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The cosmic acceleration is one of the most significant cosmological discoveries over the last century. The
two categories of explanation are exotic component (dark energy) and modified gravity. We constrain
the two types of model by a joint analysis with perturbation growth and direct H(z) data. Though the
minimal χ2 of the �CDM is almost the same as that of DGP, in the sense of consistency we find that
the dark energy (�CDM) model is more favored through a detailed comparison with the corresponding
parameters fitted by expansion data.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

The acceleration of the universe is one of the most significant
cosmological discoveries over the last century [1]. Various expla-
nations of this acceleration have been proposed, see [2] for recent
reviews with fairly complete lists of references of different models.
However, although fundamental for our understanding of the uni-
verse, its nature remains as a completely open question nowadays.

There are two main categories of proposals. One is that the ac-
celeration is driven by some exotic matter with negative pressure,
called dark energy. The other suggests that general relativity fails
in the present Hubble scale. The extra geometric effect is respon-
sible for the acceleration. Surely, there are some proposals which
mix the two categories. Mathematically, in the dark energy model
we present corrections to the right-hand side of Einstein equation
(matter part), while the correction terms appear in the left-hand
side of Einstein equation (geometric part).

�CDM model is the most popular and far simple dark en-
ergy model, in which vacuum energy with the equation of state
(EOS) w = −1 accelerates the universe. From theoretical consid-
erations and by observational implications, people put forward
several other candidates for dark energy, such as quintessence
(−1 < w < −1/3), phantom (w < −1), etc. Also there are many
possible corrections to the geometric part of the theory. One of the
leading modified gravity model is Dvali–Gabadadze–Porrati (DGP)
model [3], for a review, see [4]. In the DGP model, the bulk is a flat
Minkowski spacetime, but an induced gravity term appears on a
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tensionless brane. In this model, gravity appears 4-dimensional at
short distances. But, at a distance larger compared to some freely
adjustable crossover scale r0 it is altered through the slow evapo-
ration of the graviton off our 4-dimensional brane world universe
into an unseen, yet large, fifth dimension.

We should find the correct, at least exclude the incorrect mod-
els in the model sea. The first step is to discriminate between dark
energy and modified gravity, whose nature are completely differ-
ent. To construct a model simulating the accelerated expansion is
not very difficult. That is the reason why we have so many differ-
ent models. Recently, some suggestions are presented that growth
function δ(z) ≡ δρm/ρm of the linear matter density contrast as a
function of redshift z can be a probe to discriminate between dark
energy and modified gravity [5,6] models. The growth function can
break the degenerations between dark energy and modified gravity
models which share the same expansion history.

There is an approximate relation between the growth function
and the partition of dust matter in standard general relativity [7],

f ≡ d ln δ

d ln a
= Ω

γ
m , (1)

where Ωm is the density partition of dust matter, a denotes the
scale factor, and γ is the growth index. This relation is a perfect
approximation at high redshift region. Also, it can be used in low
redshift region, see for example [8]. It is shown that the relation
(1) is also valid in the case of modified gravity theory [5]. The
theoretical value of γ for �CDM model is 6/11 [6,8], while, for
spatially flat DGP model is 11/16 [5]. The observation data of per-
turbation growth are listed in Table 1.

It is shown that �CDM model is consistent with the current
growth data [16]. The data seem to weaken a spatially flat DGP
model, whose γ = 11/16. However, it is found that the growth in-
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Table 1
Observed perturbation growth as a function of redshift z, see also [15]

z fobs Reference

0.15 0.51 ± 0.11 [9]
0.35 0.70 ± 0.18 [10]
0.55 0.75 ± 0.18 [11]
0.77 0.91 ± 0.36 [12]
1.4 0.90 ± 0.24 [13]
3.0 1.46 ± 0.29 [14]

dex γ is 4/7 in a non spatially flat DGP model [15], which is very
closed to the index of �CDM. Thus, the DGP model may be still
consistent with current growth data.

