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a b s t r a c t

Urban cellular automata (CA) models are broadly used in quantitative analyses and predictions of urban
land-use dynamics. However, most urban CA developed with neighborhood rules consider only a small
neighborhood scope under a specific spatial resolution. Here, we quantify neighborhood effects in a
relatively large cellular space and analyze their role in the performance of an urban land use model. The
extracted neighborhood rules were integrated into a commonly used logistic regression urban CA model
(Logistic-CA), resulting in a large neighborhood urban land use model (Logistic-LNCA). Land-use simu-
lations with both models were evaluated with urban expansion data in Xiamen City, China. Simulations
with the Logistic-LNCA model raised the accuracies of built-up land by 3.0%e3.9% in two simulation
periods compared with the Logistic-CA model with a 3 � 3 kernel. Parameter sensitivity analysis indi-
cated that there was an optimal large window size in cellular space and a corresponding optimal
parameter configuration.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Land-use dynamics constitute an open and complex spatio-
temporal evolution process that involves multi-element composite
effects from natural, social, and economic factors (Arsanjani et al.,
2013; Fuglsang et al., 2013; Hewitt et al., 2014). Environmental
modeling can support scientific decision-making processes, and
thus contribute to sustainable development associated with land-
use changes. Spatial simulations and quantitative analyses of ur-
ban land-use dynamics are effective ways to improve the under-
standing of the evolution of urban landscapes. Cellular automata
(CA) have drawn increasingly more attention in the field of land-
use and land-cover analysis and simulation. The ‘bottomeup’
approach of CA fully reflects the concept that complex global pat-
terns emerge from interactions governed by local rules. In addition,
CA are ideal for simulating and predicting complex geographic
phenomena (Liu et al., 2008a).

Based on the pioneering work by Tobler (1979) and Couclelis
(1988), many researchers have developed urban land-use
CA models over the last three decades, resulting in significant
Ltd. This is an open access article u
achievements (Batty and Xie, 1994; Clarke et al., 1997; Li and Yeh,
2000; Liu et al., 2007; Stevens et al., 2007; Takeyama and
Couclelis, 1997; Verburg et al., 2004b; Wu, 2002). These models
generally included a combination of drivers and spatiotemporal
interactions among land uses in neighborhoods.

Identifying transition rules is a key issue in urban CA. Typically, a
variety of biophysical and socioeconomic factors are included in
transition rules as driving forces of urban development. Re-
searchers have proposed various methods to determine the con-
tributions of different spatial variables and to calibrate urban CA
models (Al-Ahmadi et al., 2009; Dai et al., 2005; Feng and Liu, 2013;
Feng et al., 2011; Kocabas and Dragicevic, 2007; Li and Yeh, 2002,
2004; Liao et al., 2014; Liu et al., 2008a; Verstegen et al., 2014;
Wang et al., 2013; Wu, 2002; Wu and Webster, 1998; Yang et al.,
2008). The binary logistic regression method developed by Wu
(2002) has been widely used in urban land-use modeling because
of its strict theoretical basis of statistical learning and empirical
characteristics, and it has become a classic calibration method for
urban CA (Cheng and Masser, 2003; Dendoncker et al., 2007; Hu
and Lo, 2007; Verburg et al., 2004a). More recently, new socio-
economic factors such as per-capita gross domestic product (GDP),
land price, employment potential, and population density have
been incorporated into the driving forces of urban CA models and
integrated with logistic regression and Markov chain analysis to
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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predict future scenarios of urban development (Arsanjani et al.,
2013; Guan et al., 2011; Mas et al., 2014). However, these models
mainly considered a 3 � 3 kernel, which is a relatively small
neighborhood, though studies have noted that the logistic regres-
sion urban CA model is sensitive to scale (Pan et al., 2010).

Neighborhood interaction rules are an important subset of
transition rules and play a key role in the calculation of cellular
conversion probabilities. To quantify and analyze the neighborhood
effects generated by surrounding cells at different distances from a
central cell, Verburg et al. (2004b) defined an enrichment factor
formula for measuring the over- and under-representation of spe-
cific land uses in cellular space. More recently, other studies have
achieved better simulation results by applying this enrichment
factor to determine the neighborhood parameters of urban cellular
models or as empirical data for calibrating neighborhood interac-
tion rules (Hansen, 2008; Van Vliet et al., 2013). However, these
models generally considered a small neighborhood scope with a
relatively short distance from the central cell under a specific res-
olution during the application. For example, Van Vliet et al. (2013)
used a neighborhood radius covering 0e4 unit distances (the
discrete ring of a cell with a width of 500 m) to simulate urban
land-use dynamics at a country scale in Germany.

The external effects generated by concentrative and dispersive
forces play an important role in urban dynamics and are seen as the
organizing forces of urban patterns (Harrop, 1973; Krugman, 1999;
Rodrigue, 2004). Hagoort et al. (2008) pointed out that neighbor-
hood interaction rules specify how the combined effects of spatial
externalities work over distance in cellular space. Spatial exter-
nalities are considered to represent the aggregated effects of a
specific land-use type on another in the neighborhood (Hagoort
et al., 2008; Hansen, 2008). Research on neighborhood effects has
shown that a neighborhood scope greater than a relatively small
window size (i.e., a large neighborhood window) still has a signif-
icant influence on the development of the center cell (Hagoort et al.,
2008; White and Engelen, 2003). In fundamental urban CA, the
decay coefficient of a small neighborhood function will eventually
approach zero as the radius of the neighborhood increases (Van
Vliet et al., 2013). Thus a small neighborhood function cannot
effectively express the impact of spatial externalities existing in a
relatively large neighborhood window on the development of the
central cell.

In summary, neighborhood interactions in urban CA models
have mainly been limited to a 3 � 3 kernel or relatively small
moving window, partially due to the aim of simplifying the models
(White and Engelen, 2000). The neighborhood rules established in
this case are unsuitable for detecting complex neighborhood effects
over a larger scope. This problem is not prominent when the spatial
resolution of geospatial data is low. However, high-spatial resolu-
tion remote sensing data have become readily available and
increasingly popular. Thus, interaction rules designed for complex
neighborhood effects in urban CA models are encountering un-
precedented challenges. The goal of this paper is to characterize the
role of complex neighborhood effects over a relatively large scope
associated with urban sprawl simulation and prediction. A
modeling exercisewas designed to answer the following questions:
1) do large neighborhood effects exist on urban sprawl processes?
2) if yes, how can large neighborhood rules in urban CA modeling
be calibrated? and 3) what is the expected increase in locational
accuracy of the urban CA when large neighborhoods are
incorporated?

This study addresses extended neighborhood effects on urban
dynamics by using an extended neighborhood structure that is
composed with cells with various influence weights based on their
distances from the central cell. We used the extended neighbor-
hood structure and calibrated parameter values to establish a large-
window neighborhood function. Based on this, we developed an
extended neighborhood model of urban land-use change, Logistic-
LNCA, and applied it to simulate land-use changes in Xiamen City of
China from 1990 to 2000. We then validated this method by using
independent data acquired between 2000 and 2010.

The methodology for this study is given in the next section,
together with a concise flowchart of the Logistic-LNCA model.
Simulation experiments and result evaluations are presented in
section three. Results are discussed in section four, and conclusions
and further research directions are provided in section five.

2. Modeling methods

2.1. Model calibration based on logistic regression

Urban models simulate urban morphology evolution under
various scenarios by characterizing a series of development pro-
files, which include physical attributes, socioeconomic status,
planning and zoning constraints, and the effects of complex
neighborhood interactions. Spatiotemporal models based on CA
can reveal the agglomeration effects of land use at a local scale or
the level of development through the iterative calculation of
local and simple rules. Thus, the two interrelated processes of ur-
ban land developmentdspontaneous growth and self-organized
growthdcan be reproduced in urban cellular lattices (Wu, 2002).
However, calibrating the contributions of the various aforemen-
tioned attributes to land development is a critical step to achieve
more realistic and reliable urban CA simulations. Logistic regression
or the multinomial logit model can be used to estimate the rela-
tionship between urban land-use changes and corresponding
locational features (Bishop, 2006; McCullagh and Nelder, 1989;
McMillen, 1989). More specifically, logistic regression can be seen
as a process to extract the coefficients of the empirical relationships
between observed land-use changes and driving forces in the
integration with urban CA simulation (Wu, 2002).

