
Quality of Service Conflict During Web
Service Monitoring: A Case Study

Jael Zela Ruiz1,2 Cećılia M. Rubira3

Institute of Computing
University of Campinas

Campinas, Sao Paulo, Brazil

Abstract

Web services have become one of the most used technologies in service-oriented systems. Its popularity is
due to its property to adapt to any context. As a consequence of the increasing number of Web services on
the Internet and its important role in many applications today, Web service quality has become a crucial
requirement and demanded by service consumers. Terms of quality levels are written between service
providers and service consumers to ensure a degree of quality. The use of monitoring tools to control service
quality levels is very important. Quality attributes suffer variations in their values during runtime, this is
produced by many factors such as a memory leak, deadlock, race data, inconsistent data, etc. However,
sometimes monitoring tools can impact negatively affecting the quality of service when they are not properly
used and configured, producing possible conflicts between quality attributes. This paper aims to show the
impact of monitoring tools over service quality, two of the most important quality attributes - performance
and accuracy - were chosen to be monitored. A case study is conducted to present and evaluate the
relationship between performance and accuracy over a Web service. As a result, conflict is found between
performance and accuracy, where performance was the most affected, because it presented a degradation in
its quality level during monitoring.

Keywords: Web Services, SOA, Quality of Service, Quality Attributes, Conflict, Performance, Accuracy,
Monitoring Tools.

1 Introduction

In recent years, the Web service technology has become the most popular and used

technology to build SOA applications [26]. Web services are based in a set of

protocols and standards as SOAP (Simple Object Access Protocol), WSDL (Web

Services Description Language), and UDDI (Universal Description, Discovery, and

Integration). Web services are distributed components which are self-contained,

discoverable, reusable, composable, and have a transparent location [3]. As a result

1 This work was supported by the Laboratory of Distributed Systems and Software Engineering, at Institute
of Computing, UNICAMP, Campinas, Brazil.
2 Email: jael.ruiz@students.ic.unicamp.br
3 Email: cmrubira@ic.unicamp.br

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 321 (2016) 113–127

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.02.007

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:jael.ruiz@students.ic.unicamp.br
mailto:cmrubira@ic.unicamp.br
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.02.007
http://dx.doi.org/10.1016/j.entcs.2016.02.007
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


of its popularity, an increasing number of functionally similar Web services can be

found on the internet [7], which entails to the service consumer to ask the question:

“what are the better services?” or “which of them better fit my needs?” [6].

Service consumers have a difficult task to choose an appropriate service for their

requirements. Quality of Service (QoS) has become the most appropriate criterion

to distinguish non-functional characteristics between equivalent Web services.

QoS is described as a number of properties, named quality attributes, which

take in play the Web service quality. Some of these attributes are, for instance,

availability, throughput, robustness, and integrity where a set of quality attributes

compose a quality model. Currently, there are several quality models proposed in

the academia and in the industry [3] [6] [19] [20]. Web services promise quality levels

based on quality models. A negotiation between the service provider and the service

consumer is carried out, in order to assure a specific level of QoS for Web services.

A Service Level Agreement (SLA) is the result of this negotiation, where quality is

defined, negotiated and tasks to assure quality are established [16]. Nevertheless,

afterwards an SLA is arranged for both parties, a new question is asked by service

consumers: How can we be sure that the supposed QoS defined in the SLA is really

satisfied?. As a consequence, monitoring tools emerge to control the Web service

quality levels. Monitoring tools are based on quality model. They are used to

capture, collect, filter, and analyse information from the Web service during runtime

[8]. Currently, there are many monitoring tools which come from the research and

the industry, such as Dynamo [4], Cremona [14], SALMon [1], WebInject [11], SOAP

Monitor [2], Webmetrics Web Services Monitoring [18], FlexMonitorWS [10].