In this Letter we take a different strategy. The previous works
were concentrated on the limit of the growth index and made
some approximations on it (often the high z limit was assumed
and an approximation was made at linear order), in which only
approximate asymptotic value of γ can be obtained. In fact, the
perturbation growth f is a variable with respect to z, as displayed
in Table 1. By using these growth data we constrain the parame-
ters in �CDM model and DGP model, respectively.

The other one which is very useful but not widely used in
model constraint data is the set of direct H(z). H(z) is derived
by a newly developed scheme to obtain the Hubble parameter di-
rectly at different redshift [17], which is based on a method to
estimate the differential ages of the oldest galaxies [18]. By using
the previously released data [19], Simon et al. obtained a sample of
direct H(z) data in the interval z ∈ (0,1.8) [20], just as the same
interval of the data of luminosity distances from supernovae. For
the present sample of growth data derived with the assumption
of the expansion behaviors of the universe, we will present joint
fittings to obtain the constraints on the �CDM and DGP, respec-
tively. Then, through comparing with allowed regions by expansion
constraint using different observations, including supernovae (SN),
cosmic microwave background (CMB), baryon acoustic oscillations
(BAO) etc., we examine which model is more self-consistent.

This article is organized as follow: In Section 2 we construct the
evolution equation for f in a very general frame. In Section 3, by
using the growth data and H(z) data we present the parameter
constraints of �CDM and DGP, respectively. Our conclusion and
some discussions appear in Section 4.

2. The evolution equation for the growth function f

We consider a mixed model in which dark energy drives the
universe to accelerate in frame of modified gravity. For FRW uni-
verse in modified gravity, the Friedmann equation can be written
as,

H2 + k

a2
+ h(a, ȧ, ä) = 8πG

3
(ρm + ρe), (2)

where H denotes the Hubble parameter, h comes from the cor-
rections to general relativity. ρm and ρe represent the density of
dust matter and the exotic matter, respectively. A dot implies the
derivative with respect to cosmic time t . Comparing with the cor-
responding Friedmann equation in standard general relativity, we
obtain the density of effective dark energy,

ρde = ρe − 3

8πG
h. (3)

Here we call h geometric sector of dark energy. The behavior of
the effective dark energy has been separately discussed in some
previous works. For example, it is investigated in detail in a mod-
ified gravity model where a four-dimensional curvature scalar on
the brane and a five-dimensional Gauss–Bonnet term in the bulk
are present [21].
For any modified gravity theory, Bianchi identity is a fundamen-
tal requirement. Using the continuity equation of the dust matter
and the Bianchi identity, we derive,

˙ρde + 3Hρde(1 + wde) = 0, (4)

which yields,

wde = −1 − 1

3

d lnρde

d ln a
, (5)

where wde is the EOS (equation of state) of the effective dark en-
ergy.

After the matter decoupling from radiation, for a region well
inside a Hubble radius, the perturbation growth satisfies the fol-
lowing equation in standard general relativity [22],

δ̈ + 2H δ̇ − 4πGρmδ = 0. (6)

It is found that the perturbation equation is still valid in a modified
gravity theory if we replace the Newton constant G with an effec-
tive gravitational parameter Geff, which is defined by Cavendish-
type experiment [5,23]. (This point may need more studies.) Geff
may be time-dependent, for example in Bran–Dicke theory and in
generalized DGP theory [24].