Sample size and sampling strategy are two basic issues that
affect the results of logistic regressions (Hirzel and Guisan, 2002;
Huang et al., 2009; Munroe et al., 2004; Xie et al., 2005). Because
sample size and resultant errors have an inverse relationship, a
large sample size can better represent the characteristics of the
study area but requires greater computing resources.

The sampling methods used in logistic regression models
generally include systematic and random sampling. Systematic
sampling can reduce spatial autocorrelation but may lose detailed
information on some relatively isolated cells. Random sampling
may better represent the population, but cannot effectively reduce
spatial autocorrelation, especially local spatial dependence (Xie
et al., 2005). A reasonable sampling scheme should maintain a
balance between spatial autocorrelation and effective population
representation (Huang et al., 2009). Considering the multiple
characteristics of urban land-use modeling, we integrated sys-
tematic and random sampling, namely, proportional random-
stratified sampling and extracted adequate samples to eliminate
the spatial dependence of the population (Xie et al., 2005).

Generally, urban land-use change models quantify the local
transition suitability of each cell from a set of demographic,
econometric, and physical factors (Arsanjani et al., 2013; Fuglsang
et al., 2013; Lauf et al., 2012). Cells with higher suitability are
given higher probabilities in transition rules. In urban expansion
simulations, the cellular space can be classified into two types,
developed cells (built-up land) and undeveloped cells (non built-up
land). The local development suitability at a location can be
considered a function of various independent spatial variables,
including elevation, slope, distance to the city center, distance to
the town center, distance to the main road, distance to the railway,
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distance to the coast, and so on. Thus, because of the binary features
of the dependent variable, it is suitable to evaluate the contribu-
tions of different driving forces to urban development using the
binary logistic regression approach (Wu, 2002). The regression
equation used to calculate local development suitability is as
follows:

Pðy ¼ 1jXÞ ¼ 1

1þ e�ða0þ
P

aXÞ (1)

where P is the probability of the dependent variable, representing
the assessed value of local development suitability; X is the vector
of the independent variables, representing a set of development
factors [spatial variables, X¼ (x1,x2,/,xk)]; and a is the vector of
estimated parameters [a ¼(a1,a2,/,ak)].
2.2. Fundamental logistic-based urban cellular automata model
(Logistic-CA)

In general, a CA primarily consists of cells, states, neighbor-
hoods, and transition rules. From the perspective of model runs,
various transition rules and their combinations form the core en-
gine that drives the changes in system state over time. The key of
this engine is the identification of various model parameters con-
tained in the transition rules, which define the characteristics of the
process represented by the transition rules. Therefore, a general
urban CA can be defined as (Verstegen et al., 2014):

Stij ¼ f
�
St�1
ij ; It ; At

�
; for each t ¼ 1;2;…; T (2)

where Stij and St�1
ij represent the state of cell (i, j) at moment t and

t�1, respectively, including built-up land, non built-up land, and
water in this paper; the vector It represents all inputs, which usu-
ally include spatial attributes and boundary conditions; the vector
At is a collection of all parameters, which constrains the contribu-
tions of various model inputs to a great extent; and f is a series of
transition rules that lead to change in the system state over time.

Given the uncertainty of urban systems, it is feasible to express
the conversion potential of a location with probability rules rather
than deterministic rules. If model inputs are further divided into
local development factors, neighborhood conditions, constraints
and stochastic disturbance factors, the probability of converting the
cell (i, j) from the undeveloped state to the developed state at
moment t can be expressed as follows (Feng et al., 2011; White and
Engelen, 1993; Wu, 2002):

Ptij ¼ ðPlÞij$ðPUÞij$conðÞ$Pr (3)

where Ptij is the total development probability of cell (i,j) at moment
t; (Pl)ij is the assessed value of local development suitability based
on a variety of spatial distance variables such as the slope or dis-
tance to the city center (in a logistic-based urban CA (Logistic-CA),
parameters for obtaining (Pl)ij are calibrated using the method
mentioned in Section 2.1 and the value of (Pl)ij is computed with Eq.
(1) (Arsanjani et al., 2013; Feng et al., 2011)); (PU)ij is the develop-
ment density of a relative small cellular neighborhood; con() is the
constraint conditions of land development in this region; and Pr is
the stochastic disturbance factor of urban evolution.

It must be noted that probabilistic transition rules can be
expressed in forms other than Eq. (3) (Lagarias, 2012; Liu et al.,
2012; Van Vliet et al., 2013). However, this research mainly refers
to the logistic regression model proposed byWu (2002), and Eq. (3)
defines the Logistic-CA model in this paper.

Neighborhoods are important factors affecting the simulation of
urban evolution. To generate a more compact space layout for land-
use change simulations, a neighborhood window (3 � 3 Moore) is
generally used to calculate interactions among different land-use
types. The neighborhood function can be defined as (Liu et al.,
2008b, 2014):

ðPUÞij ¼
P

3�3con
�
stij ¼ dev

�
3� 3� 1

(4)

where (PU)ij is the development density of the neighborhood andP
3�3

conðstij ¼ devÞ is the number of developed cells in the neigh-

borhood window.
Numerous objective development constraints such as water,

woodland, and farmland protection zones and limited planning
areas must be considered in the model, and the probability of
converting these areas to urban land is generally low. The term
conðstij ¼ suitableÞ can be used to represent the development con-
straints of the center cell. In order to simplify the calculation, the
value of con() is usually 0 or 1.

Urban expansion is influenced by various forces such as natural
and geographic factors, political factors, socioeconomic factors, and
accidental events, and it can become even more complex due to
human interventions. Therefore, to make the simulation results
better represent actual development, a stochastic disturbance fac-
tor is introduced into the model (White and Engelen, 1993).

Pr ¼ ð1þ ð�ln gÞaÞ (5)

where (1þ(�lng)a) is the stochastic factor; g is a random number in
the range of [0, 1]; and a is an integer ranging from 1 to 10 that
controls the effect of the stochastic factor (White and Engelen,
1993).

After calculating the development probability of the center cell
according to Eq. (3), a threshold value in the range of [0, 1] is
generally predefined. The model can decide whether a particular
cell is converted by comparing the development probability with
the threshold value in each iteration.

Stij ¼
(

Developed; Ptij � Pthreshold
Undeveloped; Ptij < Pthreshold

(6)

where Stij is the state of cell at moment t; Ptij is the value of devel-
opment probability; and Pthreshold is the threshold value of cellular
conversion.

2.3. Measuring large neighborhood effects and developing a new
urban CA model (Logistic-LNCA)

A key task of land-use change modeling involves identifying the
most important driving forces of urban expansion and determining
how to express these factors in the model (Hansen, 2008). Previous
research has indicated that a large neighborhood significantly in-
fluences the development of the central cell (Hagoort et al., 2008;
Hansen, 2008; Van Vliet et al., 2013). Verburg et al. (2004b)
defined a spatial indicator or enrichment factor to quantify and
analyze neighborhood characteristics. The enrichment factor is
defined as an over- or under-representation of a certain land-use
type in the neighborhood of a specific location compared with
the overall average level of this land use in the entire study area. It
can be used to calculate the neighborhood effects of all land-use
types for each neighborhood radius.

To measure the large neighborhood effect in a specific location,
we followed Verburg et al. (2004b) and modified the formula for
the enrichment factor. The extended formula was designed to
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measure the over- or under-representation of a specific land-use
type in various sub-neighborhoods with different distances to the
central cell in a relatively large neighborhood. The formula for this
extended enrichment factor is as follows:

Fi;l;
S

dj
¼

ni;l;
S

dj

.
ni;
S

dj

jNlj=jNj

[
dj ¼

([rþDr

r
dj

�����r< dj

� r þ Dr; r2ðRmin;Rmin þ Dr;Rmin þ 2Dr;…;RmaxÞ
)

(7)

where (Rmin, Rmax) is the scope of the large neighborhood, which is
divided into several sub-neighborhoods with a separation distance
Dr;

S
dj is sub-neighborhood with a specific distance to location i

and a distance range in the interval (r, rþDr); distance dj is the
Euclidean distance between two cells; (0, Rmin) represents a rela-
tively small neighborhood scope around the central cell (e.g., the
value of Rmin might be 1, 4, or 7; Fig. 1 shows the shape of the large
neighborhood used in this study); Fi;l;

S
dj
is the enrichment of land

use l on location i in the distance set
S
dj; ni;l;

S
dj
is the number of

cells of land use l located in the sub-neighborhood
S
dj of location i;

ni;
S

dj
is the total number of cells located in the sub-neighborhoodS

dj of location i; and jNlj and jNj are the number of cells with land
use l and the total number of cells in the study area, respectively.