However, because of the dynamic and unpredictable nature of Web services

[12], quality attributes can suffer variations in their values during runtime. The

relationship among quality attributes can produce conflicts between them when they

are monitored at the same time. For example, in a response time and throughput

scenario, response time can be a better quality value when it is monitored in isolation

than in parallel with throughput. The reason is because the Web service receives

a larger number of requests, producing that the Web service takes more time to

respond to the user. On the other hand, throughput is also affected, because a

small number of requests are attended by unit of time, due to the required time to

respond each request. These conflicts are produced mainly for scalability reasons,

Web services can have many service consumers sending many service requests at

the same time. Monitoring tools become a factor for quality attribute conflicts.

Monitoring tools can become a double-edged sword, because they are a useful

QoS control tool, but they can become the principal reason for conflicts when they

are not properly configured. They can turn out to be an intrusive agent for the Web

service, creating a stressful environment. This is important to know what is being

measured, where you are monitoring, how it is being monitored, and how frequently

it is monitoring. An active monitoring not properly configured can overload the Web

service and produce a breakdown in the values for response time, throughput, or

availability to current consumers. In order to demonstrate the monitoring tools

effects over the Web service quality, we present a case study to measure the quality

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127114



of service for two important quality attributes: performance and accuracy. In this

case study, a Web service to deliver clinical results is monitored by two different

monitors generated from the FlexMonitorWS Tool [9]. Quality values are compared

from three scenarios: in isolation, in parallel with the other monitor, and in parallel

with fault injection. A statistical comparison of the results is presented in order to

demonstrate the produced quality degradation level and the significant difference

between them.

This paper is organized as follows. In Section 2, we introduce to some underlying

concepts about SOA, monitoring tools and FlexMonitorWS Tool [10]. In Section

3, we define a Quality of Service conflict and why it is produced. Section 4 reports

a case study where a conflict scenario is evaluated. And finally, in Section 5, we

provide the conclusions and future works.

2 Monitoring Tools and SOA

In this section we introduce some underlying concepts about SOA and monitoring

tools, then we describe the effects of monitoring tools over Web services. Finally,

we present FlexMonitorWS Tool [9], a monitoring tool for Web services used in this

paper.

2.1 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural style widely used in dis-

tributed applications. Different functional units, services, are connected using stan-

dardized and well-defined interfaces [23]. SOA applications are dynamic, heteroge-

neous, distributed and autonomous.

SOA presents three primary roles: the service provider, the service consumer,

and the service broker, as shown in Figure 1. The service provider defines a service

in a WSDL file, it is published in the service broker using UDDI, so the service

is discoverable to service consumers. Service consumers ask for the service to the

service broker, this provides the WSDL file, and the service consumer consumes the

service directly using SOAP [20].

��������	�
�����

	�
���

�

��
��

��

���������
������

����������
���
������

����
����	�

����������

Fig. 1. SOA Architecture

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127 115



��������	
����
��	������	���� ��	���� ��	����

��	���� ��	����

��	������	����

��������
�
������

��������
�
������

��������
�
������

��������
�
������

���
�������

���
�������

���
�������

���
�������

	
��

� 	
��

� 	
��

� 	
��

�

��������	
���� ��������	
���� ��������	
����

Fig. 2. Monitor configurations.

2.2 Web Service Monitoring Tools

Monitoring tools are systems that capture, collect, filter, and analyze information

from a software system during runtime [8]. In Web services, monitoring tools are

used for [9]: (1) improving the process of Web service selection and discovering,

this enables QoS-based searches among functionally similar services. (2) self-healing

technique such as dynamic adaptation and dynamic recuperation applied to some

quality attributes (availability, scalability, capacity and reliability) when some of

them not meet the desired level. (3) detecting violations in SLA, quality metrics

based on SLA are used to evaluate and control the Web service.

Monitoring tools can be used according two strategies [6]. Passive monitor-

ing, monitor is a sniffer and intercept the exchanged messages between the service

provider and service consumer, with the aim of obtaining the QoS. In this strategy,

a direct interaction with the service provider or consumer is minimized. Active

monitoring, monitor sent service requests directly to the service provider, acting as

a consumer. Monitoring systems can be configured differently according to three

components [6], as shown in Figure 2.

• Configuration 1: The service consumer, the monitor, and the Web service are in

the same system (System A).

• Configuration 2: The service consumer and the monitor are in the same system

(System A), and the Web service is in another system (System B).

