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a b s t r a c t

Let A1, . . . , Ah be finite non-empty subsets of a field K and let
sk(x1, . . . , xh) be the elementary symmetric polynomial of degree
k in h indeterminates. Here we present some estimates for the
cardinality of the sets of the images of all h-tuples of A1 × · · · × Ah
by the polynomial sk, with and without the restriction that the
elements of the h-tuples are pairwise distincts.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let

sk(x1, . . . , xh) =
∑

1≤i1<i2<···<ik≤h

xi1xi2 · · · xik (1)

be the elementary symmetric polynomial of degree k in h indeterminates, and let A1, . . . , Ah be finite
non-empty subsets of a field K . Let p = char(K) if char(K) > 0 or p = ∞ if char(K) = 0. Now define

Ωsk(A1, . . . , Ah) = {sk(a1, . . . , ah) | a1 ∈ A1, . . . , ah ∈ Ah} (2)

and

∆sk(A1, . . . , Ah) = {sk(a1, . . . , ah) | aj ∈ Aj and ai 6= aj if i 6= j}. (3)

In recent years, the problem of finding lower bounds for the cardinality of these two sets have
been studied by Dias da Silva and Godinho [5,6] and Caldeira [4] respectively, applying techniques
from multilinear algebra, inspired by the 1994 proof given by Dias da Silva and Hamidoune [7] of the
Erdős–Heilbronn conjecture. In 1996 Alon, Nathanson and Ruzsa [2] presented a new proof of this
conjecture but using an algebraic technique. An excellent survey on this theory and related topics can
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be found in [8,9]. Here we extend this algebraic method, giving similar results and generalizations to
those presented in [4–6], but in a much simpler setting. Let us start by recalling Alon’s Combinatorial
Nullstellensatz (the proof can be found in [1]).

Theorem 1.1. Let K be an arbitrary field, and let f = f (x1, . . . , xh) ∈ K [x1, . . . , xh] be a polynomial
of degree d =

∑h
i=1(ki − 1), where each ki is a non-negative integer, and suppose the coefficient of the

monomial xk1−11 · · · xkh−1h in f is nonzero. Then, if A1, . . . , Ah are subsets of K with |Ai| ≥ ki, i = 1, . . . , h,
then there exist a1 ∈ A1, . . . , ah ∈ Ah such that f (a1, . . . , ah) 6= 0.

Now let h ≥ 2, A1, . . . , Ah be subsets of K , and consider the polynomials

F(x1, . . . , xh),G(x1, . . . , xh) ∈ K [x1, . . . , xh].

Then define the set

ΩFG = ΩFG(A1, . . . , Ah)
= {F(a1, . . . , ah) | a1 ∈ A1, . . . , ah ∈ Ah, and G(a1, . . . , ah) 6= 0}.

Let |Ai| = ki for i = 1, . . . , h, and let t ∈ N be such that

t deg(F) ≤
h∑
i=1

ki − (h+ deg(G)) < (t + 1)deg(F).

We want to prove that, if t < |K | then

|ΩFG| ≥ t + 1. (4)

And for that we will choose, if necessary, subsets A∗i ’s of the sets Ai’s with |A
∗

i | = k
∗

i such that

t deg(F) =
h∑
i=1

k∗i − (h+ deg(G)), (5)

and then prove, sinceΩFG ⊇ ΩFG(A∗1, . . . , A
∗

h),

|ΩFG(A∗1, . . . , A
∗

h)| ≥ t + 1,

which in turn, proves (4).

Theorem 1.2 (Polynomial Method-coefficient). Take t and A∗1, . . . , A
∗

h as described above, and consider
the polynomial

H(x1, . . . , xh) = (F(x1, . . . , xh))tG(x1, . . . , xh)

of degree d =
∑h
i=1(k

∗

i − 1). Suppose the coefficient of the monomial x
k∗1−1
1 · · · x

k∗h−1
h in H(x1, . . . , xh) is

nonzero. Then |ΩFG(A∗1, . . . , A
∗

h)| ≥ t + 1.

Proof. Suppose |ΩFG(A∗1, . . . , A
∗

h)| ≤ t . Since by hypothesis t < |K |, we can choose a finite subset
E ⊂ K such thatΩFG ⊂ E e |E| = t . Now we define the polynomial

Ho(x1, . . . , xh) = G(x1, . . . , xh)
∏
e∈E

(F(x1, . . . , xh)− e)

of degree deg(G) + t deg(F) =
∑h
i=1 k

∗

i − h. Moreover, if (a1, . . . , ah) ∈ A1 × · · · × Ah, then either
G(a1, . . . , ah) = 0 or F(a1, . . . , ah) ∈ ΩFG ⊂ E. Thus Ho(a1, . . . , ah) = 0, for all (a1, . . . , ah) ∈
A1 × · · · × Ah. But

Ho(x1, . . . , xh) = H(x1, . . . , xh)+ ‘‘lower degree terms’’

and, by hypothesis, the coefficient of x
k∗1−1
1 · · · x

k∗h−1
h in H(x1, . . . , xh) is nonzero, which contradicts

Theorem 1.1. �
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Now let F(x1, . . . , xh) = sk(x1, . . . , xh), G1(x1, . . . , xh) = 1 (the constant polynomial) and
G2(x1, . . . , xh) = δ(x1, . . . , xh), where δ(x1, . . . , xh) =

∏
i>j(xi − xj), the Vandermonde polynomial.