An enrichment factor for a certain land-use type between 0 and
1 indicates an under-representation of this land-use type in the
neighborhood. For example, when the neighborhood of a particular
location contains 10% agricultural land, but the average proportion
of agricultural land in the study area is 40%, the neighborhood
model under-represents this land-use type and the enrichment
factor is 0.25, which is between 0 and 1. If the ratio of a certain land-
use type in the neighborhood is equal to the average ratio of the
study area, the value of the enrichment factor for this land-use type
in the neighborhood is equal to 1. The over-representation of a
Fig. 1. Illustration of a large neighborhood configuration in the Logistic-LNCA model.
certain land use type results in an enrichment factor greater than 1
(Verburg et al., 2004b).

Eq. (7) has been applied in several European-based studies,
which demonstrated that the location relationships of some land-
use combinations have strong correlations (Van Vliet et al., 2013;
Verburg et al., 2004a). Enrichment factors can be computed for
different land uses and specific subsets (Hansen, 2012; Van Vliet
et al., 2013). For example, Hagoort et al. (2008) calculated the
average enrichment factor for a certain land-use type over an area
at a particular moment T. To express the effects of various land-use
types on observed land-use changes during a specific period, we
assume that the set of all locations of a new land-use type k during
this period is K. Thus, the average extended enrichment factor for
the land-use set K can be calculated as follows (Van Vliet et al.,
2013; Verburg et al., 2004b):

Fk;l;
S

dj
¼ 1

jNkj
X
i2K

Fi;l;
S

dj
(8)

where jNkj is the number of cells that are changed into land use k
between T1 and T2; Fk;l;

S
dj
is the average enrichment of land use l

on all cells that are changed into land use k at a distance range
S
dj; i

is a location in land use set K; and Fi;l;
S

dj
is the extended enrich-

ment factor measured by the land use map at T1. The average
extended enrichment factor can be expressed in logarithmic
form and used to compare the over- or under-representations
of different land-use types in different subsets of a large
neighborhood.

Eq. (8) was used to test the existence of large neighborhood
effects of land-use types on the central cell i. However, character-
izing the extent of this influence requires further investigation. For
different study areas and corresponding spatial resolutions, con-
figurations of a large neighborhood may differ in size and shape. A
large neighborhood generally extends over a relatively large spatial
area, in which various attractive and repulsive effects among land-
use combinations exist. The large neighborhood can be divided into
multiple subsets via Eq. (7), and the neighborhood effects of land
use l on location i in these subsets can then be estimated. For the
purpose of investigating urban expansion dynamics in this paper,
the proposed model primarily expresses the influence of neigh-
borhood effects on central cell through neighborhood development
distributions. Therefore, the extended enrichment factor defined in
Eq. (7) is mainly used to measure the influences of built-up land on
the central cell during the model calibration stage. Thus, land use l
in Eq. (7) is limited to built-up land in Section 2.3, and the corre-
sponding subscript in the extended enrichment factor is expressed
as dev. By treating land-use changes during T1 and T2 as dependent
variable and extended enrichment factors of different neighbor-
hoods of the

S
dj distance sets as independent variables, the logistic

regressionmethod descripted in Section 2.1 can be used to calibrate
the large neighborhood effects:

Pðy ¼ 1jFÞ ¼ 1

1þ e
�
�
b0þb1Fi;dev;

S
d1
þb2Fi;dev;

S
d2
þ…þbnFi;dev;

S
dn

�

(9)

where P is development probability of cell i considering only large
neighborhood effects; F is the vector of extended enrichment fac-
tors [spatial attributes, F ¼ (Fi;dev;

S
d1
; Fi;dev;

S
d2
;/; Fi;dev;

S
dn
)]; bn is

the coefficient of a different subset of the large neighborhood;
Fi;dev;

S
dn

is the enrichment factor calculated with Eq. (7), especially

for measuring the over- or under-representation of built-up land in
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the extended neighborhood scope; and
S
dn is a subset of the

extended neighborhood.
Eq. (9) can be extended to include the effects of different land-

use types. With the increase in the spatial extent of the moving
window of the large neighborhood, there will be many indepen-
dent variables in the formula, which can be adjusted by setting the
neighborhood subset interval Dr. Thus, the large neighborhood
function can be constructed and the development probability
affected by the large neighborhood can be calculated as follows:

Pln ¼

0
BBB@ 1

1þ e
�
�
b0þb1Fi;dev;

S
d1
þb2Fi;dev;

S
d2
þ…þbnFi;dev;

S
dn

�
1
CCCA

d

(10)

where Pln is the value of the large neighborhood function; Fi;dev;
S

dn

is the same extended enrichment factor input used in Eq. (9); bn is
the parameter value in the large neighborhood module estimated
by Eq. (9); and d is a control factor used to adjust for the effect of the
large neighborhood in the urban model.

Eq. (3) is a fundamental form of constrained CA, a commonly
used model in the field of urban simulation. Conceptually, this type
of model includes the components of development suitability,
neighborhood effects, constraints, and stochastic perturbations
(White et al., 1997). Adding a large neighborhood as a moving
window to an urban CA model allows Eq. (3) to be adjusted as
follows (García et al., 2012; Li et al., 2014):

Ptij ¼ ðPlÞij$ðPUÞij$ðPlnÞij$conðÞ$Pr (11)

where Ptij is the total development probability of cell (i, j) at
moment t in the new urban CA model; (Pl)ij is the local develop-
ment suitability of cell (i, j), which is calculated with the method
proposed in Section 2.1 and has the same inputs and parameters as
the Logistic-CA model proposed in Section 2.2; (PU)ij is the impact
of the 3 � 3 kernel neighborhood at moment t�1; con() is the
constraints on urban growth at moment t�1; (Pln)ij represents large
neighborhood effects at moment t�1; and Pr is the stochastic
perturbation term. The model presented here is called Logistic-
Fig. 2. A flowchart of the urban CA model integrati
LNCA, which considers extended neighborhood effects. The
Logistic-CA model proposed in Section 2.2 does not have such
considerations.

The components/procedures of the urban CA considering large
neighborhood effects are illustrated in Fig. 2.

3. Simulation experiments and result evaluations

3.1. Experimental design

The simulation experiment was designed to include a model
calibration in 1990e2000 (Sections 3.4, 3.5, and 3.6) and an inde-
pendent validation in 2000e2010 (Section 3.7). Referring to pre-
vious studies on urban CA modeling and testing (Feng and Liu,
2013; Feng et al., 2011; Li et al., 2014; Van Vliet et al., 2013), the
generated transitional rules were applied to urban expansion
simulations during the same two periods. During the validation
stage, observed land-use changes were treated as an independent
data set and the transition rules calibrated during the first period
were used to predict urban expansion dynamics at the end of
second period (Van Vliet et al., 2013).

According to Eqs. (2) and (3), urban CA models are mainly
characterized by model inputs and parameter settings. From this
point of view, the Logistic-CA model is defined by a series of spatial
variables and corresponding parameter values used for deter-
mining local development suitability. In contrast, the Logistic-LNCA
model also includes inputs and parameters for the extended
neighborhood rule, except those for the local development suit-
ability component. During the independent validation period
(2000e2010), the parameter configurations related to the afore-
mentioned transition rules in the two urban CA models were all
obtained during the calibration period (1990e2000), and the
model inputs remained unchanged.

3.2. Study area and experimental data

Xiamen City in southeast China, with an area of 1574 km2, was
selected as the study area for this research. In 2010, Xiamen City
had a total population of 1,802,060 (Tang et al., 2013; XCSB, 2011).
ng the calibration of large neighborhood rules.
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Its urban landscape consisted of two urban centers (Siming District
and Huli District on Xiamen Island) and four sub-centers outside
the island (Jimei, Haicang, Tongan, and Xiangan). Recently, Haicang,
Jimei, and Xiangan have gradually become the new industrial
centers.

