Addition of sets via symmetric polynomials - A polynomial method

H. Godinho, O.R. Gomes
Departamento de Matemática, Universidade de Brasília, Brazil

ARTICLE INFO

Article history:

Received 26 November 2008
Accepted 10 October 2009
Available online 24 November 2009

Abstract

Let A_{1}, \ldots, A_{h} be finite non-empty subsets of a field K and let $s_{k}\left(x_{1}, \ldots, x_{h}\right)$ be the elementary symmetric polynomial of degree k in h indeterminates. Here we present some estimates for the cardinality of the sets of the images of all h-tuples of $A_{1} \times \cdots \times A_{h}$ by the polynomial s_{k}, with and without the restriction that the elements of the h-tuples are pairwise distincts.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

$$
\begin{align*}
& \text { Let } \\
& \qquad s_{k}\left(x_{1}, \ldots, x_{h}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq h} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \tag{1}
\end{align*}
$$

be the elementary symmetric polynomial of degree k in h indeterminates, and let A_{1}, \ldots, A_{h} be finite non-empty subsets of a field K. Let $p=\operatorname{char}(K)$ if $\operatorname{char}(K)>0$ or $p=\infty$ if $\operatorname{char}(K)=0$. Now define

$$
\begin{equation*}
\Omega_{s_{k}}\left(A_{1}, \ldots, A_{h}\right)=\left\{s_{k}\left(a_{1}, \ldots, a_{h}\right) \mid a_{1} \in A_{1}, \ldots, a_{h} \in A_{h}\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{s_{k}}\left(A_{1}, \ldots, A_{h}\right)=\left\{s_{k}\left(a_{1}, \ldots, a_{h}\right) \mid a_{j} \in A_{j} \text { and } a_{i} \neq a_{j} \text { if } i \neq j\right\} . \tag{3}
\end{equation*}
$$

In recent years, the problem of finding lower bounds for the cardinality of these two sets have been studied by Dias da Silva and Godinho [5,6] and Caldeira [4] respectively, applying techniques from multilinear algebra, inspired by the 1994 proof given by Dias da Silva and Hamidoune [7] of the Erdős-Heilbronn conjecture. In 1996 Alon, Nathanson and Ruzsa [2] presented a new proof of this conjecture but using an algebraic technique. An excellent survey on this theory and related topics can

[^0]be found in $[8,9]$. Here we extend this algebraic method, giving similar results and generalizations to those presented in [4-6], but in a much simpler setting. Let us start by recalling Alon's Combinatorial Nullstellensatz (the proof can be found in [1]).

Theorem 1.1. Let K be an arbitrary field, and let $f=f\left(x_{1}, \ldots, x_{h}\right) \in K\left[x_{1}, \ldots, x_{h}\right]$ be a polynomial of degree $d=\sum_{i=1}^{h}\left(k_{i}-1\right)$, where each k_{i} is a non-negative integer, and suppose the coefficient of the monomial $x_{1}^{k_{1}-1} \cdots x_{h}^{k_{h}-1}$ inf is nonzero. Then, if A_{1}, \ldots, A_{h} are subsets of K with $\left|A_{i}\right| \geq k_{i}, i=1, \ldots, h$, then there exist $a_{1} \in A_{1}, \ldots, a_{h} \in A_{h}$ such that $f\left(a_{1}, \ldots, a_{h}\right) \neq 0$.

Now let $h \geq 2, A_{1}, \ldots, A_{h}$ be subsets of K, and consider the polynomials

$$
F\left(x_{1}, \ldots, x_{h}\right), G\left(x_{1}, \ldots, x_{h}\right) \in K\left[x_{1}, \ldots, x_{h}\right] .
$$

Then define the set

$$
\begin{aligned}
\Omega_{\mathrm{FG}} & =\Omega_{\mathrm{FG}}\left(A_{1}, \ldots, A_{h}\right) \\
& =\left\{F\left(a_{1}, \ldots, a_{h}\right) \mid a_{1} \in A_{1}, \ldots, a_{h} \in A_{h}, \text { and } G\left(a_{1}, \ldots, a_{h}\right) \neq 0\right\} .
\end{aligned}
$$

Let $\left|A_{i}\right|=k_{i}$ for $i=1, \ldots, h$, and let $t \in \mathbb{N}$ be such that

$$
t \operatorname{deg}(F) \leq \sum_{i=1}^{h} k_{i}-(h+\operatorname{deg}(G))<(t+1) \operatorname{deg}(F)
$$

We want to prove that, if $t<|K|$ then

$$
\begin{equation*}
\left|\Omega_{\mathrm{FG}}\right| \geq t+1 \tag{4}
\end{equation*}
$$

And for that we will choose, if necessary, subsets $A_{i}^{* ' s}$ of the sets A_{i} 's with $\left|A_{i}^{*}\right|=k_{i}^{*}$ such that

$$
\begin{equation*}
t \operatorname{deg}(F)=\sum_{i=1}^{h} k_{i}^{*}-(h+\operatorname{deg}(G)) \tag{5}
\end{equation*}
$$

and then prove, since $\Omega_{\mathrm{FG}} \supseteq \Omega_{\mathrm{FG}}\left(A_{1}^{*}, \ldots, A_{h}^{*}\right)$,

$$
\left|\Omega_{\mathrm{FG}}\left(A_{1}^{*}, \ldots, A_{h}^{*}\right)\right| \geq t+1,
$$

which in turn, proves (4).
Theorem 1.2 (Polynomial Method-coefficient). Take t and $A_{1}^{*}, \ldots, A_{h}^{*}$ as described above, and consider the polynomial

$$
H\left(x_{1}, \ldots, x_{h}\right)=\left(F\left(x_{1}, \ldots, x_{h}\right)\right)^{t} G\left(x_{1}, \ldots, x_{h}\right)
$$

of degree $d=\sum_{i=1}^{h}\left(k_{i}^{*}-1\right)$. Suppose the coefficient of the monomial $x_{1}^{k_{1}^{*}-1} \cdots x_{h}^{k_{h}^{*}-1}$ in $H\left(x_{1}, \ldots, x_{h}\right)$ is nonzero. Then $\left|\Omega_{F G}\left(A_{1}^{*}, \ldots, A_{h}^{*}\right)\right| \geq t+1$.
Proof. Suppose $\left|\Omega_{\mathrm{FG}}\left(A_{1}^{*}, \ldots, A_{h}^{*}\right)\right| \leq t$. Since by hypothesis $t<|K|$, we can choose a finite subset $E \subset K$ such that $\Omega_{\mathrm{FG}} \subset E \mathrm{e}|E|=t$. Now we define the polynomial

$$
H_{0}\left(x_{1}, \ldots, x_{h}\right)=G\left(x_{1}, \ldots, x_{h}\right) \prod_{e \in E}\left(F\left(x_{1}, \ldots, x_{h}\right)-e\right)
$$

of degree $\operatorname{deg}(G)+t \operatorname{deg}(F)=\sum_{i=1}^{h} k_{i}^{*}-h$. Moreover, if $\left(a_{1}, \ldots, a_{h}\right) \in A_{1} \times \cdots \times A_{h}$, then either $G\left(a_{1}, \ldots, a_{h}\right)=0$ or $F\left(a_{1}, \ldots, a_{h}\right) \in \Omega_{F G} \subset E$. Thus $H_{0}\left(a_{1}, \ldots, a_{h}\right)=0$, for all $\left(a_{1}, \ldots, a_{h}\right) \in$ $A_{1} \times \cdots \times A_{h}$. But

$$
H_{o}\left(x_{1}, \ldots, x_{h}\right)=H\left(x_{1}, \ldots, x_{h}\right)+\text { "lower degree terms" }
$$

and, by hypothesis, the coefficient of $x_{1}^{k_{1}^{*}-1} \cdots x_{h}^{k_{h}^{*}-1}$ in $H\left(x_{1}, \ldots, x_{h}\right)$ is nonzero, which contradicts Theorem 1.1.

