

Addition of sets via symmetric polynomials — A polynomial method

H. Godinho, O.R. Gomes

Departamento de Matemática, Universidade de Brasília, Brazil

ARTICLE INFO

Article history: Received 26 November 2008 Accepted 10 October 2009 Available online 24 November 2009

ABSTRACT

Let A_1, \ldots, A_h be finite non-empty subsets of a field K and let $s_k(x_1, \ldots, x_h)$ be the elementary symmetric polynomial of degree k in h indeterminates. Here we present some estimates for the cardinality of the sets of the images of all h-tuples of $A_1 \times \cdots \times A_h$ by the polynomial s_k , with and without the restriction that the elements of the h-tuples are pairwise distincts.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let

$$s_k(x_1, \dots, x_h) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le h} x_{i_1} x_{i_2} \cdots x_{i_k}$$
(1)

be the elementary symmetric polynomial of degree k in h indeterminates, and let A_1, \ldots, A_h be finite non-empty subsets of a field K. Let p = char(K) if char(K) > 0 or $p = \infty$ if char(K) = 0. Now define

$$\Omega_{s_k}(A_1, \dots, A_h) = \{ s_k(a_1, \dots, a_h) \mid a_1 \in A_1, \dots, a_h \in A_h \}$$
(2)

and

$$\Delta_{s_k}(A_1,\ldots,A_h) = \{s_k(a_1,\ldots,a_h) \mid a_i \in A_i \text{ and } a_i \neq a_i \text{ if } i \neq j\}.$$
(3)

In recent years, the problem of finding lower bounds for the cardinality of these two sets have been studied by Dias da Silva and Godinho [5,6] and Caldeira [4] respectively, applying techniques from multilinear algebra, inspired by the 1994 proof given by Dias da Silva and Hamidoune [7] of the Erdős–Heilbronn conjecture. In 1996 Alon, Nathanson and Ruzsa [2] presented a new proof of this conjecture but using an algebraic technique. An excellent survey on this theory and related topics can

E-mail address: hemar@unb.br (H. Godinho).

^{0195-6698/\$ –} see front matter $\mbox{\sc 0}$ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2009.11.002

be found in [8,9]. Here we extend this algebraic method, giving similar results and generalizations to those presented in [4–6], but in a much simpler setting. Let us start by recalling Alon's *Combinatorial Nullstellensatz* (the proof can be found in [1]).

Theorem 1.1. Let *K* be an arbitrary field, and let $f = f(x_1, ..., x_h) \in K[x_1, ..., x_h]$ be a polynomial of degree $d = \sum_{i=1}^{h} (k_i - 1)$, where each k_i is a non-negative integer, and suppose the coefficient of the monomial $x_1^{k_1-1} \cdots x_h^{k_h-1}$ in *f* is nonzero. Then, if $A_1, ..., A_h$ are subsets of *K* with $|A_i| \ge k_i$, i = 1, ..., h, then there exist $a_1 \in A_1, ..., a_h \in A_h$ such that $f(a_1, ..., a_h) \ne 0$.

Now let $h \ge 2, A_1, \ldots, A_h$ be subsets of *K*, and consider the polynomials

$$F(x_1,\ldots,x_h), G(x_1,\ldots,x_h) \in K[x_1,\ldots,x_h].$$

Then define the set

$$\Omega_{FG} = \Omega_{FG}(A_1, \dots, A_h)$$

= {F(a_1, \dots, a_h) | a_1 \in A_1, \dots, a_h \in A_h, and G(a_1, \dots, a_h) \neq 0}

Let $|A_i| = k_i$ for i = 1, ..., h, and let $t \in \mathbb{N}$ be such that

$$t \deg(F) \le \sum_{i=1}^{h} k_i - (h + \deg(G)) < (t+1)\deg(F)$$

We want to prove that, if t < |K| then

$$|\Omega_{\rm FG}| \ge t+1. \tag{4}$$

And for that we will choose, if necessary, subsets A_i^* 's of the sets A_i 's with $|A_i^*| = k_i^*$ such that

$$t \deg(F) = \sum_{i=1}^{h} k_i^* - (h + \deg(G)),$$
(5)

and then prove, since $\Omega_{FG} \supseteq \Omega_{FG}(A_1^*, \ldots, A_h^*)$,

$$|\Omega_{FG}(A_1^*,\ldots,A_h^*)| \ge t+1,$$

which in turn, proves (4).

Theorem 1.2 (Polynomial Method-coefficient). Take t and A_1^*, \ldots, A_h^* as described above, and consider the polynomial

$$H(x_1,\ldots,x_h)=(F(x_1,\ldots,x_h))^tG(x_1,\ldots,x_h)$$

of degree $d = \sum_{i=1}^{h} (k_i^* - 1)$. Suppose the coefficient of the monomial $x_1^{k_1^* - 1} \cdots x_h^{k_h^* - 1}$ in $H(x_1, \dots, x_h)$ is nonzero. Then $|\Omega_{FG}(A_1^*, \dots, A_h^*)| \ge t + 1$.

Proof. Suppose $|\Omega_{FG}(A_1^*, ..., A_h^*)| \le t$. Since by hypothesis t < |K|, we can choose a finite subset $E \subset K$ such that $\Omega_{FG} \subset E \in |E| = t$. Now we define the polynomial

$$H_o(x_1,\ldots,x_h)=G(x_1,\ldots,x_h)\prod_{e\in E}(F(x_1,\ldots,x_h)-e)$$

of degree deg(*G*) + *t* deg(*F*) = $\sum_{i=1}^{h} k_i^* - h$. Moreover, if $(a_1, \ldots, a_h) \in A_1 \times \cdots \times A_h$, then either $G(a_1, \ldots, a_h) = 0$ or $F(a_1, \ldots, a_h) \in \Omega_{FG} \subset E$. Thus $H_0(a_1, \ldots, a_h) = 0$, for all $(a_1, \ldots, a_h) \in A_1 \times \cdots \times A_h$. But

$$H_o(x_1, \ldots, x_h) = H(x_1, \ldots, x_h) +$$
 "lower degree terms"

and, by hypothesis, the coefficient of $x_1^{k_1^*-1} \cdots x_h^{k_h^*-1}$ in $H(x_1, \dots, x_h)$ is nonzero, which contradicts Theorem 1.1. \Box

Now let $F(x_1, \ldots, x_h) = s_k(x_1, \ldots, x_h)$, $G_1(x_1, \ldots, x_h) = 1$ (the constant polynomial) and $G_2(x_1, \ldots, x_h) = \delta(x_1, \ldots, x_h)$, where $\delta(x_1, \ldots, x_h) = \prod_{i>j} (x_i - x_j)$, the Vandermonde polynomial. With the notations of Theorem 1.2, we have (see (2) and (3))

 $\Omega_{FG_1} = \Omega_{s_k}$ and $\Omega_{FG_2} = \Delta_{s_k}$,

hence, to find a lower bound for these sets, we need information about the coefficients of the monomial $x_1^{k_1-1} \cdots x_h^{k_h-1}$ in the polynomials $(s_k)^t \cdot 1$ and $(s_k)^t \cdot \delta(x_1, \ldots, x_h)$.