Xiamen City is one of the first four special economic zones in
China. Its urbanization has accelerated over the past three decades,
and its built-up area increased from 34.01 km2 in 1989 to 197 km2

in 2008 (Chen and Xu, 2005; XCSB, 2008). Such rapid urban
expansion poses serious challenges for the region in terms of sus-
tainable development, environmental loads, and ecosystem ser-
vices (Shaker, 2015).

Land-use maps of the study area in 1990, 2000, and 2010 were
obtained from the Institute of Remote Sensing and Digital Earth of
the Chinese Academy of Sciences. Each land-use map has a
30 � 30 m spatial resolution and includes farmland, woodland,
grassland, urban residential land, industrial land, water, and rural
areas (Fig. 3).

First, the land-use datasets from 1990 to 2000 were used to
compute the extended enrichment factors of different land-use
types in the neighborhood of residential land during the periods
of 1990e2000 and 2000e2010 and to verify the existence of
Fig. 3. Land-use patterns in Xiamen City in 1990 (a), 2000 (b), and 2010 (c). These map
neighborhood effects. Subsequently, the land-use maps from 1990,
2000, and 2010 were regrouped into three categories (built-up
land, non built-up land, and water bodies). Industrial land and
residential land were merged into built-up land, and the spatial
resolution remained unchanged during the aggregation process.
The reclassified data for 1990 and 2000 were used to calculate the
extended enrichment factor and configure the initial states of the
Logistic-LNCA model during the simulation periods.

3.3. Measuring large neighborhood effects and calibrating the
urban CA model

When measuring neighborhood effects with the enrichment
factor formula, the enrichment factors of all land-use types can be
computed for all locations of a specific type or only for locations
that have changed their land-use states/types (Van Vliet et al.,
2013). We used the second approach to calculate the enrichment
factors for each land-use type for locations that changed to indus-
trial or urban residential land during the simulation period.We also
determined the average enrichment factor through logistic trans-
formation for comparison and curve drawing in the specific
neighborhood scope.
s were used to compute enrichment factors and verify large neighborhood effects.



Fig. 4. Neighborhood characteristics (logarithm of the average extended enrichment factor, LogðFk;l;Sdj
Þ) as a function of distance for observed urban and industrial land-use

changes during 1990e2000 and 2000e2010.
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The extended enrichment factor of urban or industrial land near
new residential land was greater than that of agriculture, wood-
land, grassland, water, or rural land, but its value decreased with
distance (Fig. 4), suggesting that new urban and industrial land are
more likely to emerge in the neighborhood of urban land use than
other land-use types. The depicted enrichment factor curves indi-
cated that the influences of neighboring land-use types decrease
Table 1
Weights for various sub-neighborhoods at different distances in the large neighborhood

Simulation periods Weights for sub-neighborhoods (
S
dj)

b0 b1
[12,21]

b2
[22,31]

1990e2000 �2.273 0.348 0.180
2000e2010 �0.720 0.337 �0.044

Fig. 5. Comparison of remotely sensed (a) and simulated (b/c) land-use datasets in 2000. L
with increasing neighborhood radius. However, the measured
extended enrichment factors for urban or industrial land in certain
large neighborhood scopes (1e3 km, equal to 30e100 cells in the
neighborhood radius) of new urban land still maintained relatively
high values. The extended enrichment factor curves presented an
undulating pattern. These neighborhood characteristics demon-
strated that there was a considerably large neighborhood effect in
model.

b3
[32,41]

b4
[42,51]

b5
[52,61]

b6
[62,71]

b7
[72,81]

0.137 0.156 0.208 0.059 0.332
0.211 �0.056 0.105 0.051 0.465

ogistic-CA and Logistic-LNCA models were used for the land-use change simulations.



Table 2
Accuracy assessment of Logistic-LNCA and Logistic-CA simulations with confusion matrices generated with spatial overlays between remotely sensed reference maps and
maps simulated with Logistic-LNCA or Logistic-CA.

2000 Reference

Built-up cells Non built-up cells User's accuracy (%)

Simulation with logistic-LNCA Built-up cells 202,694 25,667 88.8
Non built-up cells 25,126 1,358,395 98.2
Producer's accuracy (%) 89.0 98.1

Overall accuracy ¼ 96.8%; Kappa coefficient ¼ 0.87

2000 Reference

Built-up cells Non built-up cells User's accuracy (%)

Simulation with logistic-CA Built-up cells 195,838 32,523 85.8
Non built-up cells 31,982 1,351,539 97.7
Producer's accuracy (%) 86.0 97.7

Overall accuracy ¼ 96.0%; Kappa coefficient ¼ 0.84
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cellular space. Compared with traditional small neighborhood
windows that generally cover several cells (for instance, 1e4 cells,
up to a 9� 9Moore neighborhood) in the neighborhood radius, it is
more appropriate to construct the transition rules of the urban CA
model using a large neighborhood.

To further estimate the influence of a particular large neigh-
borhood, the values of Dr, Rmin, and Rmax in Eq. (7) were set to 10,11,
and 81, respectively. Thus, the large neighborhood of the central
cell was divided into seven annular bands, and the radius of each
annular band was 10 cells. It is worth noting that the window size
used herewas visually obtained from Fig. 4, and its influence on the
model results is still unknown. The large neighborhood module
dynamically calculated the extended enrichment factors for the
central cell at different annular bands. Similarly, whether the cell
was to become built-up landwas treated as the dependent variable,
and 20% of the sample points were extracted through proportional
random-stratified sampling. The obtained sample data were used
to perform a binary logistic regression in SPSS. Eq. (9) was used to
calibrate the model, and parameter values of the large neighbor-
hood module were obtained.

Before executing the logistic regression calibration, the enrich-
ment factor for the large neighborhood was normalized and the
standardization was realized as:

Fnorm ¼ Forig � Fmin

Fmax � Fmin
(12)

where Fnorm is the normalized enrichment factor, ranging from 0 to
Fig. 6. Comparison of simulated urban growth patterns in Xiamen fro
1. The obtained parameter value generally estimates the relation-
ship between observed land-use changes and measured extended
enrichment factors in a sub-neighborhood. Thus, specific contri-
bution weights were given to developed cells falling in corre-
sponding neighborhood scopes in the urban CA model (Table 1).
The regions close to the central cell in the large neighborhood had
the greatest impact on its development. However, the seventh ring
scope still had a notable level of contribution.

3.4. Simulation results

The simulation of urban land-use changes was carried out with
the Logistic-LNCA model by incorporating the probability map
obtained by the large neighborhood module into a classic Logistic-
CA model. The iteration number, conversion demand, and obser-
vation time during the simulation period are important consider-
ations in urban CA simulations. An adequate iteration can help
reveal the spatial details of local interactions and generate more
accurate simulation results (Li and Yeh, 2004; Liu et al., 2008a).
Experiments revealed that 400 iterations are sufficient to allow the
Logistic-LNCAmodel to fully conduct the neighborhood calculation.
The Logistic-CA model used the same iteration number when
obtaining comparable simulated maps. As to the calculation of
transition functions (Eq. (3) for Logistic-CA and Eq. (11) for Logistic-
LNCA), the local development suitability (Pl) was updated only once
at the start of the iterations; the 3 � 3 kernel neighborhood rule
(PU) and extended neighborhood rule (Pln) were updated during
each iteration; constraint factors (con()) remained unchanged
m 2000 to 2010 using the Logistic-CA and Logistic-LNCA models.



Fig. 7. Overlaid maps of observed and simulated built-up land expansions between 2000 and 2010 using the Logistic-CA and Logistic-LNCA models.
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during model runs; and stochastic perturbations term (Pr) was also
updated during each iteration.