With the notations of Theorem 1.2, we have (see (2) and (3))

ΩFG1 = Ωsk and ΩFG2 = ∆sk ,

hence, to find a lower bound for these sets, we need information about the coefficients of the
monomial xk1−11 · · · xkh−1h in the polynomials (sk)t · 1 and (sk)t · δ(x1, . . . , xh).

From now on, assume that k, h ∈ N with h ≥ 2 and k ≤ h and let n =
(
h
k

)
. As before, writing

|Ai| = ki for i = 1, . . . , h, we can define the numbers

` =


h∑
j=1
(kj − 1)

k

 and t =


h∑
j=1
(kj − j)

k

 (6)

and

M(s) =
(s+ n− 1)!([ s

n

]
!
)n−r (([ s

n

]
+ 1

)
!
)r
(n− 1)!

, (7)

where [x] is the integer part of x, and r = t − [t/n]n, so 0 ≤ r < n.
The main theorems proved in this paper are

Theorem 1.3. Let p > M(`), ` < |K | and assume 1 ≤ kj ≤ `+ 1 for j = 1, . . . , h, then

|Ωsk | ≥ `+ 1.

Theorem 1.4. Let p > M(t), t < |K | and assume ki 6= kj for i 6= j and 0 < ki ≤ t+h for all i = 1, . . . , h.
Then

|∆sk | ≥ t + 1.

Theorem1.3, in comparison to the results in [5,6] (especially Theorem3.1 in [6]), presents a slightly
stronger condition for the cardinalities of the sets Aj, but the condition on the characteristic of K is also
stronger. As pointed out in [6], the proof of Theorem 6 in [5] is not correct. An extra constraint was
introduced in Theorem 3.1 in [6], to guarantee the correctness of the proof. Theorem 1.4 is related to
the Erdős–Heilbronn conjecture proved in [7]. The following corollary generalizes a result obtained
by Caldeira in [4].

Corollary 1.5. Let A be a finite subset of K , with h ≤ |A| ≤ t + h, p > M(t) and t < |K |, then we have

|∆sk(A, . . . , A)| ≥
[
h(|A| − h)

k

]
+ 1. (8)

Proof. Let A1, . . . , Ah be subsets of A such that |Ai| = ki = |A| − (i − 1), for i ∈ {1, . . . , h} and note
that 1 ≤ ki ≤ t + h. Then

t =


h∑
i=1
ki −

(
h+1
2

)
k

 =


h∑
i=1
(|A| − (i− 1))−

(
h+1
2

)
k


=

h|A| −
(
h
2

)
−

(
h+1
2

)
k

 = [h(|A| − h)
k

]
.
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Now, it is easy to see that∆sk(A, . . . , A) ⊇ ∆sk(A1, . . . , Ah), which gives, by the Theorem 1.4,

|∆sk(A, . . . , A)| ≥
[
h(|A| − h)

k

]
+ 1. � (9)

2. Combinatorial results

As before, we are assuming h, k ∈ N, h ≥ 2 and k ≤ h.

Definition 2.1. Let c = (c1, . . . , ch) be a vector with non-negative integer coordinates and t ∈ N. A
kc-matrix of order t × h is a (0, 1)-matrix (aij) such that, for any i = 1, . . . , t,

∑h
j=1 aij = k and, for

any j = 1, . . . , h,
∑t
i=1 aij = cj. Denote byΘ(c, t) the set of all kc-matrices of order t × h.

Proposition 2.2. Given c = (c1, . . . , ch) with non-negative integer coordinates and t ∈ N, the set
Θ(c, t) is non-empty if, and only if, the vector c satisfies:

(i)
h∑
j=1

cj = kt;

(ii) 0 ≤ cj ≤ t, ∀j ∈ {1, . . . , h}.

(10)

Proof. If it does exist a kc-matrix, then the first condition follows from
h∑
j=1

cj =
h∑
j=1

[
t∑
i=1

aij

]
=

t∑
i=1

[
h∑
j=1

aij

]
=

t∑
i=1

k = kt

while the second condition corresponds to the fact that in each column there are at most t 1’s.
Conversely, if t = 1, the vector c has exactly k coordinates equals to 1 and h − k coordinates

equals to 0. Thus, the kc-matrix wanted coincides with the vector c. Let t ≥ 2 and suppose the
proposition is true for vectors c′ = (c ′1, . . . , c

′

h) ∈ Zh satisfying the conditions (10) for t ′ < r . Let
c = (c1, . . . , ch) ∈ Zh be a vector that satisfies

h∑
j=1

cj = kr and 0 ≤ cj ≤ r, ∀j ∈ {1, . . . , h}.