With the partition functions,

Ωm = 8πGρm

3H2
, (7)

Ωde = 8πGρde

3H2
, (8)

Ωk = − k

a2 H2
, (9)

the perturbation equation (6) becomes,

(ln δ)′′ + (ln δ)′ 2 +
(

2 + H ′

H

)
(ln δ)′ = 3

2
αΩm, (10)

where a prime denotes the derivative with respect to ln a, α is the
strength of the gravitational field scaled by that of standard general
relativity,

α = Geff

G
. (11)

Ωm and Ωk redshift as

Ωm = Ωm0(1 + z)3

Ωm0(1 + z)3 + Ωk0(1 + z)2 + 8πGρde
3H2

0

, (12)

Ωk = Ωk0(1 + z)2

Ωm0(1 + z)3 + Ωk0(1 + z)2 + 8πGρde
3H2

0

, (13)

where 0 denotes the present value of a quantity. The growth func-
tion defined in (1) is just (ln δ)′ . Thus (10) generates,

f ′ + f 2 +
[

1

2
(1 + Ωk) + 3

2
wde(Ωm + Ωk − 1)

]
f = 3

2
αΩm, (14)

where we have used

H ′

H
= −Ωk − 3

2

[
Ωm + (1 + wde)Ωde

]
, (15)

and

Ωm + Ωk + Ωde = 1. (16)

In �CDM model, we have wde = −1 and α = 1. For the self-
accelerating branch of DGP model [15],

wde = −1 + Ωk
, (17)
1 + Ωm − Ωk
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and

α = 4Ω2
m − 4(1 − Ωk)

2 + 2
√

1 − Ωk(3 − 4Ωk + 2ΩmΩk + Ω2
k )

3Ω2
m − 3(1 − Ωk)

2 + 2
√

1 − Ωk(3 − 4Ωk + 2ΩmΩk + Ω2
k )

.

(18)

rc is another important parameter in DGP model, which is de-
fined by the relative strength of five-dimensional gravity to four-
dimensional gravity rc = G5/G . Here G5 is the five-dimensional
gravity constant. We define the partition of rc as

Ωrc ≡ 1/
(

H2
0r2

c

)
. (19)

One can derive the following relation from Friemann equation of
DGP model,

1 = [√Ωm0 + Ωrc + √
Ωrc ]2 + Ωk0. (20)

With (14) and the observed data of f in Table 1, we can fit
parameters of the models, either dark energy or modified gravity.

3. Joint analysis with the growth data and the direct H(z) data

In this section we fit Ωm0, Ωk0 in �CDM model and Ωm0, Ωrc

in DGP model with the growth data and direct H(z) data by χ2

statistics, respectively. Before fitting with the two sets of data, we
present some discussions about them.

The present growth data in Table 1 are far from being precise.
We have a sample consisting of only six points, and the error bars
of the growth data are at the same order of the growth data them-
selves. The reason roots in the method by which we derive the
data set.

In the present stage we do not find any absolute probes to the
perturbation amplitude. People extract the information of pertur-
bation growth from galaxy clustering data through redshift distor-
tion parameter β observed in the anisotropic pattern of galactic
redshifts. We need the galaxy bias factor b to get the perturbation
growth f = bβ . The current available galaxy bias can be obtained
mainly in two ways. The most popular method is to refer to the
simulation results of galaxy formations [9,10,12,14]. At the present
stage the simulations we obtained only in frame of �CDM model.
The second method to get the galaxy bias depends on the CMB
normalization [11]. Also, �CDM model is involved. Further, to con-
vert from redshift z to comoving distance one should assume a
clear relation between distance and redshift. For instance Tegmark
et al. [10] adopt a flat �CDM model in which Ωm0 = 0.25. They
also tested that if a different cosmological model is assumed for
the conversion from redshift to comoving distance, the measured
dimensionless power spectrum is varied very slightly (<1%).1

Hence, we see that people obtain data in Table 1 always by as-
suming a �CDM model. Its reliability may decrease when we use
it in the scenarios of other models. Fortunately, it is pointed out
that this problem can be evaded at least in the DGP model since
the expansion history in DGP with proper parameters is very sim-
ilar to that of �CDM [15]. Since the growth data are derived with
some assumptions of expansion history, we should fit the model
by growth data together with expansion data.