From now on, assume that $k, h \in \mathbb{N}$ with $h \ge 2$ and $k \le h$ and let $n = \binom{h}{k}$. As before, writing $|A_i| = k_i$ for i = 1, ..., h, we can define the numbers

$$\ell = \left[\frac{\sum_{j=1}^{h} (k_j - 1)}{k}\right] \quad \text{and} \quad t = \left[\frac{\sum_{j=1}^{h} (k_j - j)}{k}\right] \tag{6}$$

and

$$M(s) = \frac{(s+n-1)!}{\left(\left[\frac{s}{n}\right]!\right)^{n-r} \left(\left(\left[\frac{s}{n}\right]+1\right)!\right)^r (n-1)!},$$
(7)

where [x] is the integer part of x, and r = t - [t/n]n, so $0 \le r < n$.

The main theorems proved in this paper are

Theorem 1.3. *Let* $p > M(\ell)$, $\ell < |K|$ *and assume* $1 \le k_j \le \ell + 1$ *for* j = 1, ..., h, *then*

$$|\Omega_{s_k}| \ge \ell + 1.$$

Theorem 1.4. Let p > M(t), t < |K| and assume $k_i \neq k_j$ for $i \neq j$ and $0 < k_i \leq t+h$ for all i = 1, ..., h. Then

 $|\Delta_{s_k}| \ge t+1.$

Theorem 1.3, in comparison to the results in [5,6] (especially Theorem 3.1 in [6]), presents a slightly stronger condition for the cardinalities of the sets A_j , but the condition on the characteristic of K is also stronger. As pointed out in [6], the proof of Theorem 6 in [5] is not correct. An extra constraint was introduced in Theorem 3.1 in [6], to guarantee the correctness of the proof. Theorem 1.4 is related to the Erdős–Heilbronn conjecture proved in [7]. The following corollary generalizes a result obtained by Caldeira in [4].

Corollary 1.5. Let A be a finite subset of K, with $h \le |A| \le t + h$, p > M(t) and t < |K|, then we have

$$|\Delta_{s_k}(A,\ldots,A)| \ge \left[\frac{h(|A|-h)}{k}\right] + 1.$$
(8)

Proof. Let A_1, \ldots, A_h be subsets of A such that $|A_i| = k_i = |A| - (i - 1)$, for $i \in \{1, \ldots, h\}$ and note that $1 \le k_i \le t + h$. Then

$$t = \left[\frac{\sum_{i=1}^{h} k_i - \binom{h+1}{2}}{k}\right] = \left[\frac{\sum_{i=1}^{h} (|A| - (i-1)) - \binom{h+1}{2}}{k}\right]$$
$$= \left[\frac{h|A| - \binom{h}{2} - \binom{h+1}{2}}{k}\right] = \left[\frac{h(|A| - h)}{k}\right].$$

Now, it is easy to see that $\Delta_{s_k}(A, \ldots, A) \supseteq \Delta_{s_k}(A_1, \ldots, A_h)$, which gives, by the Theorem 1.4,

$$|\Delta_{s_k}(A,\ldots,A)| \ge \left[\frac{h(|A|-h)}{k}\right] + 1. \quad \Box$$
(9)

2. Combinatorial results

As before, we are assuming $h, k \in \mathbb{N}$, $h \ge 2$ and $k \le h$.

Definition 2.1. Let $\mathbf{c} = (c_1, \ldots, c_h)$ be a vector with non-negative integer coordinates and $t \in \mathbb{N}$. A $k\mathbf{c}$ -matrix of order $t \times h$ is a (0, 1)-matrix (a_{ij}) such that, for any $i = 1, \ldots, t$, $\sum_{j=1}^{h} a_{ij} = k$ and, for any $j = 1, \ldots, h$, $\sum_{i=1}^{t} a_{ij} = c_j$. Denote by $\Theta(\mathbf{c}, t)$ the set of all $k\mathbf{c}$ -matrices of order $t \times h$.

Proposition 2.2. Given $\mathbf{c} = (c_1, \ldots, c_h)$ with non-negative integer coordinates and $t \in \mathbb{N}$, the set $\Theta(\mathbf{c}, t)$ is non-empty if, and only if, the vector \mathbf{c} satisfies:

(i)
$$\sum_{j=1}^{h} c_j = kt;$$

(ii) $0 \le c_j \le t, \quad \forall j \in \{1, ..., h\}.$
(10)

Proof. If it does exist a kc-matrix, then the first condition follows from

$$\sum_{j=1}^{h} c_j = \sum_{j=1}^{h} \left[\sum_{i=1}^{t} a_{ij} \right] = \sum_{i=1}^{t} \left[\sum_{j=1}^{h} a_{ij} \right] = \sum_{i=1}^{t} k = kt$$

while the second condition corresponds to the fact that in each column there are at most *t* 1's.

Conversely, if t = 1, the vector **c** has exactly k coordinates equals to 1 and h - k coordinates equals to 0. Thus, the k**c**-matrix wanted coincides with the vector **c**. Let $t \ge 2$ and suppose the proposition is true for vectors $\mathbf{c}' = (c'_1, \ldots, c'_h) \in \mathbb{Z}^h$ satisfying the conditions (10) for t' < r. Let $\mathbf{c} = (c_1, \ldots, c_h) \in \mathbb{Z}^h$ be a vector that satisfies

$$\sum_{j=1}^h c_j = kr \quad \text{and} \quad 0 \le c_j \le r, \quad \forall j \in \{1, \ldots, h\}.$$

From the conditions above it follows that there are at most k coordinates of the vector **c** that are equal to r and it is also important to note that at least k coordinates are positive. Thus take the k largest coordinates of **c**, say c_{i_1}, \ldots, c_{i_k} , and define, for $j = 1, 2, \ldots, h$

$$c'_{j} = \begin{cases} c_{j} - 1 & \text{if } j \in \{j_{1}, \dots, j_{k}\} \\ c_{j} & \text{else.} \end{cases}$$

Hence the vector $\mathbf{c}' = (c'_1, \dots, c'_h) \in \mathbb{Z}^h$ and satisfy the conditions (10) for t = r - 1. By the induction hypothesis, it does exist a $k\mathbf{c}'$ -matrix (a_{ij}) of order $(r - 1) \times h$. Consider the matrix (b_{ij}) of order $r \times h$ such that $b_{ij} = a_{ij}$ for any $1 \le i \le r - 1$ and $1 \le j \le h$ and

$$b_{rj} = \begin{cases} 1 & \text{if } j \in \{j_1, \dots, j_k\} \\ 0 & \text{else.} \end{cases}$$

Now it is simple to see that the matrix (b_{ij}) is a *k***c**-matrix of order $r \times h$.¹

¹ The Proof of this proposition can also be done by the direct use of the Ford–Fulkerson or Gale–Ryser's characterization of the (0, 1)-matrices (see [3]).