• Configuration 3: The service consumer is in a system (System A), and the monitor

and Web service are together in another system (System B).

• Configuration 4: The service consumer is in the System A, the monitor and the

Web service are in the System B and System C, respectively.

2.3 FlexMonitorWS Tool

FlexMonitorWS [10] is a Web service monitoring tool based on Software Product

Lines (SPL). This tool is based on the creation of a family of monitors to monitor

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127116



different points in a Web service application and different quality attributes using

different modes of monitoring. It was developed in Java language using FeatureIDE.

FlexMonitorWS tool exploits the flexibility property by means of the creation of

monitoring profiles which serve to a specific target and user requirements [9].

Monitoring profiles are built according to a feature model (Figure 3), the main

features are (a) monitoring target, (b) quality attributes, (c) operation mode, (d)

monitoring frequency, and (e) notification mode [9] [10]. The monitoring target

specifies where the monitoring will take place: one can choose a Web service, server

application, server, and/or network. Quality attributes indicate what needs to be

monitored confirming what is sought, like availability, performance, reliability, ac-

curacy, robustness, hardware state, failures in the log file, and/or network QoS.

Operation mode establishes the strategy to be used, a passive monitoring by means

of message interception, or active monitoring over invocation the service directly or

by means of inspection of log files. Monitoring frequency can be continuously or

periodically. Notification mode sets up the method to notify about the generated

monitoring results, by sending a message or writing in a log file. According to the

selected features is generated a product, a monitor (jar file), this is executed using

a property file containing the Web service specification.

�������

���������

�������

������

��	�
	��
���

������	���

��
�	��
���

�����	��

����������

�	���	����	��

�	�
��������
�

����������

 ����	����

 �����������

 ���������

��	�!������

������� ����	����

"���	��
#���������
�

$	����

����

%���	����!"���

���&�����!'(�������

������	����

)	���
�("������#�

Fig. 3. FlexMonitorWS Feature Model

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127 117



3 Quality of Service Conflict

The term ‘conflict’ has been defined as a common and inevitable phenomenon that

arise in different contexts and levels [15]. In Requirements Engineering, Mairiza [15]

defines conflict between Non-Functional Requirements (NFR) to determine inter-

ference, inconsistency or interdependence among requirements, existing a negative

contribution of one NFR on another one [17], producing that two or more NFR

cannot be satisfied at the same time.

Following the Mairiza’s definition for conflict in NFR and since QoS attributes

are NFR. We define QoS conflict when exists a negative contribution between two

or more attributes, producing a degradation in the quality value for one or more

attributes.

A degradation in the quality level is produced for different reasons, i) The Web

services are dynamic and unpredictable, Web services are connected and discon-

nected in running time, QoS attributes can suffer variations in their values. ii) QoS

attributes are subjective, relative and interacting [15]. Subjective because they

can be viewed, interpreted, and evaluated differently by different people. Rela-

tive because the interpretation and the importance of the QoS attributes can vary

depending on the system. Interacting means they tend to interfere, conflict or con-

tradict with each other. iii) Insufficient resources. Constraints on the resources as

CPU, memory usage, or network bandwidth [25]; these resources do not support

the overload on the Web service. iv) Web service evolution, the constant evolution

of the Web service to improve its functionalities can produce a possible conflict in

its quality levels. v) Monitoring Tools. Depending on how monitoring tools op-

erate over monitored systems, they can produce risk and problems over this last

one. Many researchers have reported an intrusion problem of monitoring caused by

monitoring tools.

This paper is focused on how Monitoring tool can generate conflict between qual-

ity attributes. Monitoring tools use different methods are used to extract and collect

information from Web services. These methods are divided into three types: instru-

ment method, interceptor method, and agent approach [25]. Instrument methods

are used by testing techniques. In this method, monitoring code is embedded into

the Web service implementation and it is inserted manually by the programmers

(e.g. Javassist, AspectJ). Interceptor methods are used in the middleware, they get

details about all sent and received messages to the Web service (e.g. Interceptor

in CORBA, Handler in AXIS, JVMTI in JVM). This method is more independent,

but it is executed in the same process with the Web service consuming the same

resources. Agent methods are totally independent from the Web service, running

in its own process consuming its own resources [25].

