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The Advanced Pore Morphology (APM) process, a new method for production of aluminum
foam-polymer hybrid materials, is described. Small volume aluminum foam spheres are
produced first and then adhesively joined in a separate process step to realize an APM foam
part. Detailed information on mechanical properties of this new hybrid material is given.
Results of uniaxial and hydrostatic compression tests are summarized and evaluated to
show how typical parameters characterizing material and process such as spatial arrange-
ment, size and density of the foam elements influence the global properties. Two levels of
the hierarchical architecture of the material are evaluated—namely the individual foam
spheres and the hybrid structure. Variation of adhesives and adhesive coating thickness
used in bonding the spheres in conjunction with study of unbonded specimens provides
additional insight in the influence of this bond. First estimates on density dependence of
mechanical properties are derived from the experimental data. Distinctive differences
between APM and conventional aluminum foams are qualitatively explained. Throughout
the study, AlSi7 aluminum foam produced from chemically identical precursor material
according to the powder metallurgical FOAMINAL� process is included as reference
material.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their unique property combination of low density, competitive weight specific mechanical properties and high
energy absorption capability, aluminum foams can, e.g., be applied in automotive structures to improve their crashworthi-
ness (Rausch and Stöbener, 2006). Among the drawbacks of today’s preferred production method, the powder metallurgical
Fraunhofer process (FOAMINAL�), which is based on a precursor material incorporating a foaming agent (Baumeister, 1990),
are relatively high production costs as well as a certain scatter in material properties. The latter is induced by stochastic
influences on the production process which are reflected in the final pore structure, affecting characteristics such as pore
size distribution, cell wall shape or degree of cell wall cracking, which in turn impinge on mechanical response (Andrews
et al., 1999; Markaki and Clyne, 2001; Issen et al., 2005). The precursor material is expanded in moulds which shape the
developing, liquid foam by limiting its growth. During cooling the foam retains its shape until solid and may thus be used
without significant post-processing (net shape manufacturing technology). In this process chain the use of foaming moulds
increases production costs and limits flexibility, since design evolutions requiring changes in foam part geometry call for a
new foaming mould, or an adaptation of the existing one.
. All rights reserved.

. Stöbener).

mailto:stoebener@ifam.fraunhofer.de
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


5628 K. Stöbener et al. / International Journal of Solids and Structures 45 (2008) 5627–5641
With the Advanced Pore Morphology (APM) approach, a new process route has been developed which allows for produc-
tion of aluminum foam-polymer hybrids without a need for foaming moulds (Stöbener et al., 2005). These hybrids consist of
numerous small volume aluminum foam elements with spherical geometry (volume <1 cm3). Such foam elements can be
expanded on a flat surface. Surface tension then draws the liquid foam into a spherical shape. Due to this simple geometry
the foam expansion process is well controllable. As a result, high reproducibility of foam density and homogeneity of pore
structure is achieved. Coated with a thermoplastic polymer/adhesive, which is non-tacky at room temperature, foam ele-
ments can directly be poured into a hollow structure (e.g., automotive A-pillar, sill, etc.). Once the adhesive coating is acti-
vated (molten/cured) by low temperature heating (usually below 200 �C), the polymer turns liquid and neighboring
elements merge at contact points. In a similar way, adherence of the liquid polymer to the inner surface of the surrounding
structure is achieved. After cooling down to room temperature, the solidified polymer forms joints bonding the foam ele-
ments to each other and to the inner surface of the shell structure (Fig. 1, middle and right). As a consequence of this sim-
plified process, production may be automated, and flexibility in manufacturing of aluminum foam parts is greatly increased.
Both aspects contribute to a significant cost reduction potential in aluminum foam application.

2. Objectives

For application in energy absorption the deformation behavior of the newly developed aluminum foam-polymer hybrids
needs to be understood. To provide fundamental knowledge of this kind is the primary objective of the present study.

To this end, experimental results have been gathered on two different levels of geometrical scale, i.e. the levels of the
individual foam spheres and of APM hybrid material samples. Uniaxial and hydrostatic testing of selected aluminum
foam-polymer hybrid samples shall provide a first insight into the role of the following parameters:

� foam element volume/diameter
� foam element density
� type and thickness of polymer/adhesive coating

A comparison of test results with the deformation pattern of conventionally produced aluminum foams is meant to show
if and how the elemental build-up of APM foams governs the respective response of this material.