From the conditions above it follows that there are at most k coordinates of the vector c that are
equal to r and it is also important to note that at least k coordinates are positive. Thus take the k largest
coordinates of c, say cj1 , . . . , cjk , and define, for j = 1, 2, . . . , h

c ′j =
{
cj − 1 if j ∈ {j1, . . . , jk}
cj else.

Hence the vector c′ = (c ′1, . . . , c
′

h) ∈ Zh and satisfy the conditions (10) for t = r−1. By the induction
hypothesis, it does exist a kc′-matrix (aij) of order (r − 1)× h. Consider the matrix (bij) of order r × h
such that bij = aij for any 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ h and

brj =
{
1 if j ∈ {j1, . . . , jk}
0 else.

Now it is simple to see that the matrix (bij) is a kc-matrix of order r × h.1 �

1 The Proof of this proposition can also be done by the direct use of the Ford–Fulkerson or Gale–Ryser’s characterization of
the (0, 1)-matrices (see [3]).
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Let Γ be the set of all (0, 1)-vectors (b1, . . . , bh) ∈ Zh, such that
∑h
i=1 bi = k. Then |Γ | = n =

(
h
k

)
and let us write Γ = {β1, . . . , βn}. It is clear that any row vector of a kc-matrix is an element of Γ .
From now on, we assume that all the considered vectors c satisfy the conditions (10). Let t ∈ N

and St be the permutation group of the set {1, . . . , t}. Now define an action of this group on Θ(c, t)
by σA = (aσ(i)j), for σ ∈ St and A = (aij) ∈ Θ(c, t). Let X ⊂ Θ(c, t) be an orbit under the action of
St over Θ(c, t), and let A ∈ Θ(c, t) be a representative of X . Also let ti, with i = 1, 2, . . . , n, be the
number (ti can be zero) of rows of A that are equal to the vector βi ∈ Γ (see above). First observe that
all kc-matrices in the orbit X have the same values for t1, . . . , tn, and note that

n∑
i=1

tiβi = c, (11)

and, since A has t rows, we have
t1 + t2 + · · · + tn = t. (12)

This establish an 1–1 correspondence between the set of orbits in Θ(c, t) and the set of all non-
negative integral solutions of the Eq. (12) with the restriction (11). Thus, an upper bound for the
numberw of orbits is

ω ≤
(t + n− 1)!
t!(n− 1)!

, (13)

the number of non-negative solutions of (12). It follows from the definition of the action of St that the
rows of any kc-matrix in the orbit X are permutations of the rows of A, then the cardinality of X is
equal to

|X | =
t!

t1! · · · tn!
, (14)

the number of permutations with repetitions of the t rows of A. Since the orbits are disjoint, we have
proved that

Theorem 2.3.

|Θ(c, t)| =
∑

t1+···+tn=t
t1β1+···+tnβn=c

t!
t1! · · · tn!

,

where the sum runs over all n-tuples (t1, . . . , tn) of non-negative integers with the restrictions given in
(11) and (12).

We want to present an estimate for the number |Θ(c, t)|.

Lemma 2.4. Let t ≥ 0, n ≥ 1 and let t1, . . . , tn be non-negative integers such that t1 + · · · + tn = t,
and write t = nq+ r, with 0 ≤ r < n. Then

(q!)n−r · ((q+ 1)!)r ≤ t1! · t2! · · · tn!. (15)

Proof (Induction on t). The case t ≤ 1 is trivial. Let us suppose that t ′1 + · · · + t
′
n = t + 1 and

t ′1 ≤ t
′

2 ≤ · · · ≤ t
′
n. Since t

′

1 + · · · + t
′

n−1 + (t
′
n − 1) = t , it follows from the induction hypothesis that

(q!)n−r · ((q+ 1)!)r ≤ t ′1! · · · t
′

n−1! · (t
′

n − 1)!.

Observe that t ′n > q, otherwise we would have t ≥ nq ≥ nt
′
n ≥ t

′

1 + · · · + t
′
n = t + 1. Hence

(q!)n−r · ((q+ 1)!)r+1 ≤ t ′1! · · · t
′

n−1! · t
′

n!.

Since t = qn+ r , then either t + 1 = qn+ (r + 1) or t + 1 = n(q+ 1) (when r = n− 1). In any case,
writing t + 1 = q′n+ r ′, one has

(q′!)n−r
′

· ((q′ + 1)!)r
′

≤ t ′1! · · · t
′

n−1! · t
′

n!. �
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Recalling (14) and using the lemma above, we have

|X | =
t!

t1! · · · tn!
≤

t!
(q!)n−r((q+ 1)!)r

. (16)

Now the estimates (13), (16) and Theorem 2.3 give us

Proposition 2.5. Let k, h, t ∈ Z with 1 ≤ k ≤ h and t ≥ 1, let n =
(
h
k

)
and c = (c1, . . . , ch) ∈ Zh.

