ .r g W 0, ` is nonnegative and decreasing, and u u g W V .loc 0 0 0

We assume f to be a Caratheodory real function on V = R such that

Ž . Ž .F1 there is p ) 1 and c ) 0 such that for all x, u g V = R1

py1< <f x , u F c u ;Ž . 1

Ž . Ž .F2 for all x, u g V = R

F x , u u G m q p y 1 F x , u ,Ž . Ž . Ž .u

where

u
my 1< <F x , u [ m t f x , t dt .Ž . Ž .H

0

Moreover, denoting by r the Sobolev critical exponent of the embedding
1, sŽ . qŽ . Ž .W V ¨ L V , i.e., r s nsr n y s if n ) s, r arbitrarily large if0

n s s, r s ` if n - s, we shall suppose that

max 2, 1 q s y 1 m - p - 1 q m r y 1 . 9� 4Ž . Ž . Ž .
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Ž .We say that u, defined on a suitable cylinder Q [ 0, T = V, is aT
Ž .solution of 8 if

< < my 1 s 1, s ` ru u g L 0, T ; W V l L 0, T ; L V , 10Ž . Ž . Ž .Ž .Ž .0

< < Žmy1.r2 1 2u u g H 0, T ; L V , 11Ž . Ž .Ž .
Ž .and u satisfies 8 in the following sense:

Ž .a u is a distributional solution, i.e.,

ttst
r t u t f t , x s r9uf q ruf q f x , u fŽ . Ž . Ž . Ž .H HHts0 t

V 0 V

sy2my1 my1< < < <y = u u = u u =f 12Ž .Ž . Ž .
w x `Žw . .for a.a. t g 0, T and f g C 0, ` = V , and u satisfies the initialc

condition

u 0 s u ; 13Ž . Ž .0

Ž .b u verifies the energy identity in the weak form of the inequality

4m 2t Žmy1.r2< <E t F E 0 y r u u 14Ž . Ž . Ž .Ž .HH t2
0 Vm q 1Ž .

w xfor a.a. t g 0, T , where the energy function E naturally associated to u is
given by

s1 my 1< <E t s = u t u t y F x , u t . 15Ž . Ž . Ž . Ž . Ž .. Ž .Ž . Hss V

Remark 2.1. It is easy to see, under the regularity assumptions on r
Ž . Ž . Ž .and u, that all the terms in 12 ] 15 make sense. Indeed, by 11 , it

follows immediately that

w x mq 1u g C 0, T ; L V . 16Ž . Ž .Ž .
Then, using the regularity of r, the left hand side and the first two terms

Ž . Ž . Ž . Ž .in the right hand side of 12 make sense, and by F1 , 9 , and 10 also the
Ž .remaining terms are well defined. By 16 , u has a pointwise meaning on

Ž .time, so also 13 can be written. The energy function E has an a.e.
Ž . Ž . Ž . Žmeaning because of F1 , 9 , 10 , and the Sobolev embedding see also

. Ž . Ž .Lemma 2.1 below . Furthermore E 0 is well definite because of 16 and
Ž .the regularity of u . Finally we can write the integral in 14 because of0

Ž .11 .
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Remark 2.2. It is worth observing that, in the case r ' 1, s s 2 and
Ž . < < py2 Ž . Ž . Ž .f x, u s u u; namely for Eq. 1 , conditions 10 ] 11 are a direct

Ž . Ž . Ž .consequence of each one among 3 , 4 , or 5 . Moreover, the solutions
founded in all the papers quoted in the Introduction, with the mentioned

w xexception of the weak solution introduced in 6 , satisfy the energy relation
Ž . Ž .14 as an equality. However, the inequality 14 is enough for our
purposes.