Both the Logistic-CA and Logistic-LNCA models determined
whether a location changed to built-up land based on the threshold
proposed in Eq. (6). The determination of the threshold of con-
version probability affects the conversion demand at each iteration
and the linear relationship between the iteration number and
observation time (Feng and Liu, 2013). We divided the total amount
of land conversion during the simulation period by the iteration
number to get the land demand converted at each iteration. Thus,
each iteration produced a specific dynamic threshold of conversion
probability. To reflect the uncertainty in urban expansion, the
parameter a, which controls the size of random variable Pr in the
random disturbance term, was set to 2 (White and Engelen, 1993).
To simplify the calculation in Eq. (11), the large neighborhood scope
(Rmin, Rmax), neighborhood subset interval Dr, and control factor d
remained unchanged during the simulation periods. In this study,
radius 1 of 3 � 3 kernel neighborhood was set for Rmin for model
comparison; a neighborhood radius of 46 cells was set for the large
neighborhood size Rmax, and a Euclidean distance of five cells was
set as the neighborhood subset interval based on a trial and error
process; and the control factor delta was set to 1 to reflect the
baseline influences of the calibrated extended neighborhood rules.
The large neighborhood size and interval here were also the
optimal settings in Table 5.

Two urban CA models, Logistic-LNCA and Logistic-CA, were
employed to simulate urban dynamics in Xiamen City, China. Using
the land-use dataset in 1990 as the initial state, we simulated land-
use change dynamics from 1990 to 2000 (Fig. 5). Based on a visual
assessment, the three maps of Xiamen City in 2000 have many
Table 3
The cell-by-cell comparison accuracies of the Logistic-CA and Logistic-LNCA models duri

2010 R

B

Simulation with logistic-LNCA Built-up cells 3
Non built-up cells 8
Producer's accuracy (%) 8

Overall accuracy ¼ 90.1%; Kappa coefficient ¼ 0.75

2010 R

B

Simulation with logistic-CA Built-up cells 3
Non built-up cells 1
Producer's accuracy (%) 7

Overall accuracy ¼ 87.9%; Kappa coefficient ¼ 0.70
similarities, but visual analysis has obvious limitations because it is
affected by the display scales and the analyst's experience.

3.5. Confusion matrix analysis

We overlaid the simulated results and reference land-use maps
obtained from remote sensing images in 2000 and conducted a
cell-by-cell comparison. We calculated the overall accuracies and
Kappa coefficients of the two land-use models with the confusion
matrix method (Liu et al., 2008a; Pontius et al., 2004) (Table 2).

The Logistic-LNCA model simulations resulted in land-use maps
with an overall accuracy of 96.8% and a Kappa coefficient of 0.87 in
2000. The overall accuracy and Kappa coefficient values were both
greater than those obtained with the Logistic-CA model. So were
the accuracies for individual land-use types, either simulation- or
reference-based (Table 2).

3.6. Independent validation

The validation of an environmental model requires observation/
reference data that have not been used for the model's develop-
ment. We configured the neighborhood rules at independent vali-
dation stages with parameter settings obtained from the model
calibration during 1990e2000. We then used both the Logistic-CA
and Logistic-LNCA models to simulate urban expansion from
2000 to 2010 under the same transition rules as in the model
calibration period. The predicted urban dynamics in 2010 are
shown in Fig. 6. Visual comparison indicated that the simulated
pattern resulting from the Logistic-LNCA model is more similar to
the reference map in 2010 than that from the Logistic-CA model.
ng the validation period from 2000 to 2010.

eference

uilt-up cells Non built-up cells User's accuracy (%)

71,016 80,531 82.2
3,825 1,118,044 93.0
1.6 93.3

eference

uilt-up cells Non built-up cells User's accuracy (%)

53,521 98,026 78.3
01,320 1,100,549 91.6
7.7 91.8



Table 4
Spatial metrics of compared observed and predicted changes during the validation period from 2000 to 2010 (Bennett et al., 2013).

Name Logistic-
CA

Logistic-
LNCA

Description Equation

Accuracy (fraction
correct)

0.906 0.923 It is heavily influenced by the most common category, usually “no event”. hitsþcorrect negatives
total

Bias score (frequency
bias)

0.985 0.985 Measures the ratio of the frequency of modeled events to that of observed events. Indicates
whether the model has a tendency to underestimate (BIAS < 1) or overestimate (BIAS > 1).

hitsþfalse alarms
hitsþmisses

Probability of detection
(hit rate)

0.554 0.631 Sensitive to hits, but ignores false alarms. Good for rare events. hits
hitsþmisses

False alarm ratio 0.438 0.360 Sensitive to false alarms, but ignores misses. false alarms
hitsþfalse alarms

Probability of false
detection (false alarm
rate)

0.069 0.057 Sensitive to false alarms, but ignores misses. false alarms
correct negativesþfalse arlams

Threat score (critical
success index, CSI)

0.387 0.466 Measures the fraction of observed cases that were correctly modeled. Penalizes both misses
and false alarms.

hits
hitsþmissesþfalse alarms

Success index 0.627 0.670 Equally weights the ability of themodel to correctly detect occurrences and non-occurrences of
events.

1
2

�
hits

hitsþmissesþ correct negatives
observed no

�
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Each of the two simulated maps was overlapped with the
reference map in 2010 (Fig. 7), and the confusion matrices were
employed to calculate simulation accuracies and Kappa coefficients
(Table 3). Producer's and user's accuracies of built-up land each
increased by 3.9% between the predictions with the Logistic-CA and
Logistic-LNCA models. The Logistic-LNCA model improved the
overall accuracy by 2.2% and the Kappa coefficient by 0.05
compared with the Logistic-CA model. This indicates that the
consideration of large neighborhood effects improved the simula-
tion capability of the urban model.

We also used the figure of merit method to measure the hit and
error distribution of the simulated maps (Chen and Pontius, 2010).
This method limits the statistical data mainly to those cells in the
simulated and observed maps that change during the simulation
periods (García et al., 2012; Sant�e et al., 2010).

The predicted correct and non-correct cells during the simu-
lated period from 2000 to 2010 were classified into six categories
(Fig. 7): no candidate gain for built-up land, non built-up land,
water, hits, misses and false alarms. Based on this classification, we
executed quantitative evaluations with seven spatial metrics
(Bennett et al., 2013) (Table 4). A comparison of these indicators
demonstrated that the simulated map generated by the Logistic-
LNCA model obtained a higher probability of detection (hit rate)
and a lower false alarm ratio and probability of false detection (false
alarm rate) than the Logistic-CA model. In addition, the Logistic-
LNCA model achieved greater threat score (critical success index
or CSI) and success index values.

The simulation iterations were set from 10 to 600 and both
models ran repeatedly with all other conditions remaining un-
changed. The simulation accuracies of the two models showed
substantial improvement with increases in iterations from 10 to
200 and remained relatively unchanged beyond 200 iterations
(Fig. 8). Moreover, the differences in the simulation accuracies
Fig. 8. Comparison of the changes in simulation accuracies and Kappa coefficients with th
Logistic-CA and Logistic-LNCA models.
between the two models grew with increases in iterations. This
suggests that increases in iterations can help the large neighbor-
hood module fully simulate the impact of neighborhood in-
teractions on urban development and result in more reliable spatial
patterns of urban expansion.
3.7. Sensitivity and performance analysis

Changes in neighborhood window size can have a significant
impact on the performance of an environmental model (Tang et al.,
2012). In order to compare with the 3 � 3 kernel neighborhood
model (Logistic-CA), Rmin in Eq. (7) was set to 1 during parameter
sensitivity analysis. Thus the extended neighborhood module has
two adjustable parameters, window size and radius interval, which
refer to Rmax and Dr in Eq. (7), respectively. A trial and error method
was used to determine the values of these two parameters during
the parameter sensitivity analysis. The extended neighborhood rule
required recalibrated according to the methods proposed in Sec-
tions 2.1 and 2.3 after the values of the two parameters changed.
Table 5 lists the effects of several different window sizes and radius
intervals on the simulation accuracies and Kappa coefficients, and
simulation results of the Logistic-CA model. When the window size
was equal to 46 cells and the radius interval is equal to five cells, the
Logistic-LNCA model achieved the highest accuracy based on the
tested parameters. The simulation results were quite different
when these two parameters were set to other values, but they were
generally more accurate than the simulations generated by the
3 � 3 kernel neighborhood model. The parameter sensitivity
analysis indicated that the parameter settings of a larger neigh-
borhood have a greater impact on simulation results. Therefore,
there must be an optimal window size and corresponding param-
eter settings in cellular space.
e increase in iterations during the validation period from 2000 to 2010 between the



Table 5
Impacts of window size (WS) and radius interval (RI) on simulation results of the Logistic-LNCAmodel and simulation results of the 3� 3 kernel neighborhoodmodel (Logistic-
CA).