Let Γ be the set of all (0, 1)-vectors $(b_1, \ldots, b_h) \in \mathbb{Z}^h$, such that $\sum_{i=1}^h b_i = k$. Then $|\Gamma| = n = \binom{h}{k}$ and let us write $\Gamma = \{\beta_1, \ldots, \beta_n\}$. It is clear that any row vector of a $k\mathbf{c}$ -matrix is an element of Γ .

From now on, we assume that all the considered vectors **c** satisfy the conditions (10). Let $t \in \mathbb{N}$ and S_t be the permutation group of the set $\{1, \ldots, t\}$. Now define an action of this group on $\Theta(\mathbf{c}, t)$ by $\sigma A = (a_{\sigma(i)j})$, for $\sigma \in S_t$ and $A = (a_{ij}) \in \Theta(\mathbf{c}, t)$. Let $X \subset \Theta(\mathbf{c}, t)$ be an orbit under the action of S_t over $\Theta(\mathbf{c}, t)$, and let $A \in \Theta(\mathbf{c}, t)$ be a representative of X. Also let t_i , with $i = 1, 2, \ldots, n$, be the number (t_i can be zero) of rows of A that are equal to the vector $\beta_i \in \Gamma$ (see above). First observe that all $k\mathbf{c}$ -matrices in the orbit X have the same values for t_1, \ldots, t_n , and note that

$$\sum_{i=1}^{n} t_i \beta_i = \mathbf{c},\tag{11}$$

and, since A has t rows, we have

$$t_1 + t_2 + \dots + t_n = t.$$
 (12)

This establish an 1–1 correspondence between the set of orbits in $\Theta(\mathbf{c}, t)$ and the set of all nonnegative integral solutions of the Eq. (12) with the restriction (11). Thus, an upper bound for the number w of orbits is

$$\omega \le \frac{(t+n-1)!}{t!(n-1)!},\tag{13}$$

the number of non-negative solutions of (12). It follows from the definition of the action of S_t that the rows of any $k\mathbf{c}$ -matrix in the orbit X are permutations of the rows of A, then the cardinality of X is equal to

$$|X| = \frac{t!}{t_1! \cdots t_n!},$$
(14)

the number of permutations with repetitions of the *t* rows of *A*. Since the orbits are disjoint, we have proved that

Theorem 2.3.

$$|\Theta(\mathbf{c},t)| = \sum_{\substack{t_1+\cdots+t_n=t\\t_1\beta_1+\cdots+t_n\beta_n=\mathbf{c}}} \frac{t!}{t_1!\cdots t_n!},$$

where the sum runs over all n-tuples (t_1, \ldots, t_n) of non-negative integers with the restrictions given in (11) and (12).

We want to present an estimate for the number $|\Theta(\mathbf{c}, t)|$.

Lemma 2.4. Let $t \ge 0$, $n \ge 1$ and let t_1, \ldots, t_n be non-negative integers such that $t_1 + \cdots + t_n = t$, and write t = nq + r, with $0 \le r < n$. Then

$$(q!)^{n-r} \cdot ((q+1)!)^r \le t_1! \cdot t_2! \cdots t_n!.$$
(15)

Proof (*Induction on t*). The case $t \le 1$ is trivial. Let us suppose that $t'_1 + \cdots + t'_n = t + 1$ and $t'_1 \le t'_2 \le \cdots \le t'_n$. Since $t'_1 + \cdots + t'_{n-1} + (t'_n - 1) = t$, it follows from the induction hypothesis that

$$(q!)^{n-r} \cdot ((q+1)!)^r \le t_1'! \cdots t_{n-1}'! \cdot (t_n'-1)!$$

Observe that $t'_n > q$, otherwise we would have $t \ge nq \ge nt'_n \ge t'_1 + \cdots + t'_n = t + 1$. Hence

$$(q!)^{n-r} \cdot ((q+1)!)^{r+1} \le t_1'! \cdots t_{n-1}'! \cdot t_n'!.$$

Since t = qn + r, then either t + 1 = qn + (r + 1) or t + 1 = n(q + 1) (when r = n - 1). In any case, writing t + 1 = q'n + r', one has

$$(q'!)^{n-r'} \cdot ((q'+1)!)^{r'} \le t'_1! \cdots t'_{n-1}! \cdot t'_n!.$$

H. Godinho, O.R. Gomes / European Journal of Combinatorics 31 (2010) 1243-1256

Recalling (14) and using the lemma above, we have

$$|X| = \frac{t!}{t_1! \cdots t_n!} \le \frac{t!}{(q!)^{n-r}((q+1)!)^r}.$$
(16)

Now the estimates (13), (16) and Theorem 2.3 give us

Proposition 2.5. Let $k, h, t \in \mathbb{Z}$ with $1 \le k \le h$ and $t \ge 1$, let $n = \binom{h}{k}$ and $\mathbf{c} = (c_1, \ldots, c_h) \in \mathbb{Z}^h$. Writing $r = t - \lfloor t/n \rfloor n$, so $0 \le r < t$, we have

$$|\Theta(\mathbf{c},t)| \leq \frac{(t+n-1)!}{\left(\left[\frac{t}{n}\right]!\right)^{n-r} \left(\left(\left[\frac{t}{n}\right]+1\right)!\right)^r (n-1)!}.$$
(17)

2.1. *k*-paths in \mathbb{Z}^h

Definition 2.6. Let $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^h$. A *k*-path in \mathbb{Z}^h from \mathbf{a} to \mathbf{b} is a finite sequence of lattice points $\mathbf{a} = \mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_t = \mathbf{b}$ such that $\mathbf{v}_j - \mathbf{v}_{j-1} \in \Gamma$ for all $j = 1, 2, \dots, t$. Let us denote by $P_k(\mathbf{a}, \mathbf{b})$ the number of *k*-paths from \mathbf{a} to \mathbf{b} .

Obviously

$$P_k(\mathbf{a}, \mathbf{b}) = P_k(\mathbf{0}, \mathbf{b} - \mathbf{a}), \quad \forall \mathbf{a}, \mathbf{b} \in \mathbb{Z}^h.$$
(18)

Note that a necessary condition for the existence of a *k*-path from the origin to the vector $\mathbf{c} = (c_1, \ldots, c_h) \in \mathbb{Z}^h$ is that \mathbf{c} has all its coordinates non-negative. In this case, we say the vector \mathbf{c} is non-negative.