We start with a lemma, which is an easy consequence of the Sobolev
Ž . Ž . w xembedding, Holder inequality, and 9 , stated in this form for s s 2 in 9¨

LEMMA 2.1. There are positï e constants B and B such that0 1

m my1 my15 5 5 < < 5 < <¨ F B ¨ ¨ F B = ¨ ¨Ž .mq py1 r0 1 s

1, sŽ . rŽ .for ¨ g W V , where the first inequality holds also for ¨ g L V .0

Ž .In what follows we set q s m q p y 1 rm and choose B as the1
1, sŽ . qŽ .optimal constant of the Sobolev embedding W V ¨ L V . We shall0

Ž w x.use the well known interpolation inequality see 3 ,

5 5 5 5u 5 51yu a b¨ F ¨ ¨ , ¨ g L l L , 17Ž .b a g

where 1 F a F b F g and

1 u 1 y u
s q .

b a g

Ž .Note, for future reference, that any solution u of 8 satisfies also the
further regularity

w x mq py1u g C 0, T ; L V . 18Ž . Ž .Ž .
Ž . `Ž m rŽ ..Indeed, by 10 , u g L 0, T ; L V . Moreover, as m q 1 - m q p y 1
Ž . w x- mr, using 17 , for t , t g 0, T ,

u 1yu
u t y u t F u t y u t u t y u t ,Ž . Ž . Ž . Ž . Ž . Ž .mq py1 mq1 m r

where

1 u 1 y u
s q .

m q p y 1 m q 1 mr

Ž . Ž .Then 18 follows by 16 .
The aim of the next lemma is to point out an approximation property

< < my 1 Ž .which allows us to take u u as a test function in 12 .
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`Žw x .LEMMA 2.2. Let k, l ) 1, and T ) 0. Then C 0, T = V is dense inc
lŽ . kŽ 1, kŽ .. 1, lŽ lŽ .. kŽ 1, kŽ ..L Q l L 0, T ; W V and in W 0, T ; L V l L 0, T ; W V ,T 0 0

endowed with the natural norms.

Ž wProof. The proof is standard, based on convolution arguments see 5,
x.Theorem 1.22 , after reduction to compact support functions in V. This is

w x Ž wdone by applying the arguments of 23 to the evolution case see also 25,
xProof of Theorem 7, Step 1 .

The next lemma points out an identity which is obvious for classical
Ž .solutions of 8 , but needs some care due to the distributional nature of

the solutions we consider.

Ž .LEMMA 2.3. Let u be a solution of 8 . Then

2 t Žmy1.r2 Žmy1.r2< < < <r t u u u uŽ . Ž .HH tm q 1 0 V

st my 1 my1< < < < ws y = u u y f x , u u u in 0, T .Ž . .Ž .HH
0 V

Proof. We distinguish two cases: m G 1 and 0 - m - 1. In the first
using the characterization of Sobolev functions and the chain rule in

Ž w x.Sobolev spaces due to J. Serrin see 15, Lemmas 1.5 and 2.1 , it is easy to
see that

2mmy 1 Žmy1.r2 Žmy1.r2< < < < < <u u s u u u . 19Ž .Ž . Ž .t tm q 1

Ž . Ž . Ž < < my 1 .Moreover, by 11 , 16 , and the Holder inequality, u u is in¨ t
1q1r mŽ . < < my 1 1, 1q1r mŽ 1q1r mŽ .. Ž .L Q . Then u u g W 0, T ; L V again by 16 .T
Ž .By 10 we can apply Lemma 2.2 with k s s and l s 1 q 1rm, so there is

Ž . `Žw x .a sequence f in C 0, T = V such that« « c

< < my 1 1, 1q1r m 1q1r m s 1, sf ª u u in W 0, T ; L V l L 0, T ; W V .Ž . Ž .Ž . Ž .« 0

Ž .Passing to the limit in 12 with f s f and using the regularity properties«

Ž . Ž .of u and r in addition to F1 and 9 , we obtain

tst tmq 1 mq1 my1< < < <r t u t s r9 u q ru u uŽ . Ž . Ž .H HHts0 t
V 0 V

smy1 my1< < < <y = u u q f x , u u u 20Ž . Ž .Ž .