1990e2000 2000e2010

Built-up (%) Overall (%) Kappa Built-up (%) Overall (%) Kappa

WS ¼ 5, RI ¼ 1 86.7 96.2 0.84 78.7 88.5 0.71
WS ¼ 9, RI ¼ 2 87.3 96.4 0.85 79.2 88.8 0.72
WS ¼ 21, RI ¼ 4 88.3 96.7 0.86 80.1 89.3 0.73
WS ¼ 46, RI ¼ 5 89.0 96.8 0.87 81.6 90.1 0.75
WS ¼ 91, RI ¼ 10 88.6 96.8 0.87 81.0 89.8 0.74
WS ¼ 151, RI ¼ 15 88.5 96.7 0.86 80.3 89.4 0.73
Logistic-CA (3 � 3) 86.0 96.0 0.84 77.7 87.9 0.70
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4. Discussion

Various evaluations indicated that the incorporation of a large
neighborhood was an effective approach to improve the urban CA
model's simulation performance. To some extent, the extended
enrichment factor proposed in this paper can be considered as a
generalization of the enrichment factor proposed by Verburg et al.
(2004b), and it is suitable to detect larger neighborhood scopes at a
specific resolution. Thus, this research may have potential contri-
butions to improve other cellular-based urban models. However,
the extended enrichment factor was mainly used to calibrate an
urban expansion model during specific simulation periods, which
only considered over- and under-representations of built-up land in
the neighborhood. A meaningful simulation practice would be to
incorporate the extended enrichment factor into a land-use urban
CA model and examine the corresponding neighborhood effects.

Simulation accuracy is an important indicator to evaluate the
performance of urban CA models but its values obtained from the
results of different models, study areas, and simulation periods can
differ significantly (Liu et al., 2008a, 2012; Sant�e et al., 2010). In this
study, the Logistic-LNCA model resulted in a 3.0% increase in the
mean producer accuracy and user accuracy of built-up land during
the calibration periods (1990e2000) and a 3.9% increase in the
validation period (2000e2010) compared with the Logistic-CA
model. These differences indicated that the urban CA model with
a large neighborhood module could better simulate urban expan-
sion. Although the overall accuracies of the two simulation periods
were relatively high (96.8% and 90.1%, respectively), their
improvement was slight (0.8% and 2.2%, respectively). This minor
improvement might indicate the limited effectiveness of large-
neighborhood considerations or could be due to the fact that
built-up landwas not the dominant land-use type in the study area.
In addition to the assessments above, we also performed error
budget assessment (Pontius et al., 2004) and enrichment factor
evaluation (Van Vliet et al., 2013). These two assessments also
indicated that the Logistic-LNCA model was superior to the
Logistic-CAmodel. Detailed information about these assessments is
available from the authors upon request.

It is essential to ensure adequate local interactions to achieve
accurate urban expansion simulations. Some studies have run CA
models at yearly time intervals, for which the land conversion
quantity in one year was constrained to the land demand at each
iteration (Wu, 2002). Thus, if the time lag between two land-use
coverage values is 5, 10, or 20 years, then the CA simulation will
proceed on a time step equal to corresponding yearly intervals. As
depicted by the curves in Fig. 8, urban CA models cannot obtain
optimum simulation results. However, some studies have sug-
gested that the discrete simulation time used in urban CAmodels is
different from continuous real time (Yeh and Li, 2006). Urban CA
models are a ‘bottomeup’ approach based on a complex system
created by the interactions of simple subsystems (Liu et al., 2007).
Local interactions are important for generating realistic urban
morphology and adequate time steps are necessary to resolve
spatial details during simulations (Yeh and Li, 2006). Therefore, we
used 400 iterations for our urban-expansion simulations.

5. Conclusions

We developed a logistic regression urban CA model by consid-
ering the effects of a relatively large surrounding cellular space or
neighborhood (Logistic-LNCA). We extended the definition of the
enrichment factor to characterize the neighborhood effects of
various sub-neighborhoods at different distances within a large
neighborhood. The curves based on the extended enrichment fac-
tors and land-use changes during the simulation period demon-
strated a strong neighborhood effect at relatively long distances
(1e3 km, equal to 30e100 cells in the neighborhood radius) from
the center. Both the Logistic-LNCA model and the traditional urban
CA model (Logistic-CA) were used to simulate the spatio-temporal
processes of urban expansion in Xiamen City, China for two periods
of time: 1990e2000 and 2000e2010. The data from the first period
were used for model calibration whereas the data from the second
period were used for model validation. The simulation results
showed that the Logistic-LNCA model could achieve higher accu-
racy values and Kappa coefficients than the Logistic-CA model
during both the calibration and validation periods. A source budget
analysis of the error budgetmethod also supported the fact that the
large neighborhood model could reconstruct historical spatial
patterns with higher agreement with the reference land-use map.

This simulation exercise indicated that the window size and
radius interval values in the large neighborhood module have
important effects on the performance of the Logistic-LNCA model.
The values of these two parameters were determined through a
trial-and-error method after setting parameter boundaries. The
simulation results varied with window sizes and radius intervals,
and their accuracies were generally better than the accuracy of the
3 � 3 kernel neighborhood model according to parameter sensi-
tivity analysis. Over- and under-representation of built-up land in
the neighborhood of new built-up land for observed and simulated
land-use changes during the calibration and validation periods
were further investigated. Results showed that the enrichment
factors measured from simulated maps of the Logistic-LNCA model
were more agreeable to the enrichment factors of observed land-
use changes. The execution of the large neighborhood model
required up to as twice computation power as that of the Logistic-
CA model.

As the large neighborhood method is suitable for logistic-based
CA modeling, it is reasonable to believe that such an approach may
be also be useful for other types of urban CA models such as the
CLUE-S model (Verburg et al., 2002), LUCIA model (Hansen, 2007),
or SLEUTHmodel (Clarke and Gaydos,1998). It would be interesting
to investigate the large neighborhood effects associated with
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various urban CA models based on artificial intelligence and
evolutionary computation. Because the study area in this research
was a typical coastal city, the large neighborhoodmodel needs to be
tested in other geographical areas to further investigate the per-
formance and application of the Logistic-LNCA model. It would also
be useful to incorporate the large neighborhoodmethod into urban
simulation models to examine multiple land-use changes and
predict their future states.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (41101143).

References

Al-Ahmadi, K., See, L., Heppenstall, A., Hogg, J., 2009. Calibration of a fuzzy cellular
automata model of urban dynamics in Saudi Arabia. Ecol. Complex. 6 (2),
80e101.

Arsanjani, J.J., Helbich, M., Kainz, W., Darvishi Boloorani, A., 2013. Integration of
logistic regression, Markov chain and cellular automata models to simulate
urban expansion. Int. J. Appl. Earth Obs. Geoinf. 21, 265e275.

Batty, M., Xie, Y., 1994. From cells to cities. Environ. Plan. B Plan. Des. 21, 531e548.
Bennett, N.D., Croke, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,

Jakeman, A.J., Marsili-Libelli, S., Newham, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer, New York.
Chen, B., Xu, H., 2005. Urban expansion and its driving force analysis using remote

sensed data a case of Xiamen city. Econ. Geogr. 25 (1), 79e83.
Chen, H., Pontius, R.G., 2010. Sensitivity of a land change model to pixel resolution

and precision of the independent variable. Environ. Model. Assess. 16 (1),
37e52.

Cheng, J., Masser, I., 2003. Urban growth pattern modeling: a case study of Wuhan
city, PR China. Landsc. Urban Plan. 62 (4), 199e217.

Clarke, K., Hoppen, S., Gaydos, L., 1997. A self-modifying cellular automaton model
of historical. Environ. Plan. B 24, 247e261.

Clarke, K.C., Gaydos, L.J., 1998. Loose-coupling a cellular automaton model and GIS:
long-term urban growth prediction for San Francisco and Washington/Balti-
more. Int. J. Geogr. Inf. Sci. 12 (7), 699e714.