Now let $F\left(x_{1}, \ldots, x_{h}\right)=s_{k}\left(x_{1}, \ldots, x_{h}\right), G_{1}\left(x_{1}, \ldots, x_{h}\right)=1$ (the constant polynomial) and $G_{2}\left(x_{1}, \ldots, x_{h}\right)=\delta\left(x_{1}, \ldots, x_{h}\right)$, where $\delta\left(x_{1}, \ldots, x_{h}\right)=\prod_{i>j}\left(x_{i}-x_{j}\right)$, the Vandermonde polynomial. With the notations of Theorem 1.2, we have (see (2) and (3))

$$
\Omega_{F G_{1}}=\Omega_{s_{k}} \quad \text { and } \quad \Omega_{F G_{2}}=\Delta_{s_{k}},
$$

hence, to find a lower bound for these sets, we need information about the coefficients of the monomial $x_{1}^{k_{1}-1} \cdots x_{h}^{k_{h}-1}$ in the polynomials $\left(s_{k}\right)^{t} \cdot 1$ and $\left(s_{k}\right)^{t} \cdot \delta\left(x_{1}, \ldots, x_{h}\right)$.

From now on, assume that $k, h \in \mathbb{N}$ with $h \geq 2$ and $k \leq h$ and let $n=\binom{h}{k}$. As before, writing $\left|A_{i}\right|=k_{i}$ for $i=1, \ldots, h$, we can define the numbers

$$
\begin{equation*}
\ell=\left[\frac{\sum_{j=1}^{h}\left(k_{j}-1\right)}{k}\right] \text { and } t=\left[\frac{\sum_{j=1}^{h}\left(k_{j}-j\right)}{k}\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
M(s)=\frac{(s+n-1)!}{\left(\left[\frac{s}{n}\right]!\right)^{n-r}\left(\left(\left[\frac{s}{n}\right]+1\right)!\right)^{r}(n-1)!}, \tag{7}
\end{equation*}
$$

where $[x]$ is the integer part of x, and $r=t-[t / n] n$, so $0 \leq r<n$.
The main theorems proved in this paper are
Theorem 1.3. Let $p>M(\ell), \ell<|K|$ and assume $1 \leq k_{j} \leq \ell+1$ for $j=1, \ldots, h$, then

$$
\left|\Omega_{s_{k}}\right| \geq \ell+1
$$

Theorem 1.4. Let $p>M(t), t<|K|$ and assume $k_{i} \neq k_{j}$ for $i \neq j$ and $0<k_{i} \leq t+h$ for all $i=1, \ldots, h$. Then

$$
\left|\Delta_{s_{k}}\right| \geq t+1
$$

Theorem 1.3, in comparison to the results in [5,6] (especially Theorem 3.1 in [6]), presents a slightly stronger condition for the cardinalities of the sets A_{j}, but the condition on the characteristic of K is also stronger. As pointed out in [6], the proof of Theorem 6 in [5] is not correct. An extra constraint was introduced in Theorem 3.1 in [6], to guarantee the correctness of the proof. Theorem 1.4 is related to the Erdős-Heilbronn conjecture proved in [7]. The following corollary generalizes a result obtained by Caldeira in [4].

Corollary 1.5. Let A be a finite subset of K, with $h \leq|A| \leq t+h, p>M(t)$ and $t<|K|$, then we have

$$
\begin{equation*}
\left|\Delta_{s_{k}}(A, \ldots, A)\right| \geq\left[\frac{h(|A|-h)}{k}\right]+1 \tag{8}
\end{equation*}
$$

Proof. Let A_{1}, \ldots, A_{h} be subsets of A such that $\left|A_{i}\right|=k_{i}=|A|-(i-1)$, for $i \in\{1, \ldots, h\}$ and note that $1 \leq k_{i} \leq t+h$. Then

$$
\begin{aligned}
t & =\left[\frac{\sum_{i=1}^{h} k_{i}-\binom{h+1}{2}}{k}\right]=\left[\frac{\sum_{i=1}^{h}(|A|-(i-1))-\binom{h+1}{2}}{k}\right] \\
& =\left[\frac{h|A|-\binom{h}{2}-\binom{h+1}{2}}{k}\right]=\left[\frac{h(|A|-h)}{k}\right] .
\end{aligned}
$$

Now, it is easy to see that $\Delta_{s_{k}}(A, \ldots, A) \supseteq \Delta_{s_{k}}\left(A_{1}, \ldots, A_{h}\right)$, which gives, by the Theorem 1.4,

$$
\begin{equation*}
\left|\Delta_{S_{k}}(A, \ldots, A)\right| \geq\left[\frac{h(|A|-h)}{k}\right]+1 . \tag{9}
\end{equation*}
$$

2. Combinatorial results

As before, we are assuming $h, k \in \mathbb{N}, h \geq 2$ and $k \leq h$.
Definition 2.1. Let $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right)$ be a vector with non-negative integer coordinates and $t \in \mathbb{N}$. A $k \mathbf{c}$-matrix of order $t \times h$ is a $(0,1)$-matrix $\left(a_{i j}\right)$ such that, for any $i=1, \ldots, t, \sum_{j=1}^{h} a_{i j}=k$ and, for any $j=1, \ldots, h, \sum_{i=1}^{t} a_{i j}=c_{j}$. Denote by $\Theta(\mathbf{c}, t)$ the set of all $k \mathbf{c}$-matrices of order $t \times h$.

Proposition 2.2. Given $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right)$ with non-negative integer coordinates and $t \in \mathbb{N}$, the set $\Theta(\mathbf{c}, t)$ is non-empty if, and only if, the vector \mathbf{c} satisfies:
(i) $\sum_{j=1}^{h} c_{j}=k t$;
(ii) $0 \leq c_{j} \leq t, \quad \forall j \in\{1, \ldots, h\}$.

Proof. If it does exist a $\mathbf{k c}$-matrix, then the first condition follows from

$$
\sum_{j=1}^{h} c_{j}=\sum_{j=1}^{h}\left[\sum_{i=1}^{t} a_{i j}\right]=\sum_{i=1}^{t}\left[\sum_{j=1}^{h} a_{i j}\right]=\sum_{i=1}^{t} k=k t
$$

while the second condition corresponds to the fact that in each column there are at most t 's.
Conversely, if $t=1$, the vector \mathbf{c} has exactly k coordinates equals to 1 and $h-k$ coordinates equals to 0 . Thus, the $k \mathbf{c}$-matrix wanted coincides with the vector \mathbf{c}. Let $t \geq 2$ and suppose the proposition is true for vectors $\mathbf{c}^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{h}^{\prime}\right) \in \mathbb{Z}^{h}$ satisfying the conditions (10) for $t^{\prime}<r$. Let $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right) \in \mathbb{Z}^{h}$ be a vector that satisfies

$$
\sum_{j=1}^{h} c_{j}=k r \quad \text { and } \quad 0 \leq c_{j} \leq r, \quad \forall j \in\{1, \ldots, h\}
$$

From the conditions above it follows that there are at most k coordinates of the vector \mathbf{c} that are equal to r and it is also important to note that at least k coordinates are positive. Thus take the k largest coordinates of \mathbf{c}, say $c_{j_{1}}, \ldots, c_{j_{k}}$, and define, for $j=1,2, \ldots, h$

$$
c_{j}^{\prime}= \begin{cases}c_{j}-1 & \text { if } j \in\left\{j_{1}, \ldots, j_{k}\right\} \\ c_{j} & \text { else } .\end{cases}
$$

Hence the vector $\mathbf{c}^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{h}^{\prime}\right) \in \mathbb{Z}^{h}$ and satisfy the conditions (10) for $t=r-1$. By the induction hypothesis, it does exist a $k \mathbf{c}^{\prime}$-matrix ($a_{i j}$) of order $(r-1) \times h$. Consider the matrix ($b_{i j}$) of order $r \times h$ such that $b_{i j}=a_{i j}$ for any $1 \leq i \leq r-1$ and $1 \leq j \leq h$ and

$$
b_{r j}= \begin{cases}1 & \text { if } j \in\left\{j_{1}, \ldots, j_{k}\right\} \\ 0 & \text { else. }\end{cases}
$$

Now it is simple to see that the matrix $\left(b_{i j}\right)$ is a $k \mathbf{c}$-matrix of order $r \times h .{ }^{1}$

[^1]Let Γ be the set of all $(0,1)$-vectors $\left(b_{1}, \ldots, b_{h}\right) \in \mathbb{Z}^{h}$, such that $\sum_{i=1}^{h} b_{i}=k$. Then $|\Gamma|=n=\binom{h}{k}$ and let us write $\Gamma=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. It is clear that any row vector of a $k \mathbf{c}$-matrix is an element of Γ.