3. Samples and experiments

3.1. Samples

3.1.1. Aluminum foam elements
The matrix alloy of all investigated samples was AlSi7. Starting from powders, compaction was done according to the

CONFORM� process, a specific powder rolling method, to achieve a gas tight and expandable precursor material wire. Foa-
mability was ensured by addition of a foaming agent (0.5 wt% TiH2) to the initial powder mixture. The precursor material
was cut into small volume granules, which were finally expanded into spherical foam elements by heating above their melt-
ing point (approximately 700 �C for 3–5 min.) in a continuous belt furnace. The element geometry is not perfectly spherical
since gravity forces deform the liquid aluminum foam (situated on the flat furnace belt surface) resulting in an elliptic cross
section (Fig. 2). Semi-major axis (parallel to belt surface) is between 14.2% and 20.4% larger than semi-minor axis (perpen-
dicular to belt surface). Average diameter of the investigated foam elements was between approx. 5 and 15 mm.
Fig. 1. Aluminum foam elements of approximately 10 mm diameter (left), foam elements and filled structure (middle) and cross section of automotive
transverse control arm with aluminum foam-polymer hybrid core (right).



Fig. 2. Cross sections of aluminum foam elements of different sizes but similar overall density.
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Fig. 2 further illustrates that the pore size and morphology does not depend significantly on the element volume. Small
volume elements therefore contain fewer pores than larger volume elements.

3.1.2. Adhesives and generation of aluminum foam-polymer hybrids
To join the foam elements to each other and thus to achieve the desired aluminum foam-polymer hybrid material two

types of adhesive were employed:
Polyamide 12 (short: PA) is a thermoplastic polymer used, e.g., as anti-corrosion coating on metal components. It is a duc-

tile material with 49 MPa tensile strength and 311% elongation at break. Mechanical properties under compressive load were
not available to the authors. PA 12 melts at 176 �C and wets aluminum surfaces well (Degussa, 2004).

Araldite AT 1-1 (short: EP) is a single component thermoplastic reaction adhesive (epoxy) used for structural bonding. It
exhibits 34 MPa tensile transverse resistance and 68 MPa elastic compression limit. Melting of Araldite AT 1-1 is initiated at
70 �C, while curing starts at 120 �C, following which the material remains thermally stable up to 180 �C (Vantico, 2001).

For coating, foam elements were heated well above the melting point of the employed adhesive and poured into a fluid-
ized bed of adhesive powder (fluidized by compressed air supply). Once the polymer particles make contact with the hot
foam element surface, they melt and build up a surface film. The coating thickness can be adjusted via the foam element
temperature prior to entering the powder bed. Coating with the PA adhesive was done in three different thicknesses, but
maintaining a constant ratio between coating thickness b and foam element diameter D (b/D = 5 � 10�3; 15 � 10�3 and
29 � 10�3). With the EP adhesive one coating thickness (b/D = 10 � 10�3) has been realized.

For production of the aluminum foam-polymer hybrids, coated foam elements were poured into cylindrical moulds. The
random element arrangement was densified by means of vibration. By subsequent heating to approximately 180 �C the coat-
ing was molten and cured (the latter only in the case of EP). The liquid polymer coatings merge at contact points between
neighboring foam elements, finally constituting solid polymer joints between foam elements. Adhesion to the mould surface
was inhibited using PTFE foil. Activation of the adhesive results in a further densification of the random foam element
arrangement up to a level of 10%, depending on the coating thickness. This effect can be explained by assuming that under
the influence of gravity the liquid polymer coating is displaced at contact points between neighboring foam spheres. The
effective foam element diameter thus decreases to the level associated with the uncoated foam elements, leading to the ob-
served volume reduction. In the course of this process, new displacement paths may be opened for a rearrangement of the
spheres, a development which will once again lead to higher packing density.