The direct H(z) data are independent of the data of luminosity
distances and reveal some fine structures of H(z). They have not
been widely used in the constraints on dark energy models up
to now. Here we present a joint fitting of �CDM and DGP with
perturbation growth data and direct H(z) data.

We show the sample of H(z) data in Table 2.

1 The anonymous referee’s comments.
Table 2
The direct observation data of H(z) [20]

z 0.09 0.17 0.27 0.40 0.88 1.30 1.43 1.53 1.75
H(z) (km s−1 Mpc−1) 69 83 70 87 117 168 177 140 202
68.3% confidence interval ±12 ±8.3 ±14 ±17.4 ±23.4 ±13.4 ±14.2 ±14 ±40.4

Table 2 displays an unexpected feature of H(z): It decreases
with respect to the redshift z at z ∼ 0.3 and z ∼ 1.5, which is diffi-
cult to be found in the data of supernovae since the wiggles will be
integrated in the data of luminosity distances. A study shows that
the model whose Hubble parameter is directly endowed with oscil-
lating ansatz by parameterizations fits the data much better than
those of LCDM, IntLCDM, XCDM, IntXCDM, VecDE, IntVecDE [25].
A physical model, in which the phantom field with natural poten-
tial, i.e., the potential of a pseudo Nambu-Goldstone Boson (PNGB)
plays the role of dark energy, is investigated in [26]. The oscillating
behavior of H appears naturally in this model.

For �CDM, in the joint analysis with a marginalization of H0,
χ2 reads

χ2(Ωm0,Ωk0) =
6∑

i=1

[
fobs(zi) − fth(zi;Ωm0,Ωk0)

σ fobs

]2

+
9∑

i=1

[
Hobs(zi) − Hth(zi;Ωm0,Ωk0)

σ fobs

]2

+
(

H0 − 72

0.08

)2

, (21)

where fobs denotes the observation value of the growth index,
and fth represents its theoretical value. We read fobs(zi), σ fobs

from Table 1 and calculate fth(zi;Ωm0,Ωk0) using (14). To get the
theoretical value of f using (14), we need its initial value. Our
considerations are as follows. In any dark energy model the uni-
verse should behave as the same one in some high redshift region
such as z = 1000, that is, it behaves as standard cold dark matter
(SCDM) model, which has been sufficiently tested by observations.
In SCDM model we obtain f = 1 by using (1). So we just take
f = 1 as the initial value at high enough redshift region. And the
theoretical Hubble parameter reads,

H2
th = H2

0

[
Ωm0(1 + z)3 + Ωk0(1 + z)2 + 1 − Ωm0 − Ωk0

]
. (22)

We take the value of present Hubble parameter H0 from the
HST key project H0 = 0.72 ± 0.08 km s−1 Mpc−1 [29]. The result
is shown in Fig. 1.

In DGP model, traditionally, we often use Ωrc rather than Ωk0
in fittings. There is no essential difference since they are con-
strained by (20). In the joint analysis with a marginalization of
H0, χ2 becomes

χ2(Ωm0,Ωrc ) =
6∑

i=1

[
fobs(zi) − fth(zi;Ωm0,Ωrc )

σ fobs

]2

+
9∑

i=1

[
Hobs(zi) − Hth(zi;Ωm0,Ωrc )

σ fobs

]2

+
(

H0 − 72

0.08

)2

, (23)

where

H2
th = H2

0

[((
Ωm0(1 + z)3 + Ωrc

)1/2 + Ω
1/2
rc

)2 + Ωk0(1 + z)2]. (24)

With the same reason as the case of �CDM we take f = 1 as the
initial value at high enough redshift. The result is illuminated in
Fig. 2.
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Fig. 1. 68%, 95% and 99% confidence contour plot of Ωm0,Ωk0 in �CDM by the
growth data in Table 1 and H(z) data in Table 2. For 1 σ level, Ωm0 = 0.275+0.0544

−0.0549,

Ωk0 = 0.065+0.159
−0.149.