From now on, we assume that all the considered vectors \mathbf{c} satisfy the conditions (10). Let $t \in \mathbb{N}$ and S_{t} be the permutation group of the set $\{1, \ldots, t\}$. Now define an action of this group on $\Theta(\mathbf{c}, t)$ by $\sigma A=\left(a_{\sigma(i) j}\right)$, for $\sigma \in S_{t}$ and $A=\left(a_{i j}\right) \in \Theta(\mathbf{c}, t)$. Let $X \subset \Theta(\mathbf{c}, t)$ be an orbit under the action of S_{t} over $\Theta(\mathbf{c}, t)$, and let $A \in \Theta(\mathbf{c}, t)$ be a representative of X. Also let t_{i}, with $i=1,2, \ldots, n$, be the number (t_{i} can be zero) of rows of A that are equal to the vector $\beta_{i} \in \Gamma$ (see above). First observe that all $\mathbf{k c}$-matrices in the orbit X have the same values for t_{1}, \ldots, t_{n}, and note that

$$
\begin{equation*}
\sum_{i=1}^{n} t_{i} \beta_{i}=\mathbf{c} \tag{11}
\end{equation*}
$$

and, since A has t rows, we have

$$
\begin{equation*}
t_{1}+t_{2}+\cdots+t_{n}=t \tag{12}
\end{equation*}
$$

This establish an 1-1 correspondence between the set of orbits in $\Theta(\mathbf{c}, t)$ and the set of all nonnegative integral solutions of the Eq. (12) with the restriction (11). Thus, an upper bound for the number w of orbits is

$$
\begin{equation*}
\omega \leq \frac{(t+n-1)!}{t!(n-1)!} \tag{13}
\end{equation*}
$$

the number of non-negative solutions of (12). It follows from the definition of the action of S_{t} that the rows of any kc-matrix in the orbit X are permutations of the rows of A, then the cardinality of X is equal to

$$
\begin{equation*}
|X|=\frac{t!}{t_{1}!\cdots t_{n}!} \tag{14}
\end{equation*}
$$

the number of permutations with repetitions of the t rows of A. Since the orbits are disjoint, we have proved that

Theorem 2.3.

$$
|\Theta(\mathbf{c}, t)|=\sum_{\substack{t_{1}+\cdots+t_{n}=t \\ t_{1} \beta_{1}+\cdots+t_{n} \beta_{n}=\mathbf{c}}} \frac{t!}{t_{1}!\cdots t_{n}!}
$$

where the sum runs over all n-tuples $\left(t_{1}, \ldots, t_{n}\right)$ of non-negative integers with the restrictions given in (11) and (12).

We want to present an estimate for the number $|\Theta(\mathbf{c}, t)|$.
Lemma 2.4. Let $t \geq 0, n \geq 1$ and let t_{1}, \ldots, t_{n} be non-negative integers such that $t_{1}+\cdots+t_{n}=t$, and write $t=n q+r$, with $0 \leq r<n$. Then

$$
\begin{equation*}
(q!)^{n-r} \cdot((q+1)!)^{r} \leq t_{1}!\cdot t_{2}!\cdots t_{n}! \tag{15}
\end{equation*}
$$

Proof (Induction on t). The case $t \leq 1$ is trivial. Let us suppose that $t_{1}^{\prime}+\cdots+t_{n}^{\prime}=t+1$ and $t_{1}^{\prime} \leq t_{2}^{\prime} \leq \cdots \leq t_{n}^{\prime}$. Since $t_{1}^{\prime}+\cdots+t_{n-1}^{\prime}+\left(t_{n}^{\prime}-1\right)=t$, it follows from the induction hypothesis that

$$
(q!)^{n-r} \cdot((q+1)!)^{r} \leq t_{1}^{\prime}!\cdots t_{n-1}^{\prime}!\cdot\left(t_{n}^{\prime}-1\right)!
$$

Observe that $t_{n}^{\prime}>q$, otherwise we would have $t \geq n q \geq n t_{n}^{\prime} \geq t_{1}^{\prime}+\cdots+t_{n}^{\prime}=t+1$. Hence

$$
(q!)^{n-r} \cdot((q+1)!)^{r+1} \leq t_{1}^{\prime}!\cdots t_{n-1}^{\prime}!\cdot t_{n}^{\prime}!
$$

Since $t=q n+r$, then either $t+1=q n+(r+1)$ or $t+1=n(q+1)($ when $r=n-1)$. In any case, writing $t+1=q^{\prime} n+r^{\prime}$, one has

$$
\left(q^{\prime}!\right)^{n-r^{\prime}} \cdot\left(\left(q^{\prime}+1\right)!\right)^{r^{\prime}} \leq t_{1}^{\prime}!\cdots t_{n-1}^{\prime}!\cdot t_{n}^{\prime}!
$$

Recalling (14) and using the lemma above, we have

$$
\begin{equation*}
|X|=\frac{t!}{t_{1}!\cdots t_{n}!} \leq \frac{t!}{(q!)^{n-r}((q+1)!)^{r}} \tag{16}
\end{equation*}
$$

Now the estimates (13), (16) and Theorem 2.3 give us
Proposition 2.5. Let $k, h, t \in \mathbb{Z}$ with $1 \leq k \leq h$ and $t \geq 1$, let $n=\binom{h}{k}$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right) \in \mathbb{Z}^{h}$. Writing $r=t-[t / n] n$, so $0 \leq r<t$, we have

$$
\begin{equation*}
|\Theta(\mathbf{c}, t)| \leq \frac{(t+n-1)!}{\left(\left[\frac{t}{n}\right]!\right)^{n-r}\left(\left(\left[\frac{t}{n}\right]+1\right)!\right)^{r}(n-1)!} \tag{17}
\end{equation*}
$$

2.1. k-paths in \mathbb{Z}^{h}

Definition 2.6. Let \mathbf{a}, $\mathbf{b} \in \mathbb{Z}^{h}$. A k-path in \mathbb{Z}^{h} from \mathbf{a} to \mathbf{b} is a finite sequence of lattice points $\mathbf{a}=\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{t}=\mathbf{b}$ such that $\mathbf{v}_{j}-\mathbf{v}_{j-1} \in \Gamma$ for all $j=1,2, \ldots, t$. Let us denote by $P_{k}(\mathbf{a}, \mathbf{b})$ the number of k-paths from \mathbf{a} to \mathbf{b}.