Writing r = t − [t/n]n, so 0 ≤ r < t, we have

|Θ(c, t)| ≤
(t + n− 1)!([ t

n

]
!
)n−r (([ t

n

]
+ 1

)
!
)r
(n− 1)!

. (17)

2.1. k-paths in Zh

Definition 2.6. Let a, b ∈ Zh. A k-path in Zh from a to b is a finite sequence of lattice points
a = v0, v1, . . . , vt = b such that vj − vj−1 ∈ Γ for all j = 1, 2, . . . , t . Let us denote by Pk(a, b)
the number of k-paths from a to b.
Obviously

Pk(a, b) = Pk(0, b− a), ∀a, b ∈ Zh. (18)
Note that a necessary condition for the existence of a k-path from the origin to the vector c =

(c1, . . . , ch) ∈ Zh is that c has all its coordinates non-negative. In this case, we say the vector c is
non-negative.
There is an interesting relation between the kc-matrices and the k-paths from the origin to c.

Let c be a non-negative vector of Zh and suppose there is a k-path, 0 = v0, v1 = v0 + βi1 , . . . ,
vt = vt−1 + βit = c, from the origin to c. Then c = βi1 + · · · + βit , thus the matrix At×h whose row-
vectors are the vectors βi1 , βi2 , . . . , βit is a kc-matrix. Conversely, for any kc-matrix At×h, if we denote
βim = mth row of the matrix A, then the sequence 0 = v0, v0 + βi1 = v1, . . . , vt−1 + βit = vt = c is
a k-path from the origin to c. Thus

Pk(0, c) = |Θ(c, t)|. (19)

Proposition 2.7. Given k, h ∈ Z with 1 ≤ k ≤ h and c = (c1, . . . , ch) ∈ Zh, there exist a k-path from
the origin to c if, and only if, there exists t ∈ N such that

∑h
j=1 cj = kt and 0 ≤ cj ≤ t for all j = 1, . . . , h.

Proof. It is an immediate consequence of (19) and of the Proposition 2.2. �

If 0 = v0, v1, . . . , vt = c is a k-path from the origin to c, with t ≥ 1, then vt−1 = c − βi for some
i ∈ {1, . . . , n}, and there is only one k-path from c− βi to c. Thus

Pk(0, c) =
n∑
i=1

Pk(0, c− βi). (20)

Definition 2.8. A vector c = (c1, . . . , ch) ∈ Zh is said to be ordered if 0 ≤ c1 ≤ · · · ≤ ch and strictly
ordered if 0 ≤ c1 < · · · < ch. The k-path 0 = v0, v1, . . . , vt = c will be called an increasing path if
all the vectors vj are ordered vectors.
Let Bk(c) = Bk(c1, . . . , ch) be the number of increasing k-paths from the origin to c. By definition

Bk(0, . . . , 0) = 1.

Proposition 2.9. For k, h ∈ Z with 1 ≤ k ≤ h and c = (c1, . . . , ch) ∈ Zh, there exists an increasing
k-path from the origin to c if, and only if, the vector c is ordered and there is t ∈ N such that

∑h
j=1 cj = kt

and 0 ≤ cj ≤ t for all j = 1, . . . , h.
Proof. If Bk(c) > 0 then Proposition 2.7 gives the conditions stated at the enunciate, and the vector c
is ordered because all the vectors in an increasing k-path are ordered.
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Conversely, let c = (c1, . . . , ch) be an ordered vector and t ∈ N for which the conditions of
the enunciate of the proposition hold. If t = 1, then c ∈ Γ , and 0 = v0, v1 = c is an increasing
k-path. Now, following the ideas presented in the proof of Proposition 2.2, we could choose the k
largest coordinates of c and subtract 1 of each one of these coordinates, to produce a new vector c′
satisfying the conditions of the proposition for t ′ = t − 1. But this c′ is not necessarily ordered, so we
will choose these k coordinates in the following way: rewrite

c = (b1, . . . , b1︸ ︷︷ ︸
s1

, b2, . . . , b2︸ ︷︷ ︸
s2

, . . . , br , . . . , br︸ ︷︷ ︸
sr

),

where h = s1+· · ·+sr and bi < bi+1. Now suppose k = sr+sr−1+· · ·+sr−j+s, with 0 ≤ s < sr−(j+1).
Now choose the sr + · · · + sr−j final coordinates of c, plus the first s coordinates of the r − (j+ 1)-th
block of equal coordinates br−(j+1). This will guarantee that the vector c′ is also ordered, hence there
is an increasing k-path from the origin to c′ (induction hypothesis), and since c − c′ = β ∈ Γ , there
is also an increasing k-path from the origin to c. �

Given an ordered vector c ∈ Zh, for each βi ∈ Γ , there exist, at most, one increasing k-path from
c− βi to c, and when such a k-path does not exist, we have that c− βi is not an ordered vector, so, by
the Proposition 2.9, Bk(c− βi) = 0. Thus, the number Bk(c) satisfies

Bk(c) =
n∑
i=1

Bk(c− βi), (21)

which, together with the initial condition Bk(0, 0, . . . , 0) = 1, determines completely the number
Bk(c).