Methods bring intrusive effects to Web services in different degrees. When there

are multiple monitors inserted in the target system, this becomes more complex.

Instrument mechanisms make the target code difficult to understand and maintain

[25]. While the interceptor mechanism can lead to performance decrease, because

the monitor runs with shared resources. On the other hand, the agent approach

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127118



is the least intrusive method compared with the others, because it runs separately

from the Web service.

4 A Case Study: DCTR System

In this section, we describe a case study to evaluate the relationship between per-

formance and accuracy properties when they are monitored in a Web service over

a Delivering Clinical Test Results System (DCTR System).

4.1 Object of Study

DCTR System is a Web service-based system developed in a clinical laboratory to

deliver clinical test results to its patients. Web services were developed using Java

language, JAX-WS API. The system offers several features encapsulated as Web

services, such as PatientService, DoctorService, ResultService, etc. Among these

Web services, we select the PatientService, because it is some of the Web services

most used by the clinical staff when a new test is introduced.

The PatientService provides many features, between them, we have these two

operations:

1. getPatientName(), which, given a patient code composed of an alphabetic part

and a numerical part separated by a hyphen (e.g. PAT-0321), returns the

corresponding patient’s name.

2. getPatients(), which, given an integer number n, returns a list of the n recent

attended patients.

Figure 4 shows a segment of the WSDL for PatientService to the operations

getPatientName() and getPatients().

4.2 Purpose and Goals

The aim of this case study is to identify the potential quality conflict between

performance and accuracy during a Web service monitoring. For this study, a

conflict is identified as a degradation in the quality value for one or both quality

attributes. At the same time, it is pretending to discover the negative effects of

the monitoring tools in the quality of service as the main cause of the conflict.

We have selected the two operations in the Web service, PatientService, namely

getPatientName() and getPatients(). Our research question has been formulated as

follows:

RQ1: What are the performance and accuracy quality levels measured in

isolation?.

RQ2: Is the accuracy quality level degraded when it is monitored in parallel

with performance?

RQ3: Is the performance quality level degraded when it is monitored in parallel

with accuracy?

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127 119



�������	
���	������������������������
�����������������
�������������
������������	�������������	��������������������������� �
����� ������������
� ������	
���	��
�������	
���	����������������������!��	������
�����������������
�������������
���������������������	��������������������������� �
����� ������������
� ������	
���	��
�������	
���	���������������������
�����������������
�������������
������������������	���������� �
����� ������������
� ������	
���	��
�������	
���	�������������������!��	������
�����������������
�������������
���������������������	�������	���������������������� �
����� ������������
� ������	
���	��
�������	
���	��������	���������
�����������������
�������������
������������	���������	�������	�����������������������������������"������� �
����� ������������
� ������	
���	��
�������	
���	��������	��������
�����������������
�������������
������������"���#$������	����������������������������� �
�������������
����������������
%���������	��������������������������� �
�������������
������������&�����������	��������������������������� �
�������������
������������������������	������
������������������ �
�������������
������������
����������	��������������������������� �
�������������
��������������"�
����"�����	��������������������������� �
�������������
����������������#�
����	������������������������ �
�������������
������������	�������������	��������������������������� �
�������������
������������	#������"�����	��������������������������� �
�������������
������������������	��������������������������� �
�������������
���������������������	��������������������������� �
�������������
�����������������
����	������������������������ �
����� ������������
� ������	
���	��

Fig. 4. A segment of WSDL for PatientService.

The first question deals with the measurement of quality attributes separately;

by answering this question we can know the quality level of the Web service, which

will be used as a basis of comparison for our experiment. The second and third

questions deal with the measurement in parallel of the quality levels for performance

and accuracy; by answering these questions, we will be able to identify the potential

conflict between these quality attributes during monitoring.

4.3 Quality Attributes

In this case study, we present two quality attributes, performance and accuracy.

While performance is concerned with how quickly a service request can be com-

pleted, accuracy is concerned with whether the service response is correct. But,

correct responses are not always produced quickly.