Ž . Ž .and then, by 11 and 19 , we conclude the proof when m G 1.
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< < my 1In the second case 0 - m - 1 we cannot directly put f s u u in
Ž . Ž .12 , because of the singular term appearing in 19 . On the other hand, by
the same arguments used before,

2 Ž1ym.r2 Žmy1.r2< < <u s u u u . 21Ž .Ž . tt m q 1

Ž . Ž . mq 1Ž .Again by 11 , 16 , and the Holder inequality, u is in L Q . Then¨ t T
Ž .again by 16 ,

u g W 1, mq1 0, T ; Lmq 1 V . 22Ž . Ž .Ž .
Moreover, by Leibnitz’ formula in Sobolev spaces,

d
ruf s r9uf q ru f q rufH H t tdt V V

`Žw x . Ž .for all f g C 0, T = V ; hence 12 can be equivalently written asc

sy2t my 1 my1< < < <y ru f y = u u = u u =f q f x , u f s 0. 23Ž . Ž .Ž . Ž .HH t
0 V

Ž . Ž .By 10 , 16 , and applying Lemma 2.2, for every « ) 0 there is f g«
`Žw x . < < m y 1 1q 1r m Ž .C 0, T = V such that f ª u u in L Q lc « T
sŽ 1, sŽ .. Ž .L 0, T ; W V . Passing to the limit in 23 , with f replaced by f , we0 «

conclude that

st my 1 my1 my1< < < < < <y r u uu y = u u q f ?, u u u s 0,Ž .Ž .HH t
0 V

Ž .which, by 21 , concludes the proof.

3. THE GLOBAL NONEXISTENCE RESULT

We set

1 1Ž . Ž .y1r qys ysr qyss ql s c B , E s y c B .Ž . Ž .1 1 1 1 1 1ž /s q

Our main global nonexistence result is the following

5 5 m Ž .THEOREM 3.1. If u ) l and E 0 F E , then no global solu-mq py10 1 1
Ž . w .tions of 8 can exist in the whole 0, ` .

We now set

5 5 m 2l s u , E s E 0 , G s l, E g R : l ) l , E - E .Ž . Ž .� 4mq py10 0 0 1 1
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As the proof of Theorem 3.1 will be done by contradiction, in what
follows we can suppose that T can be taken arbitrarily large. We start with

Ž .LEMMA 3.1. Let l , E g G. Then0 0

Ž . Ž .i E t F E for all t G 0;0

Ž . 5 Ž .5 mii there is l ) l such that u t G l for all t G 0;mq py12 1 2

Ž . y1 5 Ž < < my 1 .5iii there is l ) B l such that = u u G l .s3 1 1 3

Ž . Ž .Proof. It is sufficient to prove only ii , as i immediately follows by
Ž . Ž . Ž .14 and iii is a consequence of ii and Lemma 2.1. By Lemma 2.1 and
Ž .F1

1 c1 mqpy1m s m5 5 5 5E t G u t y u t s g u t , 24Ž . Ž . Ž . Ž . Ž .Ž .mq py1mqpy1 mqpy1ssB q1

Ž . Ž s. s Ž . q Ž .where g l [ 1r sB l y c rq l , l G 0, and q s m q p y 1 rm. It1 1
Ž .is easy to see that g takes its maximum for l s l , with g l s E , that g1 1 1

Ž .is strictly decreasing for l G l , and that g l ª y` as l ª `. Conse-1
Ž . Ž .quently, as E - E , there is l ) l such that g l s E . Since g l F0 1 2 1 2 0 0

Ž . Ž .E s g l by 24 , it follows that l F l . Now suppose by contradiction0 2 2 0
5 Ž .5 m Ž .that u t - l for some t G 0. By 18 we can suppose thatmq py10 2 0
5 Ž .5 m Ž . Ž5 Ž .5 m . Ž . Ž .l - u t . Hence E t G g u t ) g l s E by 24 ,mq py1 mqpy11 0 0 0 2 0

Ž .which contradicts i .