Definition 2.10. Let a∗ = (0, 1, 2, . . . , h − 1). The k-path a∗ = v0, v1, . . . , vt = c from a∗ to c is
called strictly increasing if all the vectors vj are strictly ordered.

Let B̂k(c) = B̂k(c1, . . . , ch) be the number of strictly increasing k-paths from a∗ to c. By definition
B̂k(0, 1, . . . , h− 1) = 1.

Proposition 2.11. For k, h ∈ Z with 1 ≤ k ≤ h and c = (c1, . . . , ch) ∈ Zh there exist a strictly
increasing k-path from a∗ to c if, and only if, c is a strictly ordered vector and there exist a t ∈ N such that∑h
j=1 cj = kt +

(
h
2

)
and j− 1 ≤ cj ≤ t + j− 1, for all j = 1, . . . , h.

Proof. Observe that a vector v = (v1, . . . , vh) is strictly ordered if, and only if, the vector v′ = v− a∗
is ordered, and we have that a∗ = v0, v1, . . . , vt = c is a strictly increasing k-path from a∗ to c if, and
only if, 0 = v0 − a∗, v1 − a∗, . . . , vt − a∗ = c− a∗ is an increasing k-path from the origin to c− a∗.
Thus,

B̂k(c1, . . . , ch) = Bk(c1, c2 − 1, . . . , ch − (h− 1)). (22)

Now the conclusion of this proof follows from (22) and Proposition 2.9, since 0+1+2+· · ·+(h−1) =(
h
2

)
. �

Now (21) and (22) give

Proposition 2.12.

B̂k(c) =
n∑
i=1

B̂k(c− βi). (23)

3. The coefficients of (sk(x))t

Let sk(x1, . . . , xh) be the kth elementary symmetric polynomial described in (1). Since each
monomial of sk is the product of exactly k indeterminates among the h possible ones, we have
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sk(x1, . . . , xh) =
n∑
j=1

x
βj1
1 x

βj2
2 · · · x

βjh
h , (24)

where βj = (βj1, . . . , βjh) ∈ Γ .

Theorem 3.1. For all t ≥ 0,

(sk(x1, . . . , xh))t =
∑
c∈C(t)

Pk(0, c)x
c1
1 x
c2
2 · · · x

ch
h ,

where Pk(0, c) is the number of k-paths from the origin to c, and

C(t) = {c = (c1, . . . , ch) ∈ Zh | 0 ≤ cj ≤ t and c1 + · · · + ch = kt}.

Proof. The proof is by induction on t . For t = 0, we have C(0) = {0}. Then, both sides of the equality
are equal to 1. Assume that the theorem is true for some t ≥ 1. Since each element in C(t + 1) can be
written as the sumof one element ofC(t)with one element ofΓ , we can use the induction hypothesis,
Proposition 2.7 and the Eq. (20) to show

(sk(x))t+1 = sk(x) · (sk(x))t

=

(
n∑
j=1

x
βj1
1 · · · x

βjh
h

)(∑
c∈C(t)

Pk(0, c)x
c1
1 x
c2
2 · · · x

ch
h

)

=

∑
c∈C(t)

n∑
j=1

Pk(0, c)x
c1+βj1
1 x

c2+βj2
2 · · · x

ch+βjh
h

=

∑
b∈C(t+1)

(
n∑
j=1

Pk(0, b− βj)

)
xb11 x

b2
2 · · · x

bh
h

=

∑
b∈C(t+1)

Pk(0, b)x
b1
1 x
b2
2 · · · x

bh
h . �

4. The coefficients of (sk(x))t · δ(x)

It is well known that the Vandermonde polynomial

δ(x1, . . . , xh) =
∏

1≤i<j≤h

(xj − xi), (25)

can also be written as

δ(x1, . . . , xh) =
∑
σ∈Sh

sign(σ )xσ(0)1 xσ(1)2 · · · xσ(h−1)h , (26)

where Sh is the permutation group of the integers {0, 1, . . . , h− 1}.
Note that (sk(x))t · δ(x) is a homogeneous polynomial of degree

deg((sk)tδ) = t · deg(sk)+ deg(δ) = kt +
(
h
2

)
. (27)

Moreover, since the degree of each indeterminate in sk is at most 1 and in δ is at most h−1, the degree
in each indeterminate in (sk)tδ is at most t + h− 1.
Let

T (t) =

{
(s1, . . . , sh) ∈ Zh|0 ≤ s1 < · · · < sh ≤ t + h− 1 and

h∑
i=1

si = kt +
(
h
2

)}
,
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and note that if (s1, . . . , sh) ∈ T (t), then

j− 1 ≤ sj ≤ t + j− 1, ∀j ∈ {1, . . . , h}. (28)

Proposition 4.1. For each (s1, . . . , sh) ∈ T (t + 1), there exist (t1, . . . , th) ∈ T (t) and β =
(β1, . . . , βh) ∈ Γ such that (s1, . . . , sh) = (t1 + β1, . . . , th + βh).