4.3.1 Performance

Performance of a Web service represents how fast a service request can be completed

[13]. Performance can be measured in terms of throughput, response time, latency,

execution time, and transaction time. Response time was selected for this work,

because it is the main concern for both service consumers and service providers. It

is a critical quality attribute because if a service consumer perceives a long delay

after send a request to the service, the consumer is likely to change to another faster

Web service [22].

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127120



Response Time is the required time to complete a Web service request [19] [13];

the time between sending a request to the Web service and receiving the response.

The response time depends primarily on two factors: network delay and server side

latency. Response time is measured by the following equation:

ResponseT ime = Tresponse − Trequest(1)

Where Trequest is the time (timestamp) when the service request is sent to the

Web service, and Tresponse is the time (timestamp) when the service response is

received from the Web service.

4.3.2 Accuracy

Accuracy is the level of accurate results that Web service can give to services re-

quests [23]. It is measured by the number of errors (error rate) produced for the

Web service over a period of time [9] [13]. Accuracy is concerned about the cor-

rectness of the service response, when accuracy value is close to one, it said to be

accurate, if it is close to zero, the Web service is not accurate; so it loses credibility

of its service consumers.

Accuracy is measured by the following equation:

Accuracy = 1− nFaults

totalRequest
(2)

Where nFaults is the number of errors returned for the Web service, and

totalRequest is the number of service requests sent to the Web service.

4.4 Monitors Generation

Two products (monitors) were generated using FlexMonitorWS Tool, with a dif-

ferent set of features. The first monitor called “PerfMonitor” was configured to

monitor the performance attribute, selecting the following features of the feature

model in Figure 3:

• Target: Service (operation: getPatients())

• Quality attribute: performance

• Operation Mode: invocation

• Frequency: 30 seconds

• Notification mode: WriteLogFile

The second monitor called “AccMonitor” was configured to monitor the accuracy

attribute, selecting the following features of the feature model in Figure 3:

• Target: Service (operation: getPatientName())

• Quality attribute: accuracy

• Operation Mode: invocation

• Frequency: 30 seconds

• Notification mode: WriteLogFile

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127 121



�

��

��

��

��

���

���

���

� � � � 	 � 
 � � �� �� ��

��
��
��
��

��	



������


���������������������

��
��������������������������������������������������� ��
����������������������������������������������������

��

���	

��

���	

��

���	

��

���	

� � � � 	 � 
 � � �� �� ��

 �
�!
��
��

�"
��
��
��
�


������


Fig. 5. Monitors executed in isolation.

4.5 Experiment Execution and Results Discussion

The experiment was executed in the following environment: Intel(R) Core(TM)2

Duo CPU 2.66 GHz processor, with 4.00 GB main memory, Windows 7 + SP1

system operating, and JDK 1.7. The monitors were hosted in this environment,

whilst the Web service was hosted in an Apache Tomcat 7.0 server installed on a

machine with the following configuration: AMD Phenom(tm) II P920 Quad-Core

1.60 GHz processor with 6,00 GB main memory, Windows 7 + SP1 as system

operating, using JDK 1.8.

In order to respond to our research questions, the experiment was executed in

these three different cases:

(i) “PerfMonitor” monitoring performance quality level over getPatients() opera-

tion.

(ii) “AccMonitor” monitoring accuracy quality level over getPatientName() oper-

ation.

(iii) “PerfMonitor” monitoring performance and “AccMonitor” monitoring accu-

racy over getPatients() operation and getPatientName() respectively at the

same time.

4.5.1 PerfMonitor Execution

“PerfMonitor” was executed over getPatients() operation of the PatientService Web

service to measure its performance quality level during 12 hours. Figure 5(a) shows

the average time by monitoring hour, time taken for the Web service to response a

request from the service consumer. Responding to our research question RQ1, we

notice that the response time has suffered an increase from 40 to 42 milliseconds,

with an average of 41.467 milliseconds.