According to this method samples for mechanical testing were produced from adhesive coated aluminum foam elements
with diameters of approximately 5, 7, 10 and 15 mm. A circular aluminum extrusion profile has been employed as mould to
shape the aluminum foam-polymer hybrid samples in cylindrical geometry (diameter = 50 mm) during the adhesive bond-
ing processing step. Contact and adhesive bonding of foam elements to the inner surface of the profile has been inhibited by
a thin PTFE foil. Samples were finally cut to lengths of 75 mm for uniaxial and 50 mm for hydrostatic testing.

3.1.3. Reference samples
As reference material, conventional Fraunhofer type AlSi7 foam (Fig. 3) samples were produced from precursor material

identical in chemical composition to that used in the making of small volume aluminum foam elements. Compaction was
based on cold isostatic pressing and subsequent hot extrusion of the powder mixture (FOAMINAL� process). The samples
tested were cubic with dimensions of 41 � 41 � 41 mm3 for uniaxial compression and cylindrical with 41 mm diameter
at 41 mm height for hydrostatic testing. They were cut from larger samples in order to remove the closed skin usually devel-
oped in this kind of foam during expansion and in contact with the mould. A detailed review of an extended test program
performed on conventional aluminum foam samples of this kind has been provided by Avalle (Avalle et al., 2004).

3.2. Test procedures

3.2.1. Uniaxial compression testing
Single foam elements as well as adhesively bonded aluminum foam-polymer hybrid samples were tested in a universal

testing machine (Zwick A 1472) between two flat and parallel plates. In a second test series loose foam elements (bulk) and
adhesively bonded aluminum foam-polymer hybrid samples were subjected to confined compression in a cylindrical die.
Testing samples in a closed die almost completely inhibits transverse straining more comparable to foam application as core
in shell structures. The aluminum foam-polymer hybrid samples diameter was approximately 0.1–0.2 mm smaller than the



Fig. 3. Reference material: FOAMINAL� aluminum foam (closed cell porosity, closed surface skin).
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inner diameter of the test die. This minimum space for transverse straining (max. 0.4%) must be taken into account when
interpreting test results from confined compression. Initial modulus and yielding are mainly affected by this transverse
straining. Consequently, the initial modulus has not been analyzed. For analysis of the transition from quasi-elastic to plastic
deformation (yielding) sample transverse straining needs to be considered. In all confined compression tests, the inner die
and stamp surfaces were coated with high pressure resistant lubricant. Remaining forces from friction between sample and
die, as well as between stamp and die, can in principle affect the experimental measurements and cannot be extracted, since
no exact values of either friction coefficients or Poisson’s ratio of the aluminum foam-polymer hybrid sample material are
available. Effects of this kind will be discussed qualitatively in the results section (chapter 4).

3.2.2. Hydrostatic compression testing
Hydrostatic compression tests were performed only on selected sample types with foam element diameters of 7 and (pre-

dominantly) 10 mm.
The tests were executed by means of a custom made test chamber consisting of a steel tube (140 mm external diameter,

90 mm internal diameter) closed by a couple of flanges fastened by a series of bolts (Fig. 4). The chamber is filled with a
nearly incompressible fluid, namely water with added ethylene glycol. Pressure is generated by the relative movement of
two rods connected to a general purpose hydraulic testing machine (DARTEC HA100, with 100 kN maximum load, 0.1 m/s
maximum speed, 100 mm travel). The rods, one fixed, the other sliding into the chamber, pass through sealed holes in
the test chamber flanges. The pressure, which is also the hydrostatic stress applied to the sample, is indirectly measured
by means of the machine load cell. Some direct measurements of the pressure inside the chamber were also performed: since
low friction seals are adopted, the differences observed in comparison to the indirect measurements were negligible. There-
fore, in the present tests only indirect measurements were used. The volumetric strain is related to the stroke of the rod into
the chamber. To compensate for the remaining, though very low, compressibility of the fluid, correction curves have been
measured and accounted for in all subsequent measurements.

To exert a hydrostatic stress on the sample the loading fluid must be completely separated from it. Otherwise the indi-
vidual spheres, or the base material itself in the case of open cells, rather than the foam will be loaded in hydrostatic com-
pression. The separation was practically obtained using a strong PVC sheath internally and an external latex pouch. The PVC
jacket was necessary to avoid tearing of the latex pouch.