Obviously

$$
\begin{equation*}
P_{k}(\mathbf{a}, \mathbf{b})=P_{k}(\mathbf{0}, \mathbf{b}-\mathbf{a}), \quad \forall \mathbf{a}, \mathbf{b} \in \mathbb{Z}^{h} . \tag{18}
\end{equation*}
$$

Note that a necessary condition for the existence of a k-path from the origin to the vector $\mathbf{c}=$ $\left(c_{1}, \ldots, c_{h}\right) \in \mathbb{Z}^{h}$ is that \mathbf{c} has all its coordinates non-negative. In this case, we say the vector \mathbf{c} is non-negative.

There is an interesting relation between the $k \mathbf{c}$-matrices and the k-paths from the origin to \mathbf{c}. Let \mathbf{c} be a non-negative vector of \mathbb{Z}^{h} and suppose there is a k-path, $0=\mathbf{v}_{0}, \mathbf{v}_{1}=\mathbf{v}_{0}+\beta_{i_{1}}, \ldots$, $\mathbf{v}_{t}=\mathbf{v}_{t-1}+\beta_{i_{t}}=\mathbf{c}$, from the origin to \mathbf{c}. Then $\mathbf{c}=\beta_{i_{1}}+\cdots+\beta_{i_{t}}$, thus the matrix $A_{t \times h}$ whose rowvectors are the vectors $\beta_{i_{1}}, \beta_{i_{2}}, \ldots, \beta_{i_{t}}$ is a $k \mathbf{c}$-matrix. Conversely, for any $k \mathbf{c}$-matrix $A_{t \times h}$, if we denote $\beta_{i_{m}}=m$ th row of the matrix A, then the sequence $\mathbf{0}=\mathbf{v}_{0}, \mathbf{v}_{0}+\beta_{i_{1}}=\mathbf{v}_{1}, \ldots, \mathbf{v}_{t-1}+\beta_{i_{t}}=\mathbf{v}_{t}=\mathbf{c}$ is a k-path from the origin to \mathbf{c}. Thus

$$
\begin{equation*}
P_{k}(\mathbf{0}, \mathbf{c})=|\Theta(\mathbf{c}, t)| \tag{19}
\end{equation*}
$$

Proposition 2.7. Given $k, h \in \mathbb{Z}$ with $1 \leq k \leq h$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right) \in \mathbb{Z}^{h}$, there exist a k-path from the origin to $\mathbf{c} i f$, and only $i f$, there exists $t \in \mathbb{N}$ such that $\sum_{j=1}^{h} c_{j}=k t$ and $0 \leq c_{j} \leq t$ for all $j=1, \ldots, h$.
Proof. It is an immediate consequence of (19) and of the Proposition 2.2.
If $\mathbf{0}=\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{t}=\mathbf{c}$ is a k-path from the origin to \mathbf{c}, with $t \geq 1$, then $\mathbf{v}_{t-1}=\mathbf{c}-\beta_{i}$ for some $i \in\{1, \ldots, n\}$, and there is only one k-path from $\mathbf{c}-\beta_{i}$ to \mathbf{c}. Thus

$$
\begin{equation*}
P_{k}(\mathbf{0}, \mathbf{c})=\sum_{i=1}^{n} P_{k}\left(\mathbf{0}, \mathbf{c}-\beta_{i}\right) \tag{20}
\end{equation*}
$$

Definition 2.8. A vector $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right) \in \mathbb{Z}^{h}$ is said to be ordered if $0 \leq c_{1} \leq \cdots \leq c_{h}$ and strictly ordered if $0 \leq c_{1}<\cdots<c_{h}$. The k-path $\mathbf{0}=\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{t}=\mathbf{c}$ will be called an increasing path if all the vectors \mathbf{v}_{j} are ordered vectors.

Let $B_{k}(\mathbf{c})=B_{k}\left(c_{1}, \ldots, c_{h}\right)$ be the number of increasing k-paths from the origin to \mathbf{c}. By definition $B_{k}(0, \ldots, 0)=1$.

Proposition 2.9. For $k, h \in \mathbb{Z}$ with $1 \leq k \leq h$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right) \in \mathbb{Z}^{h}$, there exists an increasing k-path from the origin to $\mathbf{c} i f$, and only if, the vector \mathbf{c} is ordered and there is $t \in \mathbb{N}$ such that $\sum_{j=1}^{h} c_{j}=k t$ and $0 \leq c_{j} \leq t$ for all $j=1, \ldots, h$.
Proof. If $B_{k}(\mathbf{c})>0$ then Proposition 2.7 gives the conditions stated at the enunciate, and the vector \mathbf{c} is ordered because all the vectors in an increasing k-path are ordered.

Conversely, let $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right)$ be an ordered vector and $t \in \mathbb{N}$ for which the conditions of the enunciate of the proposition hold. If $t=1$, then $\mathbf{c} \in \Gamma$, and $\mathbf{0}=\mathbf{v}_{0}, \mathbf{v}_{1}=\mathbf{c}$ is an increasing k-path. Now, following the ideas presented in the proof of Proposition 2.2, we could choose the k largest coordinates of \mathbf{c} and subtract 1 of each one of these coordinates, to produce a new vector \mathbf{c}^{\prime} satisfying the conditions of the proposition for $t^{\prime}=t-1$. But this \mathbf{c}^{\prime} is not necessarily ordered, so we will choose these k coordinates in the following way: rewrite

$$
\mathbf{c}=(\underbrace{b_{1}, \ldots, b_{1}}_{s_{1}}, \underbrace{b_{2}, \ldots, b_{2}}_{s_{2}}, \ldots, \underbrace{b_{r}, \ldots, b_{r}}_{s_{r}})
$$

where $h=s_{1}+\cdots+s_{r}$ and $b_{i}<b_{i+1}$. Now suppose $k=s_{r}+s_{r-1}+\cdots+s_{r-j}+s$, with $0 \leq s<s_{r-(j+1)}$. Now choose the $s_{r}+\cdots+s_{r-j}$ final coordinates of \mathbf{c}, plus the first s coordinates of the $r-(j+1)$-th block of equal coordinates $b_{r-(j+1)}$. This will guarantee that the vector \mathbf{c}^{\prime} is also ordered, hence there is an increasing k-path from the origin to \mathbf{c}^{\prime} (induction hypothesis), and since $\mathbf{c}-\mathbf{c}^{\prime}=\beta \in \Gamma$, there is also an increasing k-path from the origin to \mathbf{c}.

Given an ordered vector $\mathbf{c} \in \mathbb{Z}^{h}$, for each $\beta_{i} \in \Gamma$, there exist, at most, one increasing k-path from $\mathbf{c}-\beta_{i}$ to \mathbf{c}, and when such a k-path does not exist, we have that $\mathbf{c}-\beta_{i}$ is not an ordered vector, so, by the Proposition 2.9, $B_{k}\left(\mathbf{c}-\beta_{i}\right)=0$. Thus, the number $B_{k}(\mathbf{c})$ satisfies

$$
\begin{equation*}
B_{k}(\mathbf{c})=\sum_{i=1}^{n} B_{k}\left(\mathbf{c}-\beta_{i}\right), \tag{21}
\end{equation*}
$$

which, together with the initial condition $B_{k}(0,0, \ldots, 0)=1$, determines completely the number $B_{k}(\mathbf{c})$.

Definition 2.10. Let $\mathbf{a}^{*}=(0,1,2, \ldots, h-1)$. The k-path $\mathbf{a}^{*}=\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{t}=\mathbf{c}$ from \mathbf{a}^{*} to \mathbf{c} is called strictly increasing if all the vectors \mathbf{v}_{j} are strictly ordered.

Let $\hat{B}_{k}(\mathbf{c})=\hat{B}_{k}\left(c_{1}, \ldots, c_{h}\right)$ be the number of strictly increasing k-paths from \mathbf{a}^{*} to \mathbf{c}. By definition $\hat{B}_{k}(0,1, \ldots, h-1)=1$.