Proof. Take s = (s1, . . . , sh) ∈ T (t + 1). It follows from the definition and (28) that

0 ≤ si − (i− 1) ≤ t + 1, for all i ∈ {1, . . . , h} and
h∑
i=1

[si − (i− 1)] = k(t + 1).

Thus, there are at least k coordinates si such that si − (i− 1) ≥ 1 and there are at most k coordinates
sj such that sj − (j − 1) = t + 1. Because the vector s is strictly ordered, if sio − (io − 1) ≥ 1 then
sj − (j − 1) ≥ 1, for all j ≥ i0, and if sjo − (jo − 1) = t + 1, then sj − (j − 1) = t + 1 for all
j ≥ jo. Let J be the subset of all indices j such that sj − (j − 1) = t + 1. Observe that either J = ∅
or |J| = r and J = {h − (r − 1), h − (r − 2), . . . , h}. Hence there are still k − r indices j such that
1 ≤ sj − (j − 1) < t + 1. Let m be the smallest index such that sm − (m − 1) < t + 1 and define
I = {m,m + 1, . . . ,m + k − (r + 1)}, hence |I| = k − r (if k = r then take I = ∅). By definition
I ∩ J = ∅, so |I ∪ J| = |I| + |J| = k. Now define

ti =
{
si − 1 if i ∈ I ∪ J
si otherwise.

It follows from the definitions of ti and the set I that 0 ≤ ti − (i − 1) ≤ t . Now let i, j ∈ {1, . . . , h}
with i < j. We want to prove that ti < tj, so the only case to consider is when ti = si and tj = sj − 1,
that is, when i 6∈ I ∪ J and j ∈ I ∪ J . If j ∈ I then we have tj = sj − 1 ≥ j− 1 and since i < mwe have
si = (i− 1) < (j− 1) for i < j. If j ∈ J then tj − (j− 1) = t , but ti − (i− 1) = si − (i− 1) ≤ t . Hence
ti− i ≤ tj− j, and so ti < tj. Therefore t = (t1, . . . , th) ∈ T (t), and we may write s− t = β ∈ Γ . �

It is important to observe that if one takes r ∈ T (t) and β ∈ Γ , then r+ β may not be a vector of
T (t + 1). And this happens when there are equal coordinates in the vector r+ β . Since r is a strictly
ordered vector and β is a (0, 1)-vector, the vector r+β can have many pairs of equal coordinates, but
one can never find three equal coordinates in this vector.

Definition 4.2. A vector (x1, . . . , xh) ∈ Zh is said to bem-paired if among its coordinates one can find
m pairs of equal coordinates, but never three indices io, i1, i2 such that xio = xi1 = xi2 .

Define an action of Sh in Zh by, for any σ ∈ Sh, σ(x) = σ(x1, . . . , xh) = (xσ(1), . . . , xσ(h)). And let
Hx be the stabilizer subgroup of x in Sh, that is, σ(x) = x for σ ∈ Hx.

Proposition 4.3. Let x ∈ Zh be anm-paired vector. Then Hx is an abelian subgroup of order 2m, generated
by m transpositions. Furthermore, in Hx, the number of even permutations is equal to the number of odd
permutations.

Proof. Since x is m-paired, there are m obvious transpositions τ1, . . . , τm such that τi(x) = x. Also
observe that thesem pairs are all disjoint, so these permutations commute, that is, τi ◦ τj = τj ◦ τi. On
the other hand, if σ ∈ Hx then it must permute only some of these equal pairs of coordinates, hence
σ = τ

ε1
1 ◦ τ

ε2
2 ◦ · · · ◦ τ

εm
m , with εi ∈ {0, 1}, and therefore |Hx| = 2m.

A permutation σ ∈ Hx is even if it can be written as a product of an even number of transpositions.
And, in Hx, the number of permutations σ = τ

ε1
1 ◦ · · · ◦ τ

εm
m that is exactly the product of i of these

transpositions is equal to
(m
i

)
. Since

m∑
i=0

(−1)i
(m
i

)
= (1− 1)m = 0,

it follows that the number of even permutations inHx is equal to the number of odd permutation. �
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For simplicity we indicate the monomial xv11 · · · x
vh
h by x

v. Thus, (24) and (26) can be written as

sk(x) =
n∑
j=1

xβj (29)

and, with a∗ = (0, 1, 2, . . . , h− 1),

δ(x) =
∑
σ∈Sh

sign(σ )xσ(a
∗) (30)

where Sh is the group of permutations of the integers {0, . . . , h− 1}.