We are now ready to give the

Ž .Proof. Proof of Theorem 3.1 . When E - E we can apply Lemmas0 1
w x2.1]3.1 and adapt the arguments of 18 to our situation. More precisely,

Ž . w .for any solution of 8 in 0, ` we define

t tmq 1 mq1< < < <II t s r u q t y t r9 uŽ . Ž .HH HH
0 V 0 V

2mq1< <q T y t r 0 u q b t q t , 25Ž . Ž . Ž . Ž .H0 0 0
V

Žwhere t , T , and b are positive constants, which will be fixed later see0 0
w x. Ž .11, 13 . Then, using 11 ,

tmq 1 mq1 mq1< <II9 t s r t u t y r9 t u t y r 0 uŽ . Ž . Ž . Ž . Ž . Ž .H HH H 0
V 0 V V

q 2b t q tŽ .0

t Ž .my1 r2Žmy1.r2< <s 2 r t u u t u t u t q 2b t q t .Ž . Ž . Ž . Ž . Ž .Ž .HH 0t
0 V

26Ž .
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Using Lemma 2.3, we get

s1 m q 1 my 1 my1< < < <II0 s y = u u q f x , u u u q b . 27Ž . Ž .Ž . Hs2 2 V

Ž . Ž .Next, using 15 and F2 ,

s1 m q 1 q my 1 my1< < < <II0 s y 1 = u u q f x , u u uŽ .Ž . Hsž /2 2 s V

yq F x , u y qE q bŽ .H
V

sm q 1 q my 1< <G y 1 = u u y qE q b . 28Ž .Ž . sž /2 s

Ž .By Lemma 3.1 and 14 , using the explicit values of l and E ,1 1

1 m q 1 q Ž .ysr qysqII0 G y 1 B c y qEŽ .1 1 0ž /2 2 s

4mq 2t Žmy1.r2< <q r u u q bŽ .HH t2
0 Vm q 1Ž .

m q 1 q 4mŽ . 2t Žmy1.r2< <s E yE q r t u u qb .Ž . Ž .HH1 0 t22 0 Vm q 1Ž .

Ž .2Ž .Now choose b s m q 1 E y E r2m ) 0 since E ) E . Then1 0 1 0

mq 4mq 2t Žmy1.r2< <II0 G 2 q 1 b q r t u u . 29Ž . Ž .Ž .HH tž /m q 1 m q 1 0 V

Ž . Ž . Ž . < < mq 1 2Clearly II9 0 s 2b t ) 0, II 0 s T H r 0 u q b t ) 0. More-0 0 V 0 0
Ž .over, II0 ) 0 by 29 , so II9 and II are both positive. We claim that

2 w xII II0 y a II9 G 0 on 0, T , 30Ž . Ž .0

w Ž .xwhere a s 1 q mqr m q 1 r2. Indeed, let

t 2mq1< <A s r u q b t q t , 31Ž . Ž .HH 0
0 V

2t Žmy1.r2< <C s r u u q b , 32Ž .Ž .HH t
0 V
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Ž .and B s II9r2. By 25 , being r9 F 0,

w xA F II on 0, T . 33Ž .0

Ž .Moreover, by 29 , using the fact that p ) 2,

II0 G 2 mqr m q 1 q 1 C. 34Ž . Ž .

Ž . 2 Ž . Ž . Ž .Now for all j , t g R and t G 0, using 26 , 31 , and 32 , we get

Aj 2 q 2Bjt q Ct 2

2t 2Žmy1.r2 Žmy1.r2< < < <s r t u u q u u q b t y t j q t G 0;Ž . Ž .Ž .HH 0t
0 V

2 Ž . Ž . Ž .hence AC y B G 0. Then the claim 30 follows by 33 and 34 . Repro-
w Ž .xducing verbatim the proof of 18, Theorem 1 i we conclude the proof

when E - E .0 1
Ž . Ž . w .Consider now the case E s E . By Lemma 3.1 i , E t F E on 0, ` .0 1 1