Proposition 2.11. For $k, h \in \mathbb{Z}$ with $1 \leq k \leq h$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right) \in \mathbb{Z}^{h}$ there exist a strictly increasing k-path from \mathbf{a}^{*} to $\mathbf{c} i f$, and only $i f, \mathbf{c}$ is a strictly ordered vector and there exist a $t \in \mathbb{N}$ such that $\sum_{j=1}^{h} c_{j}=k t+\binom{h}{2}$ and $j-1 \leq c_{j} \leq t+j-1$, for all $j=1, \ldots, h$.
Proof. Observe that a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{h}\right)$ is strictly ordered if, and only if, the vector $\mathbf{v}^{\prime}=\mathbf{v}-\mathbf{a}^{*}$ is ordered, and we have that $\mathbf{a}^{*}=\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{t}=\mathbf{c}$ is a strictly increasing k-path from \mathbf{a}^{*} to \mathbf{c} if, and only if, $\mathbf{0}=\mathbf{v}_{0}-\mathbf{a}^{*}, \mathbf{v}_{1}-\mathbf{a}^{*}, \ldots, \mathbf{v}_{t}-\mathbf{a}^{*}=\mathbf{c}-\mathbf{a}^{*}$ is an increasing k-path from the origin to $\mathbf{c}-\mathbf{a}^{*}$. Thus,

$$
\begin{equation*}
\hat{B}_{k}\left(c_{1}, \ldots, c_{h}\right)=B_{k}\left(c_{1}, c_{2}-1, \ldots, c_{h}-(h-1)\right) \tag{22}
\end{equation*}
$$

Now the conclusion of this proof follows from (22) and Proposition 2.9, since $0+1+2+\cdots+(h-1)=$ $\binom{h}{2}$.

Now (21) and (22) give
Proposition 2.12.

$$
\begin{equation*}
\hat{B}_{k}(\mathbf{c})=\sum_{i=1}^{n} \hat{B}_{k}\left(\mathbf{c}-\beta_{i}\right) . \tag{23}
\end{equation*}
$$

3. The coefficients of $\left(s_{k}(x)\right)^{t}$

Let $s_{k}\left(x_{1}, \ldots, x_{h}\right)$ be the k th elementary symmetric polynomial described in (1). Since each monomial of s_{k} is the product of exactly k indeterminates among the h possible ones, we have

$$
\begin{equation*}
s_{k}\left(x_{1}, \ldots, x_{h}\right)=\sum_{j=1}^{n} x_{1}^{\beta_{j 1}} x_{2}^{\beta_{j 2}} \cdots x_{h}^{\beta_{j h}}, \tag{24}
\end{equation*}
$$

where $\beta_{j}=\left(\beta_{j 1}, \ldots, \beta_{j h}\right) \in \Gamma$.
Theorem 3.1. For all $t \geq 0$,

$$
\left(s_{k}\left(x_{1}, \ldots, x_{h}\right)\right)^{t}=\sum_{\mathbf{c} \in \mathbb{C}(t)} P_{k}(\mathbf{0}, \mathbf{c}) x_{1}^{c_{1}} x_{2}^{c_{2}} \cdots x_{h}^{c_{h}},
$$

where $P_{k}(\mathbf{0}, \mathbf{c})$ is the number of k-paths from the origin to \mathbf{c}, and

$$
\mathcal{C}(t)=\left\{\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right) \in \mathbb{Z}^{h} \mid 0 \leq c_{j} \leq t \text { and } c_{1}+\cdots+c_{h}=k t\right\} .
$$

Proof. The proof is by induction on t. For $t=0$, we have $\mathcal{C}(0)=\{\mathbf{0}\}$. Then, both sides of the equality are equal to 1 . Assume that the theorem is true for some $t \geq 1$. Since each element in $\mathcal{C}(t+1)$ can be written as the sum of one element of $\mathcal{C}(t)$ with one element of Γ, we can use the induction hypothesis, Proposition 2.7 and the Eq. (20) to show

$$
\begin{aligned}
\left(s_{k}(\mathbf{x})\right)^{t+1} & =s_{k}(\mathbf{x}) \cdot\left(s_{k}(\mathbf{x})\right)^{t} \\
& =\left(\sum_{j=1}^{n} x_{1}^{\beta_{j 1}} \cdots x_{h}^{\beta_{j h}}\right)\left(\sum_{\mathbf{c} \in \mathcal{C}(t)} P_{k}(\mathbf{0}, \mathbf{c}) x_{1}^{c_{1}} x_{2}^{c_{2}} \cdots x_{h}^{c_{h}}\right) \\
& =\sum_{\mathbf{c} \in \mathcal{C}(t)} \sum_{j=1}^{n} P_{k}(\mathbf{0}, \mathbf{c}) x_{1}^{c_{1}+\beta_{j 1}} x_{2}^{c_{2}+\beta_{j 2}} \cdots x_{h}^{c_{h}+\beta_{j h}} \\
& =\sum_{\mathbf{b} \in \mathbb{C}(t+1)}\left(\sum_{j=1}^{n} P_{k}\left(\mathbf{0}, \mathbf{b}-\beta_{j}\right)\right) x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{h}^{b_{h}} \\
& =\sum_{\mathbf{b} \in \mathbb{C}(t+1)} P_{k}(\mathbf{0}, \mathbf{b}) x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{h}^{b_{h}} .
\end{aligned}
$$

4. The coefficients of $\left(s_{k}(\mathbf{x})\right)^{t} \cdot \delta(\mathbf{x})$

It is well known that the Vandermonde polynomial

$$
\begin{equation*}
\delta\left(x_{1}, \ldots, x_{h}\right)=\prod_{1 \leq i<j \leq h}\left(x_{j}-x_{i}\right), \tag{25}
\end{equation*}
$$

can also be written as

$$
\begin{equation*}
\delta\left(x_{1}, \ldots, x_{h}\right)=\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) x_{1}^{\sigma(0)} x_{2}^{\sigma(1)} \cdots x_{h}^{\sigma(h-1)}, \tag{26}
\end{equation*}
$$

where S_{h} is the permutation group of the integers $\{0,1, \ldots, h-1\}$.
Note that $\left(s_{k}(\mathbf{x})\right)^{t} \cdot \delta(\mathbf{x})$ is a homogeneous polynomial of degree

$$
\begin{equation*}
\operatorname{deg}\left(\left(s_{k}\right)^{t} \delta\right)=t \cdot \operatorname{deg}\left(s_{k}\right)+\operatorname{deg}(\delta)=k t+\binom{h}{2} . \tag{27}
\end{equation*}
$$

Moreover, since the degree of each indeterminate in s_{k} is at most 1 and in δ is at most $h-1$, the degree in each indeterminate in $\left(s_{k}\right)^{t} \delta$ is at most $t+h-1$.