4.5.2 AccMonitor Execution

“AccMonitor” was executed over getPatientName() operation of PatientService

Web service, to measure its accuracy quality level, during 12 hours. Figure 5(b)

shows the average accuracy percentage calculated by monitoring hour. The accuracy

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127122



�

��

��

��

��

���

���

���

� � � � 	 � 
 � � �� �� ��

��
��
��
��

��	



������


���	

��

���	

��

���	

��

���	

��

� � � � 	 � 
 � � �� �� ��

��
��

��
��

��
	


��
�


��

�������

����������
���������	��������� �����������������	���������

�������	��������������	��� ������	���������������	���

Fig. 6. “PerfMonitor” and “AccMonitor” executed in parallel.

remains 100% accurate over the entire time without suffering any fault, answering

our question RQ1.

4.5.3 PerfMonitor and AccMonitor: Parallel Execution

“PerfMonitor” and “AccMonitor” were executed over getPatients() and getPatient-

Name() operations, respectively, on PatientService Web service, in order to measure

its performance and accuracy quality levels, during 12 hours. Figure 6 shows the

average time to response a request and the average accuracy percentage by hour,

when both response time and accuracy are monitored in parallel. It is observed that

the response time attribute increases with regard to the previous execution. The

time to response was between 40.4 and 42.5 milliseconds.

Responding to our research question RQ2, one can argue that Accuracy qual-

ity level remains unchanged during the isolated monitoring and with performance

monitoring in parallel. In both cases the Web service was 100% accurate. This

guarantees its correct operation.

On the other hand, the performance quality level is affected when it is executed

with accuracy monitor in parallel. Responding to our research question RQ3, we

found a decrease of the quality value in 0.259 milliseconds in the performance.

Figure 7 shows the comparison by hour between these two executions. In order to

support the difference in the results, we have assessed the statistical significance

between “PerfMonitor” in isolation and “PerfMonitor” with “AccMonitor” results

by means of a per-query paired t-test with 95% of confidence. The results of paired

t-test confirms that the difference in performance is statistically significant. The

Web service presents statistically a better performance when it is monitored just

for “PerfMonitor”.

4.5.4 AccMonitor with Fault Injection: PerfMonitor and AccFaultMonitor

In order to perform some dependability measures and collect evidences our

assumption about the strong accuracy of PatientService, A third monitor was

generated using fault injection, “AccFaultMonitor”. XML injection [24] was used

to generate interface faults [5]. We have used two kinds of injection: Parameters

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127 123



��

����

��

����

��

����

�	

�	��

��

� 	 � � � 
 � � � �� �� �	

��
��

��
��
�	


�
��
��

�

�������

�������
��������������
���
�������
���

Fig. 7. Comparison of Performance quality level .

corruption injection and structure corruption injection. For example, we have

corrupted the patient code sent to getPatientName() operation as follows:

Fault 1:

<arg0>PAT-0239</arg0> to <arg0>9320-TAP</arg0>

We have also corrupted the XML structure of the request, inverting opening

and closing XML tags as follows:

Fault 2:

<arg0>PAT-0239</arg0> to </arg0>PAT-0239<arg0>

“AccFaultMonitor” was executed by 12 hours in parallel with “PerfMonitor”.

The parameters corruption injection was executed in the first 4 hours, structure

corruption injection for the next four hours, and in the last 4 hours, both parameter

and structure corruption injections were executed.

Figure 8(a) shows the average time by hour executed in parallel with “Acc-

FaultMonitor”. Performance continue suffering a degradation in its quality level as

in the previous experiment. Paired t-test between “PerfMonitor” in isolation and

“PerfMonitor” with “AccFaultMonitor” in 95% confidence confirms that the Web

service present statistically a better performance when performance is monitored

in isolation. This is because the Web service takes more time trying to interpret a

corrupted request, holding the processor for more time. This situation can reduce

the amount of resources needed for “PerfMonitor”, and therefore taking longer to

respond.