5 Ž .5Then, since l ) l , by the continuity of u t , only two possibili-mq py10 1
ties can occur:

Ž . Ž . 5 Ž .5 ma there is t G 0 such that E t - E and u t ) l ;mq py10 0 1 0 1

Ž . Ž . w .b there is « ) such that E t s E for all t g 0, « .0 1 0

In the first case, shifting the time origin, we can apply the previous case
and conclude the proof. In the latter we claim that

smy1 my1< < < <y = u u q f x , u u u s 0 35Ž . Ž .Ž . Hs
V

w . Ž .a.e. on a sufficiently small interval 0, « . To prove 35 we consider two2
Ž . Ž .subcases: either r 0 ) 0 or r 0 s 0. In the first r is positive on some

w . Ž < < Žmy1.r2 . w . Ž .small interval 0, « , then u u s 0 a.e. on 0, « by 14 , where1 t 2
� 4 Ž . Ž . Ž . Ž .« s min « , « . Hence, by 20 when m G 1 or 23 when 0 - m - 1 ,2 0 1
Ž . Ž .we obtain 35 . If r 0 s 0 then, as r is decreasing and nonnegative,

Ž .r ' 0, so 12 becomes

sy2t my 1 my1< < < <y = u u = u u =f q f x , u f s 0 for a.a. t G 0.Ž .Ž . Ž .HH
0 V

Ž . Ž . Ž . `Ž .Now, taking f t, x s f x f t , with f g C V , yields that, for a.a.0 1 0 c
w .t g 0, ` ,

sy2my1 my1< < < <y = u u = u u =f q f x , u f s 0.Ž .Ž . Ž .H 0 0
V



BLOW-UP FOR THE POROUS MEDIA EQUATION 195

Ž . Ž . Ž .Hence 35 follows. By the form of the energy function 15 and F2 ,

s1 mmy 1 my1< < < <E G = u u y f x , u u u.Ž .Ž . H1 ss m q p y 1 V

Ž .Therefore, by 35 ,

s1 1 my 1< <E G y = u u ,Ž .1 sž /s q

Ž .so, by Lemma 3.1 iii ,

1 1
ys sE ) y B l ,1 1 1ž /s q

which contradicts the definition of E .1

4. PROOF OF THEOREM 1.1 AND FINAL REMARKS

Ž .Proof. Proof of Theorem 1.1 . Blow-up follows from Theorem 3.1, the
w xlocal existence results of 6, 9, 14 , together with a standard continuation

procedure. Nevertheless, for the sake of clearness, we explain briefly how
to complete the proof. Clearly, applying Theorem 3.1 with r ' 1, s s 2,

Ž . < < py2 Ž . w .and f x, u s u u, there are no global solutions of 1 on 0, ` ; hence
w xthere are no global solutions of the types considered in 6, 9, 14 . Hence

wT s sup T ) 0 : there is a solution of 1 on 0, T - `.� 4Ž . .max

Ž . w xNow, in the case i , considering local solution of 9 it is easy to see that
the arguments of the author show the existence of the solution on an

w . Ž5 5 . 5 5interval 0, T , where T s T u is a decreasing function u . Ifmq 1 mq10 0
5 Ž .5there is a sequence t ª T such that u t is bounded, as themq 1n max n

equation is autonomous, there is a corresponding sequence of intervals
w . Ž5 Ž .5 . Ž 5 Ž .5 .t , t q T , where T s inf T u t G T sup u t ) 0.mq 1 mq1n n 1 1 n n n n

5 Ž .5 yThis contradicts the definition of T , so u t ª ` as t ª T .mq 1max max
Ž . w xIn the case ii , we consider solutions of the type given in 6, 14 , and we

wconclude the proof arguing as in 6, Proof of Theorem 3.1; 14, Corollary
x4.1 .