Let

$$
\mathcal{T}(t)=\left\{\left(s_{1}, \ldots, s_{h}\right) \in \mathbb{Z}^{h} \mid 0 \leq s_{1}<\cdots<s_{h} \leq t+h-1 \text { and } \sum_{i=1}^{h} s_{i}=k t+\binom{h}{2}\right\}
$$

and note that if $\left(s_{1}, \ldots, s_{h}\right) \in \mathcal{T}(t)$, then

$$
\begin{equation*}
j-1 \leq s_{j} \leq t+j-1, \quad \forall j \in\{1, \ldots, h\} . \tag{28}
\end{equation*}
$$

Proposition 4.1. For each $\left(s_{1}, \ldots, s_{h}\right) \in \mathcal{T}(t+1)$, there exist $\left(t_{1}, \ldots, t_{h}\right) \in \mathcal{T}(t)$ and $\beta=$ $\left(\beta_{1}, \ldots, \beta_{h}\right) \in \Gamma$ such that $\left(s_{1}, \ldots, s_{h}\right)=\left(t_{1}+\beta_{1}, \ldots, t_{h}+\beta_{h}\right)$.
Proof. Take $\boldsymbol{s}=\left(s_{1}, \ldots, s_{h}\right) \in \mathcal{T}(t+1)$. It follows from the definition and (28) that

$$
0 \leq s_{i}-(i-1) \leq t+1, \quad \text { for all } i \in\{1, \ldots, h\} \quad \text { and } \quad \sum_{i=1}^{h}\left[s_{i}-(i-1)\right]=k(t+1) .
$$

Thus, there are at least k coordinates s_{i} such that $s_{i}-(i-1) \geq 1$ and there are at most k coordinates s_{j} such that $s_{j}-(j-1)=t+1$. Because the vector \mathbf{s} is strictly ordered, if $s_{i_{o}}-\left(i_{o}-1\right) \geq 1$ then $s_{j}-(j-1) \geq 1$, for all $j \geq i_{0}$, and if $s_{j_{o}}-\left(j_{o}-1\right)=t+1$, then $s_{j}-(j-1)=t+1$ for all $j \geq j_{0}$. Let J be the subset of all indices j such that $s_{j}-(j-1)=t+1$. Observe that either $J=\emptyset$ or $|J|=r$ and $J=\{h-(r-1), h-(r-2), \ldots, h\}$. Hence there are still $k-r$ indices j such that $1 \leq s_{j}-(j-1)<t+1$. Let m be the smallest index such that $s_{m}-(m-1)<t+1$ and define $I=\{m, m+1, \ldots, m+k-(r+1)\}$, hence $|I|=k-r$ (if $k=r$ then take $I=\emptyset$). By definition $I \cap J=\emptyset$, so $|I \cup J|=|I|+|J|=k$. Now define

$$
t_{i}= \begin{cases}s_{i}-1 & \text { if } i \in I \cup J \\ s_{i} & \text { otherwise }\end{cases}
$$

It follows from the definitions of t_{i} and the set I that $0 \leq t_{i}-(i-1) \leq t$. Now let $i, j \in\{1, \ldots, h\}$ with $i<j$. We want to prove that $t_{i}<t_{j}$, so the only case to consider is when $t_{i}=s_{i}$ and $t_{j}=s_{j}-1$, that is, when $i \notin I \cup J$ and $j \in I \cup J$. If $j \in I$ then we have $t_{j}=s_{j}-1 \geq j-1$ and since $i<m$ we have $s_{i}=(i-1)<(j-1)$ for $i<j$. If $j \in J$ then $t_{j}-(j-1)=t$, but $t_{i}-(i-1)=s_{i}-(i-1) \leq t$. Hence $t_{i}-i \leq t_{j}-j$, and so $t_{i}<t_{j}$. Therefore $\mathbf{t}=\left(t_{1}, \ldots, t_{h}\right) \in \mathcal{T}(t)$, and we may write $\mathbf{s}-\mathbf{t}=\beta \in \Gamma$.

It is important to observe that if one takes $\mathbf{r} \in \mathcal{T}(t)$ and $\beta \in \Gamma$, then $\mathbf{r}+\beta$ may not be a vector of $\mathcal{T}(t+1)$. And this happens when there are equal coordinates in the vector $\mathbf{r}+\beta$. Since \mathbf{r} is a strictly ordered vector and β is a $(0,1)$-vector, the vector $\mathbf{r}+\beta$ can have many pairs of equal coordinates, but one can never find three equal coordinates in this vector.

Definition 4.2. A vector $\left(x_{1}, \ldots, x_{h}\right) \in \mathbb{Z}^{h}$ is said to be m-paired if among its coordinates one can find m pairs of equal coordinates, but never three indices i_{0}, i_{1}, i_{2} such that $x_{i_{0}}=x_{i_{1}}=x_{i_{2}}$.

Define an action of S_{h} in \mathbb{Z}^{h} by, for any $\sigma \in S_{h}, \sigma(\mathbf{x})=\sigma\left(x_{1}, \ldots, x_{h}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(h)}\right)$. And let $H_{\mathbf{x}}$ be the stabilizer subgroup of \mathbf{x} in S_{h}, that is, $\sigma(\mathbf{x})=\mathbf{x}$ for $\sigma \in H_{\mathbf{x}}$.

Proposition 4.3. Let $\mathbf{x} \in \mathbb{Z}^{h}$ be an m-paired vector. Then $H_{\mathbf{x}}$ is an abelian subgroup of order 2^{m}, generated by m transpositions. Furthermore, in $H_{\mathbf{x}}$, the number of even permutations is equal to the number of odd permutations.
Proof. Since \mathbf{x} is m-paired, there are m obvious transpositions $\tau_{1}, \ldots, \tau_{m}$ such that $\tau_{i}(\mathbf{x})=\mathbf{x}$. Also observe that these m pairs are all disjoint, so these permutations commute, that is, $\tau_{i} \circ \tau_{j}=\tau_{j} \circ \tau_{i}$. On the other hand, if $\sigma \in H_{\mathrm{x}}$ then it must permute only some of these equal pairs of coordinates, hence $\sigma=\tau_{1}^{\epsilon_{1}} \circ \tau_{2}^{\epsilon_{2}} \circ \cdots \circ \tau_{m}^{\epsilon_{m}}$, with $\epsilon_{i} \in\{0,1\}$, and therefore $\left|H_{\mathbf{x}}\right|=2^{m}$.

A permutation $\sigma \in H_{\mathbf{x}}$ is even if it can be written as a product of an even number of transpositions. And, in $H_{\mathbf{x}}$, the number of permutations $\sigma=\tau_{1}^{\epsilon_{1}} \circ \cdots \circ \tau_{m}^{\epsilon_{m}}$ that is exactly the product of i of these transpositions is equal to $\binom{m}{i}$. Since

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}=(1-1)^{m}=0,
$$

it follows that the number of even permutations in $H_{\mathbf{x}}$ is equal to the number of odd permutation.

For simplicity we indicate the monomial $x_{1}^{v_{1}} \cdots x_{h}^{v_{h}}$ by $\mathbf{x}^{\mathbf{v}}$. Thus, (24) and (26) can be written as

$$
\begin{equation*}
s_{k}(\mathbf{x})=\sum_{j=1}^{n} \mathbf{x}^{\beta_{j}} \tag{29}
\end{equation*}
$$

and, with $\mathbf{a}^{*}=(0,1,2, \ldots, h-1)$,

$$
\begin{equation*}
\delta(\mathbf{x})=\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \mathbf{x}^{\sigma\left(\mathbf{a}^{*}\right)} \tag{30}
\end{equation*}
$$

where S_{h} is the group of permutations of the integers $\{0, \ldots, h-1\}$.
Theorem 4.4. For all $t \geq 0$,

$$
\left(s_{k}(\mathbf{x})\right)^{t} \cdot \delta(\mathbf{x})=\sum_{\sigma \in S_{h}} \sum_{\mathbf{c} \in \mathcal{T}(t)} \operatorname{sign}(\sigma) \hat{B}_{k}(\mathbf{c}) \mathbf{x}^{\sigma(\mathbf{c})}
$$

Proof (Induction on t). For $t=0$ it is easy to see that $\mathcal{T}(0)=\left\{\mathbf{a}^{*}\right\}$ and $\hat{B}_{k}\left(\mathbf{a}^{*}\right)=1$, and it follows from (30).