Fig. 2. 68%, 95% and 99% confidence contour plot of Ωm0,Ωk0 in DGP by the
growth data in Table 1 and H(z) data in Table 2. For 1 σ level, Ωm0 = 0.350+0.132

−0.0974,

Ωrc = 0.200+0.0631
−0.0483.

Observing Table 1 carefully, one may find that the datum at
z = 3.0 is odd in some degree. From (1) we see that in �CDM
Ωk or Ωde should be smaller than 0 if we require f > 1. Hence
our present universe will be curvature dominated or becomes an
anti-de Sitter (AdS) space, since dust matter redshifts much faster
than curvature or vacuum energy. Here we give a simple example
of this problem. In the spatially flat �CDM model, f = 1.46 yields,

Ω
6/11
m = 1.46. (25)

Then we derive Ωm = 2.00, Ωde = −1.00. The universe will brake
and then start to contract at z = 2.17, which completely contra-
dicts to the observations of expansion. So we present Fig. 3, which
displays the constraint on Ωm0,Ωk0 in �CDM by H(z) data and
growth data, which only include 5 points. Similarly, we plot Fig. 4,
which illuminates the constraint on Ωm0,Ωrc in DGP by H(z) data
and growth data, which only includes 5 points. The datum at
z = 3.0 is excluded.

Comparing Fig. 1 with Fig. 3, we find the profiles of the two
figures are almost the same, but the minimal χ2, χ2

min decreases
from 12.26 to 9.479. Similarly, comparing Fig. 2 with Fig. 4, we
Fig. 3. 68%, 95% and 99% confidence contour plot of Ωm0,Ωk0 in �CDM by the
growth data in Table 1 and H(z) data in Table 2. For 1 σ level, Ωm0 = 0.270+0.0598

−0.0531 ,

Ωk0 = 0.080+0.146
−0.159. The point z = 3.0 in the sample of the growth data is excluded.

Fig. 4. 68%, 95% and 99% confidence contour plot of Ωm0,Ωk0 in DGP by the growth
data in Table 1 and H(z) data in Table 2. For 1 σ level, Ωm0 = 0.345+0.1296

−0.0940,

Ωrc = 0.198+0.0613
−0.0471. The point z = 3.0 in the sample of the growth data is excluded.

find the profiles of the two figures are almost the same, but χ2
min

decreases from 12.11 to 9.375. Without the point at z = 3.0 the
constraints on Ωk0 of �CDM, Ωm0 and Ωrc of DGP become more
tighten instead. This is also a signal that the datum z = 3.0 may
not be well consistent with other data.

If we only consider χ2
min, we may conclude that DGP is more

favored. However, χ2
min is only one point and the difference is

tiny between the two models. We need more comparisons with
the independent results, especially the permitted parameter inter-
nals, fitted by the expansion data, which were thoroughly stud-
ied. The latest results are shown as follows. For �CDM model,
Ωm0 = 0.279 ± 0.008, Ωk0 = −0.0045 ± 0.0065, which are de-
rived from the joint analysis of the CMB (five-year WMAP data),
the distance measurements from the Type Ia SN, and the Baryon
Acoustic Oscillations (BAO) in the distribution of galaxies [27]. For
DGP model, Ωm0 = 0.28+0.03

−0.02, Ωrc = 0.13 ± 0.01 (SN(new gold) +
CMB + SDSS + gas), and Ωm0 = 0.21 ± 0.01, Ωrc = 0.16 ± 0.01
(SN(SNLS) + CMB + SDSS + gas) [28].