Theorem 4.4. For all t ≥ 0,

(sk(x))t · δ(x) =
∑
σ∈Sh

∑
c∈T (t)

sign(σ )B̂k(c)xσ(c).

Proof (Induction on t). For t = 0 it is easy to see that T (0) = {a∗} and B̂k(a∗) = 1, and it follows from
(30).
Now, by the induction hypothesis,

(sk(x))t+1 · δ(x) = sk(x) · (sk(x))t · δ(x)

=

(
n∑
j=1

xβj
)(∑

σ∈Sh

∑
c∈T (t)

sign(σ )B̂k(c)xσ(c)
)

=

∑
σ∈Sh

sign(σ )
∑

c∈T (t)

n∑
j=1

B̂k(c)xσ(c)+βj

=

∑
σ∈Sh

sign(σ )
∑

c∈T (t)

n∑
i=1

B̂k(c)xσ(c+βi), (31)

since there is a unique i ∈ {1, . . . , n} such that βj = βσ(i) and then we have

σ(c)+ βj = σ(c)+ βσ(i) = σ(c+ βi).
Let us define the auxiliary set

T(t) =

{
(s1, . . . , sh) ∈ Zh|0 ≤ s1 ≤ · · · ≤ sh ≤ t + h− 1 and

h∑
i=1

si = kt +
(
h
2

)}
.

Observe that for any c = (c1, . . . , ch) ∈ T (t), and for any βi ∈ Γ , we have c+ βi = b ∈ T(t + 1).
It might be the case that, for some b ∈ T(t + 1) and some β ∈ Γ , one has b − β 6∈ T (t), but in this
case Proposition 2.11 says that B̂k(b− βj) = 0. Hence we may rewrite (31) as

(sk(x))t+1 · δ(x) =
∑
σ∈Sh

sign(σ )
∑

b∈T(t+1)

n∑
j=1

B̂k(b− βj)xσ(b). (32)

Since T (t + 1) ⊂ T(t + 1), we may write the RHS of (32) as

=

∑
σ∈Sh

sign(σ )

{ ∑
b∈T (t+1)

n∑
j=1

B̂k(b− βj)xσ(b) +
∑

b∈T(t+1)\T (t+1)

n∑
j=1

B̂k(b− βj)xσ(b)
}

=

∑
σ∈Sh

sign(σ )
∑

b∈T (t+1)

(
n∑
j=1

B̂k(b− βj)

)
xσ(b)

+

∑
b∈T(t+1)\T (t+1)

n∑
j=1

∑
σ∈Sh

sign(σ )B̂k(b− βj)xσ(b). (33)
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Now, by (23) we have that (33) becomes∑
σ∈Sh

sign(σ )
∑

b∈T (t+1)

B̂k(b)xσ(b) +
∑

b∈T(t+1)\T (t+1)

n∑
j=1

∑
σ∈Sh

sign(σ )B̂k(b− βj)xσ(b)

and so, it is enough to show that∑
b∈T(t+1)\T (t+1)

n∑
j=1

∑
σ∈Sh

sign(σ )B̂k(b− βj)xσ(b) = 0. (34)

Take b ∈ T(t+1)\T (t+1), thus b = (b1, . . . , bh) is not a strictly ordered vector, so it must have
equal coordinates. If b has at least three equal coordinates, say bu = bv = bw , with u < v < w, then
the vector b − β cannot be strictly ordered, for we would need to have bu − 1 < bv − 1 < bw − 1,
which is impossible. Hence, Proposition 2.11 guarantees, in this case, B̂k(b− β) = 0.
Now suppose b is m-paired. Let {σ1, . . . , σr} ⊂ Sh be one of the largest sets of permutations such

that σi(b) 6= σj(b) for i 6= j. Hence we can write Sh as a disjoint union of sets

Sh = H1 ∪ · · · ∪Hr ,

whereHi = {δ ∈ Sh | δ(b) = σi(b)}, for i = 1, . . . , r .
Observe that there is an 1–1 correspondence between the set Hi and the set Hσi(b), the stabilizer

of σi(b), given by

δ ∈ Hi 7−→ δ ◦ σ−1i ∈ Hσi(b) and γ ∈ Hσi(b) 7−→ γ ◦ σi ∈ Hi.