Fig. 5 shows a foam sample before insertion into the chamber, and two (one PA and one EP bonded) samples after the test.
A simple visual examination reveals the inhomogeneous deformation of the sample caused by the specimen geometry and,
to a lesser extent in this case, material anisotropy.

4. Results

4.1. Unconfined uniaxial compression

4.1.1. Aluminum foam elements—experimental results
Individual aluminum foam elements differ from samples usually tested in being of spherical or ellipsoidal geometry. The

contact area between element and stamps depends on sample deformation. Fig. 6 depicts a foam element (D = 10 mm) at



Fig. 4. Test chamber for hydrostatic tests: (a) schematic representation of the system (left); (b) the test chamber mounted on the DARTEC HA100 testing
machine (right).

Fig. 5. (a) An aluminum foam-polymer hybrid sample just before insertion in the hydrostatic loading chamber (left); (b and c) APM foam sample after the
hydrostatic test (middle: D = 10 mm, Polyamide 12, b/D = 29 � 10�3, 0.41 g/cm3; right: D = 10 mm, Araldite AT 1-1, b/D = 10 � 10�3, 0.41 g/cm3).
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various global compression states (in the following, global compression or global compressive strain are defined as stamp
deflection related to semi-minor axis of the elliptical cross section parallel to loading direction). The stamps flatten the for-
mer, near spherical shape. At 60% global compression cracking of the formerly closed surface skin is visible. Occurrence of
similar effects at lower strain levels is possible, but cannot be directly observed owing to the deformed geometry.

Associated force-compressive strain curves are shown in Fig. 7, where different aluminum foam densities and element
diameters are contrasted. Naturally, higher density increases the force level at constant element volume. Larger foam ele-
ment volume also resulted in increased deformation resistance and force levels.



Fig. 6. Compression states of a single aluminum foam element (D = 10 mm) in uniaxial compression.
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Obviously, the cross section in the direction of loading is non-uniform. Deformation is likely to start at the contact points
between loading plates and specimen, i.e., foam sphere. The element is then progressively compressed, with plastic straining
occurring primarily in the momentarily smallest cross sectional area. Fig. 6 perfectly reflects this pattern: The initial ellipsoid
is effectively flattened from both load introduction points towards the centre plane. Several other aspects are superimposed
to this general behavior. Acting in part against the described course of events is strain hardening, since it serves to strengthen
those areas within the foam which suffer the highest levels of deformation. Besides, like conventional aluminum foams, the
foam spheres are characterized by a closed outer skin, which constitutes a density gradient from core to surface. An addi-
tional structural resistance from this skin is expected but cannot be quantified due to irregular shape and interaction with
the cellular structure in the element volume.

An average global compressive stress in the plateau region (between approx. 20% and 40% global compressive strain) is
estimated by relating compressive forces to the contact area between deformed foam element and stamp (Fig. 8). This con-
tact area is estimated from the base area of the deformed ellipsoid segment. Comparison with experimentally determined
contact areas has proved sufficient accuracy of this area approximation. Average compressive stress values determine a
power law dependency on the relative foam density rrel (eq. 1; C = material constant, n � 1.5) as developed by Ashby
et al. (2000) for conventional closed cell aluminum foams. A significant influence of the foam element volume/diameter
on the stress level is not substantiated. Average global compressive stresses are marginally lower than those of larger volume
but equal density aluminum foam (FOAMINAL�) samples. This minor discrepancy is not attributed to element volume or
geometry. It is considered more likely, that the accuracy of the chosen stress approximation is limited.
r ¼ C � qn
rel ð1Þ
4.1.2. Aluminum foam-polymer hybrid materials—experimental results
Testing of APM foams under uniaxial loads between two parallel load plates gives a first insight into the basic deformation

mechanisms of this hybrid material and confirms a major role for all components of the hybrid. Adhesive joints between
foam elements turned out to be of primary importance for the overall deformation pattern, whereas foam element volume
and density had no influence in this respect. PA bonded samples with highest polymer coating thickness (b/D = 29 � 10�3)
deformed as a continuum (Fig. 9).
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A reduction of the PA coating thickness (b/D = 5 � 103 and b/D = 15 � 10�3) weakened the joints between the foam ele-
ments, resulting in disintegration of the hybrid structure at low global strain levels (Fig. 10, left). In this failure mode, the
separation planes lie within the polymer and thus between foam elements. Bonding foam elements via the alternative epoxy
resin (Araldite AT 1-1) leads to a third deformation pattern. The sample volume is first compressed as a continuum. Starting
at approximately 35–40% global strain, macroscopic cracking occurs. In this case, the polymeric joint is stronger than the
aluminum foam: Cracks run through the foam element volume (Fig. 10, right).