There is an interesting relation between the *k***c**-matrices and the *k*-paths from the origin to **c**. Let **c** be a non-negative vector of \mathbb{Z}^h and suppose there is a *k*-path, $0 = \mathbf{v}_0, \mathbf{v}_1 = \mathbf{v}_0 + \beta_{i_1}, \ldots, \mathbf{v}_t = \mathbf{v}_{t-1} + \beta_{i_t} = \mathbf{c}$, from the origin to **c**. Then $\mathbf{c} = \beta_{i_1} + \cdots + \beta_{i_t}$, thus the matrix $A_{t \times h}$ whose row-vectors are the vectors $\beta_{i_1}, \beta_{i_2}, \ldots, \beta_{i_t}$ is a *k***c**-matrix. Conversely, for any *k***c**-matrix $A_{t \times h}$, if we denote $\beta_{i_m} = m$ th row of the matrix A, then the sequence $\mathbf{0} = \mathbf{v}_0, \mathbf{v}_0 + \beta_{i_1} = \mathbf{v}_1, \ldots, \mathbf{v}_{t-1} + \beta_{i_t} = \mathbf{v}_t = \mathbf{c}$ is a *k*-path from the origin to **c**. Thus

$$P_k(\mathbf{0}, \mathbf{c}) = |\Theta(\mathbf{c}, t)|. \tag{19}$$

Proposition 2.7. Given $k, h \in \mathbb{Z}$ with $1 \le k \le h$ and $\mathbf{c} = (c_1, \ldots, c_h) \in \mathbb{Z}^h$, there exist a *k*-path from the origin to \mathbf{c} if, and only if, there exists $t \in \mathbb{N}$ such that $\sum_{j=1}^h c_j = kt$ and $0 \le c_j \le t$ for all $j = 1, \ldots, h$. **Proof.** It is an immediate consequence of (19) and of the Proposition 2.2. \Box

If $\mathbf{0} = \mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_t = \mathbf{c}$ is a *k*-path from the origin to \mathbf{c} , with $t \ge 1$, then $\mathbf{v}_{t-1} = \mathbf{c} - \beta_i$ for some $i \in \{1, \dots, n\}$, and there is only one *k*-path from $\mathbf{c} - \beta_i$ to \mathbf{c} . Thus

$$P_k(\mathbf{0}, \mathbf{c}) = \sum_{i=1}^n P_k(\mathbf{0}, \mathbf{c} - \beta_i).$$
(20)

Definition 2.8. A vector $\mathbf{c} = (c_1, \ldots, c_h) \in \mathbb{Z}^h$ is said to be ordered if $0 \le c_1 \le \cdots \le c_h$ and strictly ordered if $0 \le c_1 < \cdots < c_h$. The *k*-path $\mathbf{0} = \mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_t = \mathbf{c}$ will be called an increasing path if all the vectors \mathbf{v}_j are ordered vectors.

Let $B_k(\mathbf{c}) = B_k(c_1, \ldots, c_h)$ be the number of increasing *k*-paths from the origin to **c**. By definition $B_k(0, \ldots, 0) = 1$.

Proposition 2.9. For $k, h \in \mathbb{Z}$ with $1 \le k \le h$ and $\mathbf{c} = (c_1, \ldots, c_h) \in \mathbb{Z}^h$, there exists an increasing *k*-path from the origin to \mathbf{c} if, and only if, the vector \mathbf{c} is ordered and there is $t \in \mathbb{N}$ such that $\sum_{j=1}^h c_j = kt$ and $0 \le c_j \le t$ for all $j = 1, \ldots, h$.

Proof. If $B_k(\mathbf{c}) > 0$ then Proposition 2.7 gives the conditions stated at the enunciate, and the vector **c** is ordered because all the vectors in an increasing *k*-path are ordered.

Conversely, let $\mathbf{c} = (c_1, \ldots, c_h)$ be an ordered vector and $t \in \mathbb{N}$ for which the conditions of the enunciate of the proposition hold. If t = 1, then $\mathbf{c} \in \Gamma$, and $\mathbf{0} = \mathbf{v}_0$, $\mathbf{v}_1 = \mathbf{c}$ is an increasing *k*-path. Now, following the ideas presented in the proof of Proposition 2.2, we could choose the *k* largest coordinates of \mathbf{c} and subtract 1 of each one of these coordinates, to produce a new vector \mathbf{c}' satisfying the conditions of the proposition for t' = t - 1. But this \mathbf{c}' is not necessarily ordered, so we will choose these *k* coordinates in the following way: rewrite

$$\mathbf{c} = (\underbrace{b_1, \ldots, b_1}_{s_1}, \underbrace{b_2, \ldots, b_2}_{s_2}, \ldots, \underbrace{b_r, \ldots, b_r}_{s_r}),$$

where $h = s_1 + \cdots + s_r$ and $b_i < b_{i+1}$. Now suppose $k = s_r + s_{r-1} + \cdots + s_{r-j} + s$, with $0 \le s < s_{r-(j+1)}$. Now choose the $s_r + \cdots + s_{r-j}$ final coordinates of **c**, plus the first *s* coordinates of the r - (j + 1)-th block of equal coordinates $b_{r-(j+1)}$. This will guarantee that the vector **c**' is also ordered, hence there is an increasing *k*-path from the origin to **c**' (induction hypothesis), and since $\mathbf{c} - \mathbf{c}' = \beta \in \Gamma$, there is also an increasing *k*-path from the origin to **c**. \Box

Given an ordered vector $\mathbf{c} \in \mathbb{Z}^h$, for each $\beta_i \in \Gamma$, there exist, at most, one increasing *k*-path from $\mathbf{c} - \beta_i$ to \mathbf{c} , and when such a *k*-path does not exist, we have that $\mathbf{c} - \beta_i$ is not an ordered vector, so, by the Proposition 2.9, $B_k(\mathbf{c} - \beta_i) = 0$. Thus, the number $B_k(\mathbf{c})$ satisfies

$$B_k(\mathbf{c}) = \sum_{i=1}^n B_k(\mathbf{c} - \beta_i), \qquad (21)$$

which, together with the initial condition $B_k(0, 0, ..., 0) = 1$, determines completely the number $B_k(\mathbf{c})$.

Definition 2.10. Let $\mathbf{a}^* = (0, 1, 2, ..., h - 1)$. The *k*-path $\mathbf{a}^* = \mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_t = \mathbf{c}$ from \mathbf{a}^* to \mathbf{c} is called strictly increasing if all the vectors \mathbf{v}_i are strictly ordered.

Let $\hat{B}_k(\mathbf{c}) = \hat{B}_k(c_1, \ldots, c_h)$ be the number of strictly increasing *k*-paths from \mathbf{a}^* to \mathbf{c} . By definition $\hat{B}_k(0, 1, \ldots, h-1) = 1$.

Proposition 2.11. For $k, h \in \mathbb{Z}$ with $1 \le k \le h$ and $\mathbf{c} = (c_1, \ldots, c_h) \in \mathbb{Z}^h$ there exist a strictly increasing k-path from \mathbf{a}^* to \mathbf{c} if, and only if, \mathbf{c} is a strictly ordered vector and there exist a $t \in \mathbb{N}$ such that $\sum_{j=1}^{h} c_j = kt + {h \choose 2}$ and $j - 1 \le c_j \le t + j - 1$, for all $j = 1, \ldots, h$.