Hence, for every δ ∈ Hi, there is a γ ∈ Hσi(b) such that δ = γ ◦ σi. Then one has∑
σ∈Sh

sign(σ )B̂k(b− βj)xσ(b) =
r∑
u=1

∑
δ∈Hu

sign(δ)B̂k(b− βj)xδ(b)

=

r∑
u=1

∑
γ∈Hσu(b)

sign(γ ◦ σu)B̂k(b− βj)xγ ◦σu(b)

=

r∑
u=1

sign(σu)B̂k(b− βj)xσu(b)
∑

γ∈Hσu(b)

sign(γ ),

since γ (σu(b)) = σu(b). Now we can use Proposition 4.3 to conclude that∑
γ∈Hσu(b)

sign(γ ) = 0,

which proves (34). �

5. Proofs of the main theorems

We are assuming `, t andM(s) as defined in (6) and (7).

Proof of Theorem 1.3. As mentioned in (5), we may assume

` =

h∑
i=1
(ki − 1)

k
. (35)

And according to Theorem 1.2, in order to obtain the result above, it is sufficient to prove that
the coefficient of the monomial xk1−11 xk2−12 · · · xkh−1h in (sk(x))` is nonzero in K . Now it follows from
Theorem 3.1 that the coefficient of xk1−11 · · · xkh−1h is Pk(0, c), with c = (k1 − 1, . . . , kh − 1). By the
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hypothesis and (35) we have
h∑
i=1

(ki − 1) = k` and 0 ≤ kj − 1 ≤ `,

hence we can apply Proposition 2.7 to conclude that Pk(0, c) 6= 0 as a natural number. On the other
hand, from (17) and (19) it follows that

Pk(0, c) = |Θ(c, `)| ≤ M(`) < p

by the hypothesis of the theorem. Therefore this coefficient is also nonzero in the field K . �

5.1. Proof of Theorem 1.4

We are assuming p > M(t), ki 6= kj for i 6= j and 1 ≤ ki ≤ t + h, for any i = 1, . . . , h (see (6)).
Hence we may write

1 ≤ k1 < k2 < · · · < kh ≤ t + h. (36)

Lemma 5.1. Under the conditions above, it always possible to find k∗1, . . . , k
∗

h such that k
∗

j < kj, for
j = 1, . . . , h, 1 ≤ k∗1 < k

∗

2 < · · · < k
∗

h and

t =


h∑
j=1
(kj − j)

k

 =
h∑
j=1
(k∗j − j)

k
. (37)

Proof. Let sj = kj − j. Then, it follows from (37) that 0 ≤ s1 ≤ · · · ≤ sh. Let us write
h∑
j=1

sj = M = kt + r,

0 ≤ r < k. The proof will follow from the fact that it is always possible to find 0 ≤ s∗1 ≤ · · · ≤ s
∗

h such
that

h∑
j=1

s∗j = M − i,

for 0 ≤ i ≤ r , for then, with i = r , we can take k∗j = s
∗

j + j. The case i = 0 is obvious, and for i > 1, it
follows by a trivial induction on i. �

Proof of Theorem 1.4. According to Lemma 5.1, taking subsets of the sets Aj’s if necessary, we may
assume

1 ≤ k1 < k2 < · · · < kh and
h∑
j=1

(kj − j) = kt. (38)

It follows from Theorem 1.2 that it is enough to prove that the coefficient of xk1−11 · · · xkh−1h in the
product (sk)tδ is nonzero in K .
Now consider the vector c = (k1 − 1, . . . , kh − 1), and observe that c is a strictly ordered vector

such that, by the hypothesis and (38),

j− 1 ≤ kj − 1 ≤ t + (j− 1) and
h∑
j=1

(kj − 1) =
h∑
j=1

(kj − j)+
(
h
2

)
= kt +

(
h
2

)
.
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In this casewe canuse Theorem4.4 andProposition 2.11 to conclude that the coefficient is, inmodulus,
the number B̂k(c)which is nonzero as a natural number. But since (see (17) and (19))

0 < B̂k(c) ≤ Pk(a∗, c) = Pk(0, c− a∗) = |Θ(c− a∗, t)| ≤ M(t) < p

the coefficient is also nonzero in K . �

6. Some examples

Wewould like to present some simple examples for which the lower bounds in Theorems 1.3 and
1.4 are reached.

Example 6.1. If A1 = {a1}, A2 = {a1, a2}, A3 = {a1, a2, a3}, . . . , Ah = {a1, a2, a3, . . . , ah}, then the
lower bound in the Theorem 1.4 is attained:

|∆sk(A1, . . . , Ah)| = 1 =


h∑
i=1
i−

(
h+1
2

)
k

+ 1.

Example 6.2. Let h = 3, k = 2, A1 = {−a, 0, a}, A2 = {−a, 0, a, b} and A3 = {−b,−a, 0, a, b}. Since

s2(x1, x2, x3) = x1x2 + x1x3 + x2x3

we have

|∆s2(A1, A2, A3)| =
[
1
2

(
3+ 4+ 5−

3× 4
2

)]
+ 1 = 4,

and taking A1 = A

|Ωsk(A, A, A)| =


h∑
j=1
kj − h

k

+ 1 = 4.
It would be interesting to find if there is any structure for the sets for which these bounds are

attained (the critical sets).
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