For �CDM, the result of joint fitting by growth data and
H(z) data Ωm0 = 0.275+0.0544

−0.0549, Ωk0 = 0.065+0.159
−0.149, almost coin-
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Fig. 5. The perturbation growth f with error bars in Table 1 and the best fit curves
in �CDM model. The best fit result by growth data and H(z) data inhabits on the
red solid curve, the best fit result by growth data except the point z = 3.0 and
H(z) data resides on the blue dashed one, and the best fit result by joint analysis
of WMAP, SN and BAO dwells on the green triangle ones. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this Letter.)

cides with the result by expansion data Ωm0 = 0.279 ± 0.008,
Ωk0 = −0.0045 ± 0.0065. These types of data are well consistent
in frame of �CDM model.

For DGP, the result of joint fitting by growth data and H(z)
data impose Ωm0 = 0.350+0.132

−0.0974, Ωrc = 0.200+0.0631
−0.0483, which is not

well consistent with the result by expansion data Ωm0 = 0.28+0.03
−0.02,

Ωrc = 0.13 ± 0.01 (SN(new gold) + CMB + SDSS + gas), and Ωm0 =
0.21±0.01, Ωrc = 0.16±0.01 (SN(SNLS) + CMB + SDSS + gas). Con-
cretely speaking, Ωrc = 0.200+0.0631

−0.0483 (growth + H(z)) inhabits be-
yond 2σ level of expansion data Ωrc = 0.13±0.01 (SN(new gold)+
CMB + SDSS + gas). For the data set SN(SNLS) + CMB + SDSS + gas,
the result by growth and H(z) Ωm0 = 0.350+0.132

−0.0974 dwells beyond
3σ level of Ωm0 = 0.21 ± 0.01. Therefore DGP model cannot fit the
observations of expansion and growth very well at the same time.

Through the above discussions, we see that the dark energy
model is more favored than the DGP model by the present data,
and the growth data can be an effective probe to study the nature
of the dark energy.

We plot the best fit curves of growth f by growth + H(z) data
and expansion data in �CDM, respectively in Fig. 5. Fig. 6 illu-
minates the best fit curves by growth + H(z) data and expansion
data in DGP. It is clear that the gap between the best fit curves
of growth data and expansion data is much bigger in DGP model
than the gap in �CDM model.

4. Conclusions

Perturbation growth is a newly developed method to differen-
tiate between dark energy and modified gravity. In the previous
works people concentrate on the approximate analytical value of
the perturbation growth index of a model, and then compare with
the observations. But, the index is not a constant in the history of
the universe. We fit dark energy and modified gravity models by
using the exact evolution equation of perturbation growth.

The sample of presently available growth data is quite small
and the error bars are rather big. Furthermore, we always as-
sumed �CDM model for deriving the growth data. Thus it seems
proper to fit a model by jointing the growth data and the ex-
pansion data. The direct H(z) data are new type of data, which
can be used to explore the fine structures of the Hubble ex-
Fig. 6. The perturbation growth f with error bars in Table 1 and the best fit curves
in DGP model. The best fit result by growth+H(z) data inhabits on the red solid
curve, the best fit result by growth data except the point z = 3.0 and H(z) data
resides on the blue dashed one, the best fit result by joint analysis of SN(new gold),
CMB, SDSS, and gas dwells on the navy star curve, and the best fit result by joint
analysis of SN(SNLS), CMB, SDSS, and gas is denoted by the pink triangle ones. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this Letter.)

pansion history. We put forward a joint fitting by the growth
data and H(z) data. The results are summarized as follows: For
�CDM, Ωm0 = 0.275+0.0544

−0.0549, Ωk0 = 0.065+0.159
−0.149; For DGP, Ωm0 =

0.350+0.132
−0.0974, Ωrc = 0.200+0.0631

−0.0483.
The minimal χ2 are 12.26 and 12.11 for �CDM and DGP, sepa-

rately. The permitted parameters of �CDM by growth + H(z) data
show an excellent consistency with the previous results inferred
from expansion data. However, for DGP model the discrepancies of
the results of growth + H(z) data and expansion data are at least
2σ level. Hence in the sense of consistency, �CDM is more favored
than DGP.
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