Proof. Observe that a vector $\mathbf{v} = (v_1, \ldots, v_h)$ is strictly ordered if, and only if, the vector $\mathbf{v}' = \mathbf{v} - \mathbf{a}^*$ is ordered, and we have that $\mathbf{a}^* = \mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_t = \mathbf{c}$ is a strictly increasing *k*-path from \mathbf{a}^* to \mathbf{c} if, and only if, $\mathbf{0} = \mathbf{v}_0 - \mathbf{a}^*, \mathbf{v}_1 - \mathbf{a}^*, \ldots, \mathbf{v}_t - \mathbf{a}^* = \mathbf{c} - \mathbf{a}^*$ is an increasing *k*-path from the origin to $\mathbf{c} - \mathbf{a}^*$. Thus,

$$B_k(c_1,\ldots,c_h) = B_k(c_1,c_2-1,\ldots,c_h-(h-1)).$$
 (22)

Now the conclusion of this proof follows from (22) and Proposition 2.9, since $0+1+2+\cdots+(h-1) = \binom{h}{2}$. \Box

Now (21) and (22) give

Proposition 2.12.

$$\hat{B}_k(\mathbf{c}) = \sum_{i=1}^n \hat{B}_k(\mathbf{c} - \beta_i).$$
(23)

3. The coefficients of $(s_k(\mathbf{x}))^t$

Let $s_k(x_1, ..., x_h)$ be the *k*th elementary symmetric polynomial described in (1). Since each monomial of s_k is the product of exactly *k* indeterminates among the *h* possible ones, we have

H. Godinho, O.R. Gomes / European Journal of Combinatorics 31 (2010) 1243-1256

$$s_k(x_1,\ldots,x_h) = \sum_{j=1}^n x_1^{\beta_{j1}} x_2^{\beta_{j2}} \cdots x_h^{\beta_{jh}},$$
(24)

where $\beta_j = (\beta_{j1}, \ldots, \beta_{jh}) \in \Gamma$.

Theorem 3.1. For all $t \ge 0$,

$$(s_k(x_1,\ldots,x_h))^t = \sum_{\mathbf{c}\in\mathscr{C}(t)} P_k(\mathbf{0},\mathbf{c}) x_1^{c_1} x_2^{c_2} \cdots x_h^{c_h},$$

where $P_k(\mathbf{0}, \mathbf{c})$ is the number of k-paths from the origin to \mathbf{c} , and

$$\mathcal{C}(t) = \{ \mathbf{c} = (c_1, \ldots, c_h) \in \mathbb{Z}^h \mid 0 \le c_j \le t \text{ and } c_1 + \cdots + c_h = kt \}.$$

Proof. The proof is by induction on *t*. For t = 0, we have $C(0) = \{0\}$. Then, both sides of the equality are equal to 1. Assume that the theorem is true for some $t \ge 1$. Since each element in C(t + 1) can be written as the sum of one element of C(t) with one element of Γ , we can use the induction hypothesis, Proposition 2.7 and the Eq. (20) to show

$$(s_k(\mathbf{x}))^{t+1} = s_k(\mathbf{x}) \cdot (s_k(\mathbf{x}))^t$$

= $\left(\sum_{j=1}^n x_1^{\beta_{j1}} \cdots x_h^{\beta_{jh}}\right) \left(\sum_{\mathbf{c} \in \mathcal{C}(t)} P_k(\mathbf{0}, \mathbf{c}) x_1^{c_1} x_2^{c_2} \cdots x_h^{c_h}\right)$
= $\sum_{\mathbf{c} \in \mathcal{C}(t)} \sum_{j=1}^n P_k(\mathbf{0}, \mathbf{c}) x_1^{c_1+\beta_{j1}} x_2^{c_2+\beta_{j2}} \cdots x_h^{c_h+\beta_{jh}}$
= $\sum_{\mathbf{b} \in \mathcal{C}(t+1)} \left(\sum_{j=1}^n P_k(\mathbf{0}, \mathbf{b} - \beta_j)\right) x_1^{b_1} x_2^{b_2} \cdots x_h^{b_h}$
= $\sum_{\mathbf{b} \in \mathcal{C}(t+1)} P_k(\mathbf{0}, \mathbf{b}) x_1^{b_1} x_2^{b_2} \cdots x_h^{b_h}$. \Box

4. The coefficients of $(s_k(\mathbf{x}))^t \cdot \delta(\mathbf{x})$

It is well known that the Vandermonde polynomial

$$\delta(x_1,\ldots,x_h) = \prod_{1 \le i < j \le h} (x_j - x_i), \tag{25}$$

can also be written as

$$\delta(x_1,\ldots,x_h) = \sum_{\sigma \in S_h} \operatorname{sign}(\sigma) x_1^{\sigma(0)} x_2^{\sigma(1)} \cdots x_h^{\sigma(h-1)},$$
(26)

where S_h is the permutation group of the integers $\{0, 1, \ldots, h-1\}$.

Note that $(s_k(\mathbf{x}))^t \cdot \delta(\mathbf{x})$ is a homogeneous polynomial of degree

$$\deg((s_k)^t \delta) = t \cdot \deg(s_k) + \deg(\delta) = kt + \binom{h}{2}.$$
(27)

Moreover, since the degree of each indeterminate in s_k is at most 1 and in δ is at most h - 1, the degree in each indeterminate in $(s_k)^t \delta$ is at most t + h - 1.

Let

$$\mathcal{T}(t) = \left\{ (s_1, \ldots, s_h) \in \mathbb{Z}^h | 0 \le s_1 < \cdots < s_h \le t + h - 1 \text{ and } \sum_{i=1}^h s_i = kt + \binom{h}{2} \right\},\$$

and note that if $(s_1, \ldots, s_h) \in \mathcal{T}(t)$, then

$$j-1 \le s_j \le t+j-1, \quad \forall j \in \{1, \dots, h\}.$$
 (28)

Proposition 4.1. For each $(s_1, \ldots, s_h) \in \mathcal{T}(t+1)$, there exist $(t_1, \ldots, t_h) \in \mathcal{T}(t)$ and $\beta = (\beta_1, \ldots, \beta_h) \in \Gamma$ such that $(s_1, \ldots, s_h) = (t_1 + \beta_1, \ldots, t_h + \beta_h)$.

Proof. Take $\mathbf{s} = (s_1, \dots, s_h) \in \mathcal{T}(t + 1)$. It follows from the definition and (28) that

$$0 \le s_i - (i-1) \le t+1$$
, for all $i \in \{1, ..., h\}$ and $\sum_{i=1}^h [s_i - (i-1)] = k(t+1)$.