Figure 8(b) shows a comparison of the accuracy quality level in all tested

scenarios. The calculated percentage for accuracy with fault injection is also

displayed by monitoring hour. Corruption of the parameter values produced

java.lang.NullPointerException. This can be a reasonable behavior because

invalid data was sent to the Web service, but, on the other hand, it is not a good

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127124



��

����

��

����

��

����

�	

�	��

��

����

��

����

� 	 � � � 
 � � � �� �� �	

��
��

��
��

��
��

��
��

��

�	
�����

����	���	����������	���	�
����	���	�����������
���	���	�

����	���	�

�

	�

��


�

��

���

�	�

���

� 	 � � � 
 � � � �� �� �	

��
�


��
��

���
�

�	
�����

����	���	����������	���	�
�����
���	���	����������	���	�

����	���	�

�������	��������
��������������������������	�� �������
������
��������������������������	��

Fig. 8. Performance and Accuracy quality levels in all scenarios

response, because it is not an adequate response to the service consumer. Structure

corruption faults were all detected by the Web service, and it replied immediately

rejecting as a malformed SOAP message.

5 Conclusions

The quality of a service is out of control of whoever use the service and the behavior

of a Web service can change at runtime. Service consumer can not be aware about

these changes. Monitoring tools become an important mechanism for aware quality

and functional changes in a Web service. At the same time, monitoring tools can

become an intrusive agent for the quality of Web service. When it is pretended to

monitoring a Web service, we need to identify: what is our monitoring target? what

do we need to monitor?, how monitor it?, how often monitor it? and how notify

the monitoring results?.

It is necessary to pay attention to the monitor configuration for Web service

monitoring, because it can be the main reason for quality level degradation of Web

services. Instrumentation methods can bring more negative effect in quality degra-

dation, and agent methods are less negative in the quality of service. On the other

hand, Active monitoring (invocation) is an operation mode which produces quality

level degradation in Web services.

Our study has shown the relationship among response time and accuracy, and

conflict has been found between these two quality attributes when they are moni-

tored at the same time. Performance is the most affected quality attribute, because

a greater time is needed to response a service request when the accuracy is moni-

tored at the same time, the Web service server receives a higher number of requests.

Statistic tests confirmed this scenario. On the other hand, accuracy was not affected,

it remained unchanged all the time in both cases, monitoring in isolation and with

performance monitor in parallel.

Injection faults were added to the accuracy monitor to confirm the accuracy of

PatientService. Parameter and structure corruption injections were not accepted by

the Web service, although the exceptional responses were not adequate to the service

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127 125



consumers, it shows that our case study is highly accurate. However, performance

needed more time to respond to every request, decreasing, even more, its quality

level.

References

[1] Ameller, D. and X. Franch, “Service level agreement monitor (salmon)”, Seventh International
Conference on Composition-Based Software Systems (2008), 224–227.

[2] Apache Software Fundation, “Web/HTTP Test & Monitoring Tool” (2011),
URL:http://axis.apache.org.

[3] Balfagih, Z. and M. F. Hassan, “Quality model for web services from multi-stakeholders perspective”,
Proceedings of the 2009 International Conference on Information Management and Engineering, ser.
ICIME 09 (2009), 287-291.

[4] Baresi, L. and S. Guinea, “Towards dynamic monitoring of ws-bpel processes”, Proceedings of the Third
International Conference on Service-Oriented Computing, ser. ICSOC05 (2005), 269–282.

[5] Bessayah, F., A. Cavalli, W. Maja, E. Martins, and A. Valenti, “A fault injection tool for testing web
services composition”, Testing Practice and Research Techniques 6303 (2010), 137–146.

[6] Cabrera, O. and X. Franch, “A quality model for analysing web service monitoring tools”, Research
Challenges in Information Science (RCIS), 2012 Sixth International Conference (2012), 1–12.

[7] Choi, C. R. and H. Y. Jeong, A broker-based quality evaluation system for service selection according
to the qos preferences of users, Information Sciences 277 (2014), 553–566.

[8] Delgado, N., A. Gates, and S. Roach, A taxonomy and catalog of runtime software-fault monitoring
tools, IEEE Transactions on Software Engineering 30 (2004), 859–872.

[9] Franco, R. J., “FlexMonitorWS: uma solução para monitoração de serviços Web com foco em atributos
de QoS”, Masters thesis, Institute of Computing, University of Campinas, Campinas, Sao Paulo, Brazil,
2014.