Fig. 11 displays compressive stress vs. global compressive strain graphs of two representative samples which did not dis-
integrate during compression. An influence of the adhesive type and/or coating thickness on the stress level is distinguish-
able and matches qualitatively the relative tensile strength of the adhesives as specified by the suppliers (see chapter 3.1.2).
For EP bonded samples, local cracking of aluminum foam elements started at approximately 35–40%. Thus, global compres-
sive strain caused a loss in deformation resistance resulting in a decreasing nominal stress level.

Compared to the plastic response, elastic properties even of conventional aluminum foams are difficult to establish, since
the initial slope of the stress–strain curve in uniaxial compression of aluminum foams is not truly of elastic nature (Ashby
et al., 2000). It is known, for example, that closed cell foams show direct plastic deformation in the pore structure at defects,
irregularly shaped pores, etc. (Huschka et al., 1997; Simancik et al., 1997; Degischer and Kottar, 1999). Ashby et al. (2000)
therefore recommend determining the stiffness (Young’s modulus) from the slope of an unloading curve. In following this
procedure, aluminum foam-polymer hybrid samples were unloaded at defined compression states (5%, 10%, 20%, 30%,
40% and 50%) during uniaxial compression between two flat plates. Fig. 12 displays average stiffness in terms of an elastic
modulus determined between 5% and 30% global compressive strain on samples that did neither disintegrate nor crack. All
these values are approximately one order of magnitude higher than the initial slopes of the associated experimental stress–
strain curves. Type of coating, coating thickness and sample density are the main influencing factors. Increasing coating
thickness or foam element density resulted in a stiffness increase. In contrast, the volume/diameter of the employed foam
elements did not show a direct influence. Stiffness also increased with accumulated sample compression (>30%). Results
Fig. 9. PA bonded APM foams (b/D = 29 � 10�3) during uniaxial compression (nominal engineering compressive strain chosen as strain measure).



Fig. 10. Failure of adhesive bonding (left; PA; b/D = 5 � 10�3and b/D = 15 � 10�3) and rupture within the aluminum foam element volume (right; EP, b/
D = 10 � 10�3).
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gathered at this and higher levels of deformation have not been considered for calculation of average stiffness values since
here the characteristic inner sample structure and specifically the fraction of interconnected porosity between foam ele-
ments is almost completely densified. Experiments of this kind have been performed on conventional aluminum foams of
the same matrix alloy in the past (Avalle et al., 2004). From these, the elastic modulus can be estimated to be 1595 MPa
for a density of 0.4 g/cm3 and 3589 MPa at 0.6 g/cm3 assuming a scaling of stiffness with the square of density, as has been
suggested by Gibson and Ashby (Gibson and Ashby, 1997). Using the same dependency on density squared, the tangent mod-
ulus or maximum slope of the stress–strain curve in the elasto-plastic region turns out to lie between 266 and 597 MPa for
conventional aluminum foam in the same density range. On average, weight specific stiffness of these foams is thus at least
twice as high as that of APM materials when looking at results gained from unloading/reloading cycles. An explanation may
once more be based on the elemental build-up of the hybrid material and the consequential progressive deformation of the
individual foam spheres. The fact as such is put into perspective, though, by the exceedingly high scatter of data observed in
the stiffness evaluation of conventional aluminum foams.