Thus, there are at least *k* coordinates s_i such that $s_i - (i - 1) \ge 1$ and there are at most *k* coordinates s_j such that $s_j - (j - 1) = t + 1$. Because the vector **s** is strictly ordered, if $s_{i_0} - (i_0 - 1) \ge 1$ then $s_j - (j - 1) \ge 1$, for all $j \ge i_0$, and if $s_{j_0} - (j_0 - 1) = t + 1$, then $s_j - (j - 1) = t + 1$ for all $j \ge j_0$. Let *J* be the subset of all indices *j* such that $s_j - (j - 1) = t + 1$. Observe that either $J = \emptyset$ or |J| = r and $J = \{h - (r - 1), h - (r - 2), \dots, h\}$. Hence there are still k - r indices *j* such that $1 \le s_j - (j - 1) < t + 1$. Let *m* be the smallest index such that $s_m - (m - 1) < t + 1$ and define $I = \{m, m + 1, \dots, m + k - (r + 1)\}$, hence |I| = k - r (if k = r then take $I = \emptyset$). By definition $I \cap J = \emptyset$, so $|I \cup J| = |I| + |J| = k$. Now define

$$t_i = \begin{cases} s_i - 1 & \text{if } i \in I \cup J \\ s_i & \text{otherwise.} \end{cases}$$

It follows from the definitions of t_i and the set I that $0 \le t_i - (i - 1) \le t$. Now let $i, j \in \{1, ..., h\}$ with i < j. We want to prove that $t_i < t_j$, so the only case to consider is when $t_i = s_i$ and $t_j = s_j - 1$, that is, when $i \notin I \cup J$ and $j \in I \cup J$. If $j \in I$ then we have $t_j = s_j - 1 \ge j - 1$ and since i < m we have $s_i = (i - 1) < (j - 1)$ for i < j. If $j \in J$ then $t_j - (j - 1) = t$, but $t_i - (i - 1) = s_i - (i - 1) \le t$. Hence $t_i - i \le t_j - j$, and so $t_i < t_j$. Therefore $\mathbf{t} = (t_1, \ldots, t_h) \in \mathcal{T}(t)$, and we may write $\mathbf{s} - \mathbf{t} = \beta \in \Gamma$. \Box

It is important to observe that if one takes $\mathbf{r} \in \mathcal{T}(t)$ and $\beta \in \Gamma$, then $\mathbf{r} + \beta$ may not be a vector of $\mathcal{T}(t+1)$. And this happens when there are equal coordinates in the vector $\mathbf{r} + \beta$. Since \mathbf{r} is a strictly ordered vector and β is a (0, 1)-vector, the vector $\mathbf{r} + \beta$ can have many pairs of equal coordinates, but one can never find three equal coordinates in this vector.

Definition 4.2. A vector $(x_1, ..., x_h) \in \mathbb{Z}^h$ is said to be *m*-paired if among its coordinates one can find *m* pairs of equal coordinates, but never three indices i_0 , i_1 , i_2 such that $x_{i_0} = x_{i_1} = x_{i_2}$.

Define an action of S_h in \mathbb{Z}^h by, for any $\sigma \in S_h$, $\sigma(\mathbf{x}) = \sigma(x_1, \ldots, x_h) = (x_{\sigma(1)}, \ldots, x_{\sigma(h)})$. And let $H_{\mathbf{x}}$ be the *stabilizer subgroup of* \mathbf{x} in S_h , that is, $\sigma(\mathbf{x}) = \mathbf{x}$ for $\sigma \in H_{\mathbf{x}}$.

Proposition 4.3. Let $\mathbf{x} \in \mathbb{Z}^h$ be an m-paired vector. Then $H_{\mathbf{x}}$ is an abelian subgroup of order 2^m , generated by m transpositions. Furthermore, in $H_{\mathbf{x}}$, the number of even permutations is equal to the number of odd permutations.

Proof. Since **x** is *m*-paired, there are *m* obvious transpositions τ_1, \ldots, τ_m such that $\tau_i(\mathbf{x}) = \mathbf{x}$. Also observe that these *m* pairs are all disjoint, so these permutations commute, that is, $\tau_i \circ \tau_j = \tau_j \circ \tau_i$. On the other hand, if $\sigma \in H_{\mathbf{x}}$ then it must permute only some of these equal pairs of coordinates, hence $\sigma = \tau_1^{\epsilon_1} \circ \tau_2^{\epsilon_2} \circ \cdots \circ \tau_m^{\epsilon_m}$, with $\epsilon_i \in \{0, 1\}$, and therefore $|H_{\mathbf{x}}| = 2^m$.

A permutation $\sigma \in H_x$ is even if it can be written as a product of an even number of transpositions. And, in H_x , the number of permutations $\sigma = \tau_1^{\epsilon_1} \circ \cdots \circ \tau_m^{\epsilon_m}$ that is exactly the product of *i* of these transpositions is equal to $\binom{m}{i}$. Since

$$\sum_{i=0}^{m} (-1)^{i} {m \choose i} = (1-1)^{m} = 0,$$

it follows that the number of even permutations in H_x is equal to the number of odd permutation. \Box

For simplicity we indicate the monomial $x_1^{v_1} \cdots x_h^{v_h}$ by $\mathbf{x}^{\mathbf{v}}$. Thus, (24) and (26) can be written as

$$s_k(\mathbf{x}) = \sum_{j=1}^n \mathbf{x}^{\beta_j}$$
(29)

and, with $\mathbf{a}^* = (0, 1, 2, \dots, h-1)$,

$$\delta(\mathbf{x}) = \sum_{\sigma \in S_h} \operatorname{sign}(\sigma) \mathbf{x}^{\sigma(\mathbf{a}^*)}$$
(30)

where S_h is the group of permutations of the integers $\{0, \ldots, h-1\}$.

Theorem 4.4. For all $t \ge 0$,

$$(s_k(\mathbf{x}))^t \cdot \delta(\mathbf{x}) = \sum_{\sigma \in S_h} \sum_{\mathbf{c} \in \mathcal{T}(t)} \operatorname{sign}(\sigma) \hat{B}_k(\mathbf{c}) \mathbf{x}^{\sigma(\mathbf{c})}$$

Proof (*Induction on t*). For t = 0 it is easy to see that $\mathcal{T}(0) = \{\mathbf{a}^*\}$ and $\hat{B}_k(\mathbf{a}^*) = 1$, and it follows from (30).

Now, by the induction hypothesis,

$$(s_{k}(\mathbf{x}))^{t+1} \cdot \delta(\mathbf{x}) = s_{k}(\mathbf{x}) \cdot (s_{k}(\mathbf{x}))^{t} \cdot \delta(\mathbf{x})$$

$$= \left(\sum_{j=1}^{n} \mathbf{x}^{\beta_{j}}\right) \left(\sum_{\sigma \in S_{h}} \sum_{\mathbf{c} \in \mathcal{T}(t)} \operatorname{sign}(\sigma) \hat{B}_{k}(\mathbf{c}) \mathbf{x}^{\sigma(\mathbf{c})}\right)$$

$$= \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{c} \in \mathcal{T}(t)} \sum_{j=1}^{n} \hat{B}_{k}(\mathbf{c}) \mathbf{x}^{\sigma(\mathbf{c}) + \beta_{j}}$$

$$= \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{c} \in \mathcal{T}(t)} \sum_{i=1}^{n} \hat{B}_{k}(\mathbf{c}) \mathbf{x}^{\sigma(\mathbf{c}+\beta_{i})}, \qquad (31)$$

since there is a unique $i \in \{1, ..., n\}$ such that $\beta_j = \beta_{\sigma(i)}$ and then we have

$$\sigma(\mathbf{c}) + \beta_j = \sigma(\mathbf{c}) + \beta_{\sigma(i)} = \sigma(\mathbf{c} + \beta_i).$$