Now, by the induction hypothesis,

$$
\begin{align*}
\left(s_{k}(\mathbf{x})\right)^{t+1} \cdot \delta(\mathbf{x}) & =s_{k}(\mathbf{x}) \cdot\left(s_{k}(\mathbf{x})\right)^{t} \cdot \delta(\mathbf{x}) \\
& =\left(\sum_{j=1}^{n} \mathbf{x}^{\beta_{j}}\right)\left(\sum_{\sigma \in S_{h}} \sum_{\mathbf{c} \in \mathcal{T}(t)} \operatorname{sign}(\sigma) \hat{B}_{k}(\mathbf{c}) \mathbf{x}^{\sigma(\mathbf{c})}\right) \\
& =\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{c} \in \mathcal{T}(t)} \sum_{j=1}^{n} \hat{B}_{k}(\mathbf{c}) \mathbf{x}^{\sigma(\mathbf{c})+\beta_{j}} \\
& =\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{c} \in \mathcal{T}(t)} \sum_{i=1}^{n} \hat{B}_{k}(\mathbf{c}) \mathbf{x}^{\sigma\left(\mathbf{c}+\beta_{i}\right)}, \tag{31}
\end{align*}
$$

since there is a unique $i \in\{1, \ldots, n\}$ such that $\beta_{j}=\beta_{\sigma(i)}$ and then we have

$$
\sigma(\mathbf{c})+\beta_{j}=\sigma(\mathbf{c})+\beta_{\sigma(i)}=\sigma\left(\mathbf{c}+\beta_{i}\right)
$$

Let us define the auxiliary set

$$
\mathbb{T}(t)=\left\{\left(s_{1}, \ldots, s_{h}\right) \in \mathbb{Z}^{h} \mid 0 \leq s_{1} \leq \cdots \leq s_{h} \leq t+h-1 \text { and } \sum_{i=1}^{h} s_{i}=k t+\binom{h}{2}\right\}
$$

Observe that for any $\mathbf{c}=\left(c_{1}, \ldots, c_{h}\right) \in \mathcal{T}(t)$, and for any $\beta_{i} \in \Gamma$, we have $\mathbf{c}+\beta_{i}=\mathbf{b} \in \mathbb{T}(t+1)$. It might be the case that, for some $\mathbf{b} \in \mathbb{T}(t+1)$ and some $\beta \in \Gamma$, one has $\mathbf{b}-\beta \notin \mathcal{T}(t)$, but in this case Proposition 2.11 says that $\hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right)=0$. Hence we may rewrite (31) as

$$
\begin{equation*}
\left(s_{k}(\mathbf{x})\right)^{t+1} \cdot \delta(\mathbf{x})=\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{b} \in \mathbb{T}(t+1)} \sum_{j=1}^{n} \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\sigma(\mathbf{b})} \tag{32}
\end{equation*}
$$

Since $\mathcal{T}(t+1) \subset \mathbb{T}(t+1)$, we may write the RHS of (32) as

$$
\begin{align*}
& =\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma)\left\{\sum_{\mathbf{b} \in \mathcal{T}(t+1)} \sum_{j=1}^{n} \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\sigma(\mathbf{b})}+\sum_{\mathbf{b} \in \mathbb{T}(t+1) \backslash \mathcal{T}(t+1)} \sum_{j=1}^{n} \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\sigma(\mathbf{b})}\right\} \\
& =\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{b} \in \mathcal{T}(t+1)}\left(\sum_{j=1}^{n} \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right)\right) \mathbf{x}^{\sigma(\mathbf{b})} \\
& \tag{33}\\
& +\sum_{\mathbf{b} \in \mathbb{T}(t+1) \backslash \mathcal{T}(t+1)} \sum_{j=1}^{n} \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\sigma(\mathbf{b})} .
\end{align*}
$$

Now, by (23) we have that (33) becomes

$$
\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \sum_{\mathbf{b} \in \mathcal{T}(t+1)} \hat{B}_{k}(\mathbf{b}) \mathbf{x}^{\sigma(\mathbf{b})}+\sum_{\mathbf{b} \in \mathbb{T}(t+1) \backslash \mathcal{T}(t+1)} \sum_{j=1}^{n} \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\sigma(\mathbf{b})}
$$

and so, it is enough to show that

$$
\begin{equation*}
\sum_{\mathbf{b} \in \mathbb{T}(t+1) \backslash \mathcal{T}(t+1)} \sum_{j=1}^{n} \sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\sigma(\mathbf{b})}=0 \tag{34}
\end{equation*}
$$

Take $\mathbf{b} \in \mathbb{T}(t+1) \backslash \mathcal{T}(t+1)$, thus $\mathbf{b}=\left(b_{1}, \ldots, b_{h}\right)$ is not a strictly ordered vector, so it must have equal coordinates. If \mathbf{b} has at least three equal coordinates, say $b_{u}=b_{v}=b_{w}$, with $u<v<w$, then the vector $\mathbf{b}-\beta$ cannot be strictly ordered, for we would need to have $b_{u}-1<b_{v}-1<b_{w}-1$, which is impossible. Hence, Proposition 2.11 guarantees, in this case, $\hat{B}_{k}(\mathbf{b}-\beta)=0$.

Now suppose \mathbf{b} is m-paired. Let $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\} \subset S_{h}$ be one of the largest sets of permutations such that $\sigma_{i}(\mathbf{b}) \neq \sigma_{j}(\mathbf{b})$ for $i \neq j$. Hence we can write S_{h} as a disjoint union of sets

$$
S_{h}=\mathscr{H}_{1} \cup \ldots \cup \mathscr{H}_{r},
$$

where $\mathscr{H}_{i}=\left\{\delta \in S_{h} \mid \delta(\mathbf{b})=\sigma_{i}(\mathbf{b})\right\}$, for $i=1, \ldots, r$.
Observe that there is an 1-1 correspondence between the set \mathscr{H}_{i} and the set $H_{\sigma_{i}(\mathbf{b})}$, the stabilizer of $\sigma_{i}(\mathbf{b})$, given by

$$
\delta \in \mathscr{H}_{i} \longmapsto \delta \circ \sigma_{i}^{-1} \in H_{\sigma_{i}(\mathbf{b})} \quad \text { and } \quad \gamma \in H_{\sigma_{i}(\mathbf{b})} \longmapsto \gamma \circ \sigma_{i} \in \mathscr{H}_{i} .
$$

Hence, for every $\delta \in \mathscr{H}_{i}$, there is a $\gamma \in H_{\sigma_{i}(\mathbf{b})}$ such that $\delta=\gamma \circ \sigma_{i}$. Then one has

$$
\begin{aligned}
\sum_{\sigma \in S_{h}} \operatorname{sign}(\sigma) \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\sigma(\mathbf{b})} & =\sum_{u=1}^{r} \sum_{\delta \in H_{u}} \operatorname{sign}(\delta) \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\delta(\mathbf{b})} \\
& =\sum_{u=1}^{r} \sum_{\gamma \in H_{\sigma_{u}(\mathbf{b})}} \operatorname{sign}\left(\gamma \circ \sigma_{u}\right) \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\gamma \circ \sigma_{u}(\mathbf{b})} \\
& =\sum_{u=1}^{r} \operatorname{sign}\left(\sigma_{u}\right) \hat{B}_{k}\left(\mathbf{b}-\beta_{j}\right) \mathbf{x}^{\sigma_{u}(\mathbf{b})} \sum_{\gamma \in H_{\sigma_{u}(\mathbf{b})}} \operatorname{sign}(\gamma),
\end{aligned}
$$

since $\gamma\left(\sigma_{u}(\mathbf{b})\right)=\sigma_{u}(\mathbf{b})$. Now we can use Proposition 4.3 to conclude that

$$
\sum_{\gamma \in H_{\sigma_{u}(\mathbf{b})}} \operatorname{sign}(\gamma)=0,
$$

which proves (34).