Couclelis, H., 1988. Of mice and men: what rodent populations can teach us about
complex spatial dynamics. Environ. Plan. A 20 (1), 99e109.

Dai, E., Wu, S., Shi, W., Cheung, C.-k, Shaker, A., 2005. Modeling change-pattern-
value dynamics on land use: an integrated GIS and artificial neural networks
approach. Environ. Manag. 36 (4), 576e591.

Dendoncker, N., Rounsevell, M., Bogaert, P., 2007. Spatial analysis and modelling of
land use distributions in Belgium. Comput. Environ. Urban Syst. 31 (2),
188e205.

Feng, Y., Liu, Y., 2013. A heuristic cellular automata approach for modelling urban
land-use change based on simulated annealing. Int. J. Geogr. Inf. Sci. 27 (3),
449e466.

Feng, Y., Liu, Y., Tong, X., Liu, M., Deng, S., 2011. Modeling dynamic urban growth
using cellular automata and particle swarm optimization rules. Landsc. Urban
Plan. 102 (3), 188e196.

Fuglsang, M., Münier, B., Hansen, H.S., 2013. Modelling land-use effects of future
urbanization using cellular automata: an eastern Danish case. Environ. Model.
Softw. 50, 1e11.

García, A.M., Sant�e, I., Boull�on, M., Crecente, R., 2012. A comparative analysis of
cellular automata models for simulation of small urban areas in Galicia, NW
Spain. Comput. Environ. Urban Syst. 36 (4), 291e301.

Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., Hokao, K., 2011. Modeling urban land
use change by the integration of cellular automaton and Markov model. Ecol.
Model. 222 (20), 3761e3772.

Hagoort, M., Geertman, S., Ottens, H., 2008. Spatial externalities, neighbourhood
rules and CA land-use modelling. Ann. Reg. Sci. 42 (1), 39e56.

Hansen, H.S., 2007. An adaptive land-use simulation model for integrated coastal
zone planning. In: The European Information Society. Springer, pp. 35e53.

Hansen, H.S., 2008. Quantifying and analysing neighbourhood characteristics sup-
porting urban land-use modelling. In: The European Information Society.
Springer, pp. 283e299.

Hansen, H.S., 2012. Empirically derived neighbourhood rules for urban land-use
modelling. Environ. Planning-Part B 39 (2), 213.

Harrop, K.J., 1973. Nuisances and Their Externality Fields. Department of Geography,
University of Newcastle Upon Tyne.

Hewitt, R., Van Delden, H., Escobar, F., 2014. Participatory land use modelling,
pathways to an integrated approach. Environ. Model. Softw. 52, 149e165.

Hirzel, A., Guisan, A., 2002. Which is the optimal sampling strategy for habitat
suitability modelling. Ecol. Model. 157 (2), 331e341.

Hu, Z., Lo, C., 2007. Modeling urban growth in Atlanta using logistic regression.
Comput. Environ. Urban Syst. 31 (6), 667e688.
Huang, B., Zhang, L., Wu, B., 2009. Spatiotemporal analysis of ruraleurban land

conversion. Int. J. Geogr. Inf. Sci. 23 (3), 379e398.
Kocabas, V., Dragicevic, S., 2007. Enhancing a GIS cellular automata model of land

use change: Bayesian networks, influence diagrams and causality. Trans. GIS 11
(5), 681e702.

Krugman, P., 1999. The role of geography in development. Int. Reg. Sci. Rev. 22 (2),
142e161.

Lagarias, A., 2012. Urban sprawl simulation linking macro-scale processes to micro-
dynamics through cellular automata, an application in Thessaloniki, Greece.
Appl. Geogr. 34, 146e160.

Lauf, S., Haase, D., Hostert, P., Lakes, T., Kleinschmit, B., 2012. Uncovering land-use
dynamics driven by human decision-makingea combined model approach
using cellular automata and system dynamics. Environ. Model. Softw. 27,
71e82.

Li, X., Yeh, A.G.-O., 2000. Modelling sustainable urban development by the inte-
gration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Sci. 14 (2),
131e152.

Li, X., Yeh, A.G.-O., 2002. Integration of principal components analysis and cellular
automata for spatial decisionmaking and urban simulation. Sci. China Ser. D
Earth Sci. 45 (6), 521e529.

Li, X., Yeh, A.G.-O., 2004. Data mining of cellular automata's transition rules. Int. J.
Geogr. Inf. Sci. 18 (8), 723e744.

Li, X., Liu, X., Yu, L., 2014. A systematic sensitivity analysis of constrained cellular
automata model for urban growth simulation based on different transition
rules. Int. J. Geogr. Inf. Sci. 28 (7), 1317e1335.

Liao, J., Tang, L., Shao, G., Qiu, Q., Wang, C., Zheng, S., Su, X., 2014. A neighbor decay
cellular automata approach for simulating urban expansion based on particle
swarm intelligence. Int. J. Geogr. Inf. Sci. 28 (4), 720e738.

Liu, X., Li, X., Yeh, A.G.-O., He, J., Tao, J., 2007. Discovery of transition rules for
geographical cellular automata by using ant colony optimization. Sci. China Ser.
D Earth Sci. 50 (10), 1578e1588.

Liu, X., Li, X., Liu, L., He, J., Ai, B., 2008a. A bottom-up approach to discover transition
rules of cellular automata using ant intelligence. Int. J. Geogr. Inf. Sci. 22
(11e12), 1247e1269.

Liu, X., Li, X., Shi, X., Wu, S., Liu, T., 2008b. Simulating complex urban development
using kernel-based non-linear cellular automata. Ecol. Model. 211 (1e2),
169e181.

Liu, X., Ma, L., Li, X., Ai, B., Li, S., He, Z., 2014. Simulating urban growth by integrating
landscape expansion index (LEI) and cellular automata. Int. J. Geogr. Inf. Sci. 28
(1), 148e163.

Liu, Y., Yang, S., Chen, J., 2012. Modeling environmental impacts of urban expansion:
a systematic method for dealing with uncertainties. Environ. Sci. Technol. 46
(15), 8236e8243.

Mas, J.-F., Kolb, M., Paegelow, M., Camacho Olmedo, M.T., Houet, T., 2014. Inductive
pattern-based land use/cover change models: a comparison of four software
packages. Environ. Model. Softw. 51, 94e111.

McCullagh, P., Nelder, J., 1989. Generalized Linear Models. CRC Press, Boca Raton.
McMillen, D.P., 1989. An empirical model of urban fringe land use. Land Econ.

138e145.
Munroe, D.K., Southworth, J., Tucker, C.M., 2004. Modeling spatially and temporally

complex land-cover change: the case of western Honduras*. Prof. Geogr. 56 (4),
544e559.

Pan, Y., Roth, A., Yu, Z., Doluschitz, R., 2010. The impact of variation in scale on the
behavior of a cellular automata used for land use change modeling. Computers.
Environ. Urban Syst. 34 (5), 400e408.

Pontius, J., Robert, G., Huffaker, D., Denman, K., 2004. Useful techniques of valida-
tion for spatially explicit land-change models. Ecol. Model. 179 (4), 445e461.

Rodrigue, J.P., 2004. Transport Geography on TheWeb. Department of Economics
and Geography, Hofstra University, New York.

Sant�e, I., García, A.M., Miranda, D., Crecente, R., 2010. Cellular automata models for
the simulation of real-world urban processes: a review and analysis. Landsc.
Urban Plan. 96 (2), 108e122.

Shaker, R.R., 2015. The well-being of nations: an empirical assessment of sustain-
able urbanization for Europe. Int. J. Sustain. Dev. World Ecol. 22 (5), 375e387.

Stevens, D., Dragicevic, S., Rothley, K., 2007. iCity: a GISeCA modelling tool for urban
planning and decision making. Environ. Model. Softw. 22 (6), 761e773.

Takeyama, M., Couclelis, H., 1997. Map dynamics: integrating cellular automata and
GIS through geo-algebra. Int. J. Geogr. Inf. Sci. 11 (1), 73e91.

Tang, L., Zhao, Y., Yin, K., Zhao, J., 2013. In: City Profile: Xiamen. Cities, 31,
pp. 615e624.