Let us define the auxiliary set

$$\mathbb{T}(t) = \left\{ (s_1, \ldots, s_h) \in \mathbb{Z}^h | 0 \le s_1 \le \cdots \le s_h \le t + h - 1 \text{ and } \sum_{i=1}^h s_i = kt + \binom{h}{2} \right\}.$$

Observe that for any $\mathbf{c} = (c_1, \ldots, c_h) \in \mathcal{T}(t)$, and for any $\beta_i \in \Gamma$, we have $\mathbf{c} + \beta_i = \mathbf{b} \in \mathbb{T}(t+1)$. It might be the case that, for some $\mathbf{b} \in \mathbb{T}(t+1)$ and some $\beta \in \Gamma$, one has $\mathbf{b} - \beta \notin \mathcal{T}(t)$, but in this case Proposition 2.11 says that $\hat{B}_k(\mathbf{b} - \beta_j) = 0$. Hence we may rewrite (31) as

$$(s_k(\mathbf{x}))^{t+1} \cdot \delta(\mathbf{x}) = \sum_{\sigma \in S_h} \operatorname{sign}(\sigma) \sum_{\mathbf{b} \in \mathbb{T}(t+1)} \sum_{j=1}^n \hat{B}_k(\mathbf{b} - \beta_j) \mathbf{x}^{\sigma(\mathbf{b})}.$$
(32)

Since $\mathcal{T}(t+1) \subset \mathbb{T}(t+1)$, we may write the RHS of (32) as

$$= \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \left\{ \sum_{\mathbf{b} \in \mathcal{T}(t+1)} \sum_{j=1}^{n} \hat{B}_{k}(\mathbf{b} - \beta_{j}) \mathbf{x}^{\sigma(\mathbf{b})} + \sum_{\mathbf{b} \in \mathbb{T}(t+1) \setminus \mathcal{T}(t+1)} \sum_{j=1}^{n} \hat{B}_{k}(\mathbf{b} - \beta_{j}) \mathbf{x}^{\sigma(\mathbf{b})} \right\}$$
$$= \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{b} \in \mathcal{T}(t+1)} \left(\sum_{j=1}^{n} \hat{B}_{k}(\mathbf{b} - \beta_{j}) \right) \mathbf{x}^{\sigma(\mathbf{b})}$$
$$+ \sum_{\mathbf{b} \in \mathbb{T}(t+1) \setminus \mathcal{T}(t+1)} \sum_{j=1}^{n} \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \hat{B}_{k}(\mathbf{b} - \beta_{j}) \mathbf{x}^{\sigma(\mathbf{b})}.$$
(33)

Now, by (23) we have that (33) becomes

$$\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{b} \in \mathcal{T}(t+1)} \hat{B}_{k}(\mathbf{b}) \mathbf{x}^{\sigma(\mathbf{b})} + \sum_{\mathbf{b} \in \mathbb{T}(t+1) \setminus \mathcal{T}(t+1)} \sum_{j=1}^{n} \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \hat{B}_{k}(\mathbf{b} - \beta_{j}) \mathbf{x}^{\sigma(\mathbf{b})}$$

and so, it is enough to show that

$$\sum_{\mathbf{b}\in\mathbb{T}(t+1)\setminus\mathcal{T}(t+1)}\sum_{j=1}^{n}\sum_{\sigma\in\mathcal{S}_{h}}\operatorname{sign}(\sigma)\hat{B}_{k}(\mathbf{b}-\beta_{j})\mathbf{x}^{\sigma(\mathbf{b})}=0.$$
(34)

Take $\mathbf{b} \in \mathbb{T}(t+1) \setminus \mathcal{T}(t+1)$, thus $\mathbf{b} = (b_1, \dots, b_h)$ is not a strictly ordered vector, so it must have equal coordinates. If \mathbf{b} has at least three equal coordinates, say $b_u = b_v = b_w$, with u < v < w, then the vector $\mathbf{b} - \beta$ cannot be strictly ordered, for we would need to have $b_u - 1 < b_v - 1 < b_w - 1$, which is impossible. Hence, Proposition 2.11 guarantees, in this case, $\hat{B}_k(\mathbf{b} - \beta) = 0$.

Now suppose **b** is *m*-paired. Let $\{\sigma_1, \ldots, \sigma_r\} \subset S_h$ be one of the largest sets of permutations such that $\sigma_i(\mathbf{b}) \neq \sigma_j(\mathbf{b})$ for $i \neq j$. Hence we can write S_h as a disjoint union of sets

$$S_h = \mathcal{H}_1 \cup \cdots \cup \mathcal{H}_r,$$

where $\mathcal{H}_i = \{\delta \in S_h \mid \delta(\mathbf{b}) = \sigma_i(\mathbf{b})\}$, for i = 1, ..., r.

Observe that there is an 1–1 correspondence between the set \mathcal{H}_i and the set $H_{\sigma_i(\mathbf{b})}$, the stabilizer of $\sigma_i(\mathbf{b})$, given by

$$\delta \in \mathcal{H}_i \longmapsto \delta \circ \sigma_i^{-1} \in H_{\sigma_i(\mathbf{b})} \text{ and } \gamma \in H_{\sigma_i(\mathbf{b})} \longmapsto \gamma \circ \sigma_i \in \mathcal{H}_i.$$

Hence, for every $\delta \in \mathcal{H}_i$, there is a $\gamma \in H_{\sigma_i(\mathbf{b})}$ such that $\delta = \gamma \circ \sigma_i$. Then one has

$$\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \hat{B}_{k}(\mathbf{b} - \beta_{j}) \mathbf{x}^{\sigma(\mathbf{b})} = \sum_{u=1}^{r} \sum_{\delta \in H_{u}} \operatorname{sign}(\delta) \hat{B}_{k}(\mathbf{b} - \beta_{j}) \mathbf{x}^{\delta(\mathbf{b})}$$
$$= \sum_{u=1}^{r} \sum_{\gamma \in H_{\sigma_{u}(\mathbf{b})}} \operatorname{sign}(\gamma \circ \sigma_{u}) \hat{B}_{k}(\mathbf{b} - \beta_{j}) \mathbf{x}^{\gamma \circ \sigma_{u}(\mathbf{b})}$$
$$= \sum_{u=1}^{r} \operatorname{sign}(\sigma_{u}) \hat{B}_{k}(\mathbf{b} - \beta_{j}) \mathbf{x}^{\sigma_{u}(\mathbf{b})} \sum_{\gamma \in H_{\sigma_{u}(\mathbf{b})}} \operatorname{sign}(\gamma),$$

since $\gamma(\sigma_u(\mathbf{b})) = \sigma_u(\mathbf{b})$. Now we can use Proposition 4.3 to conclude that

$$\sum_{\gamma \in H_{\sigma_{\mathcal{U}}}(\mathbf{b})} \operatorname{sign}(\gamma) = 0,$$

which proves (34).