5. Proofs of the main theorems

We are assuming ℓ, t and $M(s)$ as defined in (6) and (7).
Proof of Theorem 1.3. As mentioned in (5), we may assume

$$
\begin{equation*}
\ell=\frac{\sum_{i=1}^{h}\left(k_{i}-1\right)}{k} . \tag{35}
\end{equation*}
$$

And according to Theorem 1.2, in order to obtain the result above, it is sufficient to prove that the coefficient of the monomial $x_{1}^{k_{1}-1} x_{2}^{k_{2}-1} \cdots x_{h}^{k_{h}-1}$ in $\left(s_{k}(\mathbf{x})\right)^{\ell}$ is nonzero in K. Now it follows from Theorem 3.1 that the coefficient of $x_{1}^{k_{1}-1} \cdots x_{h}^{k_{h}-1}$ is $P_{k}(0, \mathbf{c})$, with $\mathbf{c}=\left(k_{1}-1, \ldots, k_{h}-1\right)$. By the
hypothesis and (35) we have

$$
\sum_{i=1}^{h}\left(k_{i}-1\right)=k \ell \quad \text { and } \quad 0 \leq k_{j}-1 \leq \ell
$$

hence we can apply Proposition 2.7 to conclude that $P_{k}(0, \mathbf{c}) \neq 0$ as a natural number. On the other hand, from (17) and (19) it follows that

$$
P_{k}(0, \mathbf{c})=|\Theta(\mathbf{c}, \ell)| \leq M(\ell)<p
$$

by the hypothesis of the theorem. Therefore this coefficient is also nonzero in the field K.

5.1. Proof of Theorem 1.4

We are assuming $p>M(t), k_{i} \neq k_{j}$ for $i \neq j$ and $1 \leq k_{i} \leq t+h$, for any $i=1, \ldots, h($ see (6)). Hence we may write

$$
\begin{equation*}
1 \leq k_{1}<k_{2}<\cdots<k_{h} \leq t+h \tag{36}
\end{equation*}
$$

Lemma 5.1. Under the conditions above, it always possible to find $k_{1}^{*}, \ldots, k_{h}^{*}$ such that $k_{j}^{*}<k_{j}$, for $j=1, \ldots, h, 1 \leq k_{1}^{*}<k_{2}^{*}<\cdots<k_{h}^{*}$ and

$$
\begin{equation*}
t=\left[\frac{\sum_{j=1}^{h}\left(k_{j}-j\right)}{k}\right]=\frac{\sum_{j=1}^{h}\left(k_{j}^{*}-j\right)}{k} . \tag{37}
\end{equation*}
$$

Proof. Let $s_{j}=k_{j}-j$. Then, it follows from (37) that $0 \leq s_{1} \leq \cdots \leq s_{h}$. Let us write

$$
\sum_{j=1}^{h} s_{j}=M=k t+r
$$

$0 \leq r<k$. The proof will follow from the fact that it is always possible to find $0 \leq s_{1}^{*} \leq \cdots \leq s_{h}^{*}$ such that

$$
\sum_{j=1}^{h} s_{j}^{*}=M-i
$$

for $0 \leq i \leq r$, for then, with $i=r$, we can take $k_{j}^{*}=s_{j}^{*}+j$. The case $i=0$ is obvious, and for $i>1$, it follows by a trivial induction on i.
Proof of Theorem 1.4. According to Lemma 5.1, taking subsets of the sets A_{j} 's if necessary, we may assume

$$
\begin{equation*}
1 \leq k_{1}<k_{2}<\cdots<k_{h} \text { and } \sum_{j=1}^{h}\left(k_{j}-j\right)=k t . \tag{38}
\end{equation*}
$$

It follows from Theorem 1.2 that it is enough to prove that the coefficient of $x_{1}^{k_{1}-1} \cdots x_{h}^{k_{h}-1}$ in the product $\left(s_{k}\right)^{t} \delta$ is nonzero in K.

Now consider the vector $\mathbf{c}=\left(k_{1}-1, \ldots, k_{h}-1\right)$, and observe that \mathbf{c} is a strictly ordered vector such that, by the hypothesis and (38),

$$
\begin{aligned}
& j-1 \leq k_{j}-1 \leq t+(j-1) \quad \text { and } \\
& \sum_{j=1}^{h}\left(k_{j}-1\right)=\sum_{j=1}^{h}\left(k_{j}-j\right)+\binom{h}{2}=k t+\binom{h}{2} .
\end{aligned}
$$

In this case we can use Theorem 4.4 and Proposition 2.11 to conclude that the coefficient is, in modulus, the number $\hat{B}_{k}(\mathbf{c})$ which is nonzero as a natural number. But since (see (17) and (19))

$$
0<\hat{B}_{k}(\mathbf{c}) \leq P_{k}\left(\mathbf{a}^{*}, \mathbf{c}\right)=P_{k}\left(\mathbf{0}, \mathbf{c}-\mathbf{a}^{*}\right)=\left|\Theta\left(\mathbf{c}-\mathbf{a}^{*}, t\right)\right| \leq M(t)<p
$$

the coefficient is also nonzero in K.

6. Some examples

We would like to present some simple examples for which the lower bounds in Theorems 1.3 and 1.4 are reached.

Example 6.1. If $A_{1}=\left\{a_{1}\right\}, A_{2}=\left\{a_{1}, a_{2}\right\}, A_{3}=\left\{a_{1}, a_{2}, a_{3}\right\}, \ldots, A_{h}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{h}\right\}$, then the lower bound in the Theorem 1.4 is attained:

$$
\left|\Delta_{s_{k}}\left(A_{1}, \ldots, A_{h}\right)\right|=1=\left[\frac{\sum_{i=1}^{h} i-\binom{h+1}{2}}{k}\right]+1
$$

Example 6.2. Let $h=3, k=2, A_{1}=\{-a, 0, a\}, A_{2}=\{-a, 0, a, b\}$ and $A_{3}=\{-b,-a, 0, a, b\}$. Since

$$
s_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
$$

we have

$$
\left|\Delta_{s_{2}}\left(A_{1}, A_{2}, A_{3}\right)\right|=\left[\frac{1}{2}\left(3+4+5-\frac{3 \times 4}{2}\right)\right]+1=4
$$

and taking $A_{1}=A$

$$
\left|\Omega_{s_{k}}(A, A, A)\right|=\left[\frac{\sum_{j=1}^{h} k_{j}-h}{k}\right]+1=4
$$

It would be interesting to find if there is any structure for the sets for which these bounds are attained (the critical sets).

Acknowledgements

We would like to express our gratitude to the referee for his/her careful reading and comments. The authors were partially supported by a grant from CNPq-Brazil.

References

[1] N. Alon, Combinatorial nullstellensatz, Combinatorics, Probability and Computing 8 (1999) 7-29.
[2] N. Alon, M.B. Nathanson, I.Z. Ruzsa, The polynomial method and restricted sums of congruence classes, Journal of Number Theory 56 (1996) 404-417.
[3] R.A. Brualdi, Matrices of zeros and ones with fixed row and column sum vectors, Linear Algebra and its Applications 33 (1980) 159-231.
[4] C. Caldeira, Generalized derivations restricted to Grassmann spaces and additive theory, Linear Algebra and its Applications 401 (2005) 11-27.
[5] J.A. Dias da Silva, H. Godinho, Generalized derivations and additive theory, Linear Algebra and its Applications 342 (2002) 1-15.
[6] J.A. Dias da Silva, H. Godinho, Generalized derivations and additive theory II, Linear Algebra and its Applications 420 (2007) 117-123.
[7] J.A. Dias da Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bulletin of the London Mathematical Society 26 (1994) 140-146.
[8] W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expositiones Mathematicae 24 (2006) 337-369.
[9] M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, New York, 1996.

[^0]: E-mail address: hemar@unb.br (H. Godinho).

[^1]: ${ }^{1}$ The Proof of this proposition can also be done by the direct use of the Ford-Fulkerson or Gale-Ryser's characterization of the (0,1)-matrices (see [3]).