Tang, L., Su, X., Shao, G., Zhang, H., Zhao, J., 2012. A Clustering-Assisted Regression
(CAR) approach for developing spatial climate data sets in China. Environ.
Model. Softw. 38, 122e128.

Tobler, W., 1979. Cellular geography. In: Philosophy in Geography. Springer,
pp. 379e386.

Van Vliet, J., Naus, N., Van Lammeren, R.J., Bregt, A.K., Hurkens, J., Van Delden, H.,
2013. Measuring the neighbourhood effect to calibrate land use models. Com-
put. Environ. Urban Syst. 41, 55e64.

Verburg, P.H., Van Eck, J.R., de Nijs, T.C., Dijst, M.J., Schot, P., 2004a. Determinants of
land-use change patterns in the Netherlands. Environ. Plan. B 31 (1), 125e150.

Verburg, P.H., de Nijs, T., Ritsema van Eck, J., Visser, H., de Jong, K., 2004b. A method
to analyse neighbourhood characteristics of land use patterns. Comput. Environ.
urban Syst. 28 (6), 667e690.

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.S.,

http://refhub.elsevier.com/S1364-8152(15)30072-4/sref1
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref1
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref1
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref1
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref2
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref2
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref2
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref2
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref3
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref3
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref4
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref4
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref4
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref4
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref4
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref4
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref5
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref6
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref6
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref6
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref7
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref7
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref7
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref7
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref8
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref8
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref8
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref9
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref9
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref9
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref10
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref10
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref10
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref10
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref11
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref11
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref11
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref12
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref12
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref12
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref12
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref13
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref13
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref13
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref13
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref14
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref14
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref14
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref14
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref15
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref15
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref15
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref15
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref17
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref17
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref17
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref17
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref18
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref18
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref18
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref18
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref18
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref18
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref19
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref19
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref19
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref19
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref20
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref20
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref20
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref21
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref21
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref21
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref22
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref22
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref22
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref22
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref23
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref23
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref24
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref24
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref25
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref25
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref25
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref26
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref26
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref26
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref27
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref27
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref27
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref28
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref28
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref28
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref28
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref29
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref29
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref29
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref29
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref30
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref30
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref30
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref31
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref31
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref31
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref31
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref32
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref32
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref32
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref32
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref32
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref32
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref33
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref33
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref33
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref33
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref34
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref34
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref34
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref34
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref35
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref35
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref35
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref36
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref36
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref36
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref36
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref37
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref37
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref37
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref37
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref38
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref38
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref38
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref38
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref39
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref39
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref39
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref39
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref39
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref40
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref40
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref40
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref40
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref40
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref41
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref41
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref41
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref41
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref42
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref42
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref42
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref42
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref43
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref43
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref43
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref43
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref44
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref45
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref45
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref45
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref46
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref46
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref46
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref46
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref47
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref47
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref47
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref47
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref48
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref48
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref48
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref49
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref49
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref50
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref50
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref50
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref50
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref50
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref51
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref51
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref51
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref52
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref52
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref52
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref52
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref53
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref53
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref53
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref54
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref54
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref54
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref55
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref55
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref55
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref55
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref56
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref56
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref56
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref57
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref57
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref57
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref57
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref58
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref58
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref58
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref59
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref59
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref59
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref59
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref60


J. Liao et al. / Environmental Modelling & Software 75 (2016) 163e175 175
2002. Modeling the spatial dynamics of regional land use: the CLUE-S model.
Environ. Manag. 30 (3), 391e405.

Verstegen, J.A., Karssenberg, D., Van Der Hilst, F., Faaij, A.P., 2014. Identifying a land
use change cellular automaton by Bayesian data assimilation. Environ. Model.
Softw. 53, 121e136.

Wang, H., He, S., Liu, X., Dai, L., Pan, P., Hong, S., Zhang, W., 2013. Simulating urban
expansion using a cloud-based cellular automata model: a case study of
Jiangxia, Wuhan, China. Landsc. Urban Plan. 110, 99e112.

White, R., Engelen, G., 1993. Cellular automata and fractal urban form: a cellular
modelling approach to the evolution of urban land-use patterns. Environ. Plan.
A 25 (8), 1175e1199.

White, R., Engelen, G., 2000. High-resolution integrated modelling of the spatial
dynamics of urban and regional systems. Comput. Environ. urban Syst. 24 (5),
383e400.

White, R., Engelen, G., 2003. A calibration procedure for constrained large neigh-
bourhood cellular automata based land use models. In: 13th European Collo-
quium on Theoretical and Quantitative Geography, Lucca, Italy.

White, R., Engelen, G., Uljee, I., 1997. The use of constrained cellular automata for
high-resolution modelling of urban land-use dynamics. Environ. Plan. B 24,
323e344.
Wu, F., 2002. Calibration of stochastic cellular automata: the application to rural-
urban land conversions. Int. J. Geogr. Inf. Sci. 16 (8), 795e818.

Wu, F., Webster, C.J., 1998. Simulation of land development through the integration
of cellular automata and multicriteria evaluation. Environ. Plan. B 25, 103e126.

XCSB, 2008. Xiamen City Statistics Bureau and National Bureau of Statistics of China
(XCSB). In: Yearbook of Xiamen Special Economic Zone in 2008. China Statistics
Press, Beijing. http://www.stats-xm.gov.cn/2008/.

XCSB, 2011. Xiamen City Statistics Bureau and National Bureau of Statistics of China
(XCSB). In: Yearbook of Xiamen Special Economic Zone in 2011. China Statistics
Press, Beijing. http://www.stats-xm.gov.cn/2011/.

Xie, C., Huang, B., Claramunt, C., Chandramouli, C., 2005. Spatial logistic regression
and gis to model rural-urban land conversion. In: Proceedings of PROCESSUS
Second International Colloquium on the Behavioural Foundations of Integrated
Land-use and Transportation Models: Frameworks, Models and Applications,
pp. 12e15.

Yang, Q., Li, X., Shi, X., 2008. Cellular automata for simulating land use changes
based on support vector machines. Comput. Geosci. 34 (6), 592e602.

Yeh, A.G.-O., Li, X., 2006. Errors and uncertainties in urban cellular automata.
Comput. Environ. Urban Syst. 30 (1), 10e28.

http://refhub.elsevier.com/S1364-8152(15)30072-4/sref60
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref60
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref60
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref61
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref61
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref61
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref61
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref62
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref62
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref62
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref62
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref63
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref63
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref63
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref63
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref64
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref64
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref64
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref64
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref65
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref65
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref65
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref66
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref66
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref66
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref66
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref67
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref67
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref67
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref68
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref68
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref68
http://www.stats-xm.gov.cn/2008/
http://www.stats-xm.gov.cn/2011/
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref71
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref71
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref71
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref71
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref71
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref71
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref72
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref72
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref72
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref73
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref73
http://refhub.elsevier.com/S1364-8152(15)30072-4/sref73

	Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations
	1. Introduction
	2. Modeling methods
	2.1. Model calibration based on logistic regression
	2.2. Fundamental logistic-based urban cellular automata model (Logistic-CA)
	2.3. Measuring large neighborhood effects and developing a new urban CA model (Logistic-LNCA)

	3. Simulation experiments and result evaluations
	3.1. Experimental design
	3.2. Study area and experimental data
	3.3. Measuring large neighborhood effects and calibrating the urban CA model
	3.4. Simulation results
	3.5. Confusion matrix analysis
	3.6. Independent validation
	3.7. Sensitivity and performance analysis

	4. Discussion
	5. Conclusions
	Acknowledgments
	References