[10] Franco, R. J., C. M. Rubira, and A. S. Nascimento, “FlexMonitorWS: uma solução para monitoração
de serviços Web com foco em atributos de QoS”, Congresso Brasileiro de Software: Teoria e Pratica,
CBSoft2014, 21th Sessão de Ferramentas 2 (2014), 101–108.

[11] Goldberg, W., “Web/HTTP Test & Monitoring Tool”, (2011). URL:http://www.webinject.org.

[12] Ladan, M. I., “Web services metrics: A survey and a classification,”, 2011 International Conference on
Network and Electronics Engineering IPCSIT 11 (2011), 93–98.

[13] Lee, K., J. Jeon, W. Lee, S.-H. Jeong, and S.-W. Park, “QoS for Web Services: Requirements and
Possible Approaches”, W3C Working Group Note 25 (2003),
URL:http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/.

[14] Ludwig, H., A. Dan, and R. Kearney, “Cremona: An architecture and library for creation and monitoring
of ws-agreements”, Proceedings of the 2nd International Conference on Service Oriented Computing,
ser. ICSOC 04 (2004), 65–74.

[15] Mairiza, D., D. Zowghi, and N. Nurmuliani, “Managing Conflict among Non-Functional Requirements”
12th Australian Workshop on Requirements Engineering (AWRE 2009), Sydney, Australia, 12 (2009).

[16] Metzger, A., S. Benbernou, M. Carro, M. Driss, G. Kecskemeti, R. Kazhamiakin, K. Krytikos, A. Mocci,
E. Di Nitto, B. Wetzstein, and F. Silvestri, “Analytical Quality Assurance” Service Research Challenges
and Solutions for the Future Internet 6500 (2010), 209–270.

[17] Moreira A., Rashid A., and J. Araujo, “Multi-dimensional separation of concerns in requirements
engineering,”, 13th IEEE International Conference on Requirements Engineering (RE ’05), Paris,
France, 2005.

[18] Neustar Webmetrics, “Web/HTTP Test & Monitoring Tool” (2011), URL:http://www.webmetrics.com.

[19] Oriol, M., J. Marco, and X. Franch, Quality models for web services: A systematic mapping, Information
and Software Technology 56 (2014), 1167–1182.

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127126

http://axis.apache.org
http://www.webinject.org
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.webmetrics.com


[20] Oskooei, M. A. and S. M. Daud, “Quality of service (QoS) model for web service selection”, Computer,
Communications, and Control Technology (I4CT), 2014 International Conference (2014), 266–270.

[21] Oskooei, M. A., S. B. M. Daud, and F. F. Chua, “Modeling quality attributes and metrics for web
service selection,”, AIP Conference Proceedings 1602 (2014), 945–952.

[22] Rajamony, R. and M. Elnozahy, “Measuring client-perceived response times on the WWW”,
Proceedings of the 3rd Conference on USENIX Symposium on Internet Technologies and Systems
3 (2001).

[23] Rajendran, T. and P. Balasubramanie, Analysis on the study of qos-aware web services discovery,
Journal of Computing 1 (2009), 119–130.

[24] Salas, M. I. P. and E. Martins, Security testing methodology for vulnerabilities detection of xss in web
services and ws-security, Electronic Notes in Theoretical Computer Science 302 (2014), 133–154.

[25] Wang, Q., Y. Liu, M. Li, and H. Mei, “An online monitoring approach for web services”, Computer
Software and Applications Conference COMPSAC 2007. 31st Annual International 1 (2007), 335–342.

[26] Zheng, Z., Y. Zhang, and M. Lyu, Investigating qos of real-world web services, IEEE Transactions on
Services Computing. 7 (1959), 32–39.

J. Zela Ruiz, C.M. Rubira / Electronic Notes in Theoretical Computer Science 321 (2016) 113–127 127


	Introduction
	Monitoring Tools and SOA
	Service-Oriented Architecture
	Web Service Monitoring Tools
	FlexMonitorWS Tool

	Quality of Service Conflict
	A Case Study: DCTR System
	Object of Study
	Purpose and Goals
	Quality Attributes
	Monitors Generation
	Experiment Execution and Results Discussion

	Conclusions
	References