Ž .Final Remarks. In the case of Eq. 1 clearly

1 1
y2rŽqy2. y2 qrŽqy2.l s B , E s y B .1 1 1 1ž /2 q
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The energy level E can be also characterized in a variational form, i.e., as1

d s inf sup J lu , 36Ž . Ž .1
1Ž . � 4ugH V _ 0 l)00

where

1 12 q5 5 5 5J u s =u y u . 37Ž . Ž .2 q2 q

Indeed, for u / 0, an easy calculation shows that

Ž .2 qr qy25 51 1 =u 2
sup J lu s y ;Ž . ž / ž /5 52 q u ql)0

hence d s E , since B is the optimal constant in the Sobolev embedding.1 1 1
Moreover, as stated in the Introduction, E can be characterized as the1

1Ž .Mountain Pass level of the functional J on H V , i.e., as0

d s inf sup J g t ,Ž .Ž .2
ggG1 w xtg 0, 1

� Žw x 1Ž .. Ž . Ž Ž .. 4where G s g g C 0, 1 ; H V : g 0 s 0, J g 1 - 0 .1 0
Ž .Indeed, due to the form of J see Lemma 3.1 it is easy to see that for

1Ž . Ž .any u g H V , u / 0, there is a unique l u ) 0 which is a critical point0
Ž . Ž Ž . . Ž .of l ¬ J lu , and that J l u u s max J lu . Then, if we definel) 0

Ž . Ž . Ž Ž . .g t s Rtu, with R so large that J Ru - 0, then g g G and J l u u su u 1
Ž Ž ..max J g t G d . This proves that d G d . Conversely, if u is at gw0, 1x u 2 1 2

1Ž . Ž . Žcritical point of J on H V such that J u s d it is well known that it0 2
w x. Ž . Ž .exists; see, for example, 1, 19, 22 , clearly J u s max J lu G d , sol) 0 1

d G d , proving our claim.2 1
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Ž .Fac. Sci. Unï . Tokyo Sect. IA Math. 13 1966 , 109]124.



BLOW-UP FOR THE POROUS MEDIA EQUATION 197

8. H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic
equations, in ‘‘Nonlinear Functional Analysis,’’ Proc. Sympos. Pure Math., Vol. 18, pp.
105]124, Amer. Math. Soc., Providence, 1968.

9. V. A. Galaktionov, Boundary value problem for the nonlinear parabolic equation u st
sq1 bq1 Ž . w xDu q u , Differentsial’nye Ura¨neniya 17, No. 5 1981 , 836]842 In Russian ;

Ž .English translation, Differential Equations 17 1981 , 551]555.
10. H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations, J.

Ž .Differential Equations 26 1977 , 291]319.
11. H. A. Levine, Some nonexistence and instability theorems for solutions of formally

Ž .parabolic equations of the form Pu s yAu q FF u , Arch. Rational Mech. Anal. 51t
Ž .1973 , 371]386.

12. H. A. Levine, S. R. Park, and J. Serrin, Global existence and nonexistence theorems for
quasilinear evolution equations of formally parabolic type, J. Differential Equations 142
Ž .1998 , 212]229.

13. H. A. Levine, P. Pucci, and J. Serrin, Some remarks on global nonexistence for nonau-
tonomous abstract evolution equations, in ‘‘Harmonic Analysis and Nonlinear Differen-

Ž .tial Equations,’’ M. L. Lapidus, L. H. Harper, and A. J. Rumbos, Eds. , Contemp. Math.,
Vol. 208, pp. 253]263, Amer. Math. Soc., Providence, 1997.

14. H. A. Levine and P. E. Sacks, Some existence and nonexistence theorems for solutions of
Ž .degenerate parabolic equations, J. Differential Equations 52 1984 , 135]161.

15. M. Marcus and V. J. Mizel, Absolute continuity of tracks and mappings on Sobolev
Ž .spaces, Arch. Rational Mech. Anal. 45 1972 , 294]320.

16. M. Nakao, Existence, nonexistence and some asymptotic behavior of global solutions of a
Ž .nonlinear degenerate parabolic equation, Math. Rep. Kyushu Unï . 14 1983 , 1]21.
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