5. Proofs of the main theorems

We are assuming ℓ , *t* and *M*(*s*) as defined in (6) and (7).

Proof of Theorem 1.3. As mentioned in (5), we may assume

$$\ell = \frac{\sum_{i=1}^{h} (k_i - 1)}{k}.$$
(35)

And according to Theorem 1.2, in order to obtain the result above, it is sufficient to prove that the coefficient of the monomial $x_1^{k_1-1}x_2^{k_2-1}\cdots x_h^{k_h-1}$ in $(s_k(\mathbf{x}))^\ell$ is nonzero in *K*. Now it follows from Theorem 3.1 that the coefficient of $x_1^{k_1-1}\cdots x_h^{k_h-1}$ is $P_k(0, \mathbf{c})$, with $\mathbf{c} = (k_1 - 1, \dots, k_h - 1)$. By the

hypothesis and (35) we have

$$\sum_{i=1}^{h} (k_i - 1) = k\ell \quad \text{and} \quad 0 \le k_j - 1 \le \ell,$$

hence we can apply Proposition 2.7 to conclude that $P_k(0, \mathbf{c}) \neq 0$ as a natural number. On the other hand, from (17) and (19) it follows that

$$P_k(0, \mathbf{c}) = |\Theta(\mathbf{c}, \ell)| \le M(\ell) < p$$

by the hypothesis of the theorem. Therefore this coefficient is also nonzero in the field K. \Box

5.1. Proof of Theorem 1.4

We are assuming p > M(t), $k_i \neq k_j$ for $i \neq j$ and $1 \leq k_i \leq t + h$, for any i = 1, ..., h (see (6)). Hence we may write

$$1 \le k_1 < k_2 < \dots < k_h \le t + h.$$
(36)

Lemma 5.1. Under the conditions above, it always possible to find k_1^*, \ldots, k_h^* such that $k_j^* < k_j$, for $j = 1, \ldots, h, \ 1 \le k_1^* < k_2^* < \cdots < k_h^*$ and

$$t = \left[\frac{\sum_{j=1}^{h} (k_j - j)}{k}\right] = \frac{\sum_{j=1}^{h} (k_j^* - j)}{k}.$$
(37)

Proof. Let $s_j = k_j - j$. Then, it follows from (37) that $0 \le s_1 \le \cdots \le s_h$. Let us write

$$\sum_{j=1}^h s_j = M = kt + r,$$

 $0 \le r < k$. The proof will follow from the fact that it is always possible to find $0 \le s_1^* \le \cdots \le s_h^*$ such that

$$\sum_{j=1}^h s_j^* = M - i,$$

for $0 \le i \le r$, for then, with i = r, we can take $k_j^* = s_j^* + j$. The case i = 0 is obvious, and for i > 1, it follows by a trivial induction on i. \Box

Proof of Theorem 1.4. According to Lemma 5.1, taking subsets of the sets *A_j*'s if necessary, we may assume

$$1 \le k_1 < k_2 < \dots < k_h$$
 and $\sum_{j=1}^h (k_j - j) = kt$. (38)

It follows from Theorem 1.2 that it is enough to prove that the coefficient of $x_1^{k_1-1} \cdots x_h^{k_h-1}$ in the product $(s_k)^t \delta$ is nonzero in *K*.

Now consider the vector $\mathbf{c} = (k_1 - 1, \dots, k_h - 1)$, and observe that \mathbf{c} is a strictly ordered vector such that, by the hypothesis and (38),

$$j-1 \le k_j - 1 \le t + (j-1)$$
 and
 $\sum_{j=1}^{h} (k_j - 1) = \sum_{j=1}^{h} (k_j - j) + {h \choose 2} = kt + {h \choose 2}.$

In this case we can use Theorem 4.4 and Proposition 2.11 to conclude that the coefficient is, in modulus, the number $\hat{B}_k(\mathbf{c})$ which is nonzero as a natural number. But since (see (17) and (19))

$$0 < B_k(\mathbf{c}) \le P_k(\mathbf{a}^*, \mathbf{c}) = P_k(\mathbf{0}, \mathbf{c} - \mathbf{a}^*) = |\Theta(\mathbf{c} - \mathbf{a}^*, t)| \le M(t) < p$$

the coefficient is also nonzero in K. \Box

6. Some examples

We would like to present some simple examples for which the lower bounds in Theorems 1.3 and 1.4 are reached.

Example 6.1. If $A_1 = \{a_1\}, A_2 = \{a_1, a_2\}, A_3 = \{a_1, a_2, a_3\}, \dots, A_h = \{a_1, a_2, a_3, \dots, a_h\}$, then the lower bound in the Theorem 1.4 is attained:

$$|\Delta_{s_k}(A_1,\ldots,A_h)|=1=\left\lfloor\frac{\sum\limits_{i=1}^h i-\binom{h+1}{2}}{k}\right\rfloor+1.$$

Example 6.2. Let h = 3, k = 2, $A_1 = \{-a, 0, a\}$, $A_2 = \{-a, 0, a, b\}$ and $A_3 = \{-b, -a, 0, a, b\}$. Since

 $s_2(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3$

we have

$$|\Delta_{s_2}(A_1, A_2, A_3)| = \left[\frac{1}{2}\left(3+4+5-\frac{3\times 4}{2}\right)\right]+1=4,$$

and taking $A_1 = A$

$$|\Omega_{s_k}(A, A, A)| = \left[\frac{\sum_{j=1}^h k_j - h}{k}\right] + 1 = 4.$$

It would be interesting to find if there is any structure for the sets for which these bounds are attained (the *critical sets*).

Acknowledgements

We would like to express our gratitude to the referee for his/her careful reading and comments. The authors were partially supported by a grant from CNPq-Brazil.

References

- [1] N. Alon, Combinatorial nullstellensatz, Combinatorics, Probability and Computing 8 (1999) 7–29.
- [2] N. Alon, M.B. Nathanson, I.Z. Ruzsa, The polynomial method and restricted sums of congruence classes, Journal of Number Theory 56 (1996) 404–417.
- [3] R.A. Brualdi, Matrices of zeros and ones with fixed row and column sum vectors, Linear Algebra and its Applications 33 (1980) 159–231.
- [4] C. Caldeira, Generalized derivations restricted to Grassmann spaces and additive theory, Linear Algebra and its Applications 401 (2005) 11–27.
- [5] J.A. Dias da Silva, H. Godinho, Generalized derivations and additive theory, Linear Algebra and its Applications 342 (2002) 1–15.
- [6] J.A. Dias da Silva, H. Godinho, Generalized derivations and additive theory II, Linear Algebra and its Applications 420 (2007) 117–123.

- [7] J.A. Dias da Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bulletin of the London Mathematical Society 26 (1994) 140-146.
- [8] W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expositiones Mathematicae 24 (2006) 337-369.
- [9] M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, New York, 1996.