4.2. Confined uniaxial compression

Further investigations of the deformation behavior of aluminum foam-polymer hybrids have been conducted under con-
ditions of confined compression. The samples were uniaxially compressed in a closed cylindrical steel die between two steel
stamps. This experimental configuration allowed for additional testing of pure aluminum foam element bulks without adhe-
sive bonding, since the die enclosed the sample volume completely. Samples (not bonded and adhesively bonded foam ele-
ments) were prepared from foam elements with diameters 5, 10 and 15 mm. For samples made from larger elements (10 and
15 mm) the cylindrical test cavity (diameter = 50 mm, height = 75 mm) was only coarsely filled and random element



0

200

400

600

800

1000

1200

1400

Polyamide 12; 29 x10-3 Polyamide 12; 29 x10-3 Araldite AT 1-1; 10 x10-3

Polymer type and b/D-ratio

A
ve

ra
g

e 
st

if
fn

es
s 

[M
P

a]
(d

et
. b

et
w

. 5
%

 to
 3

0%
 g

lo
ba

l c
om

pr
. s

tr
ai

n) D = 5 mm
D = 10 mm
D = 15 mm

0.
49

 g
/c

m
3

0.
44

 g
/c

m
3

0.
38

 g
/c

m
3

0.
59

 g
/c

m
3

0.
54

 g
/c

m
3

0.
49

 g
/c

m
3

0.
44

 g
/c

m
3

0.
41

 g
/c

m
3

0.
34

 g
/c

m
3

Fig. 12. Average stiffness of aluminum foam-polymer hybrid samples, determined from unloading curves at defined levels of global compressive strain.

K. Stöbener et al. / International Journal of Solids and Structures 45 (2008) 5627–5641 5635
arrangement might have been disturbed by fringe effects. However, no significant effect of the foam element diameter/vol-
ume on the results of confined uniaxial compression testing has been observed in the present study.

Foam element bulks responded to confined uniaxial compression with an almost linear stress increase, which changes at
approximately 40–50% compression to exponentially increasing (Fig. 12). An expected initial stiffness (elastic deformation
mode) could not be identified. The bulk of foam elements seem to deform plastically beginning with initial loading.

An inadequate compaction of the foam element bulk prior to testing is one potential reason for the observed stress–strain
response. Uniaxial loading would result in densification of the element packing and overlap with elastic deformation of the
foam elements. Both processes run parallel leading to the observed linear global stress–strain response.

Assuming an adequate element compaction (since all element bulks have been compacted by means of vibration in the
die prior to testing) an alternative explanation for the observed stress–strain response is developed. Spherical foam elements
are in point contact to their closest neighbors with very small initial contact area. Global loading of the element bulk gen-
erates comparably high stresses in the contact areas. Naturally, the element volume underneath the contact area is first elas-
tically deformed. The inner structure of a foam element (Fig. 2) indicates that stiffness and yield strength of the thin element
surface skin and inner cell walls (underneath) should be comparably low. In the measured global stress–strain response of
the not bonded foam element bulk the elastic deformation mode might not be identifiable in the stress–strain curvature due
to its very small extent. Further, (elastic or plastic) deformation of elements opens degrees of freedom for rearrangement and
densification of packing. This process also impacts on the global stress–strain curvature and impedes identification of the
elastic deformation mode.

The performed confined compression of loose foam element bulks has high analogy to metal powder compaction in
closed cylindrical dies. In both cases random arrangements of spherical particles/elements are subjected to confined uniaxial
compression. Fleck (Fleck, 1995) as well as Heylinger and McMeeking (Heylinger and McMeeking, 2001) investigated
mechanics of random metal powder particle arrangements in confined uniaxial compression. Neglecting friction (between
sample and die) and assuming ideal plastic deformation behavior of the metal powder particles (no elastic deformation) fi-
nally delivered a linear global stress increase as a first approximation. This result is in good agreement with confined foam
element bulk compression results of this study, the more so since metal foam deformation behavior clearly resembles the
ideal plastic approximation as long as the densification region is not reached (see Fig. 18). This, however, is not the case
for the present material up to strain levels between 40% and 50%. The assumption that the elastic deformation mode of
not bonded foam element bulks is too small to be clearly identified in the global stress–strain curvature is underlined.

Irrespective of the reason for the linear stress–strain response of not bonded foam element bulks to confined uniaxial
compression the primary goal of this test configuration was the comparison of mechanical behavior of not bonded and of
adhesively bonded samples under similar test conditions. Even in the case elements were compacted inadequately this con-
dition applied to not bonded and adhesively bonded samples in the same way since processing and testing has been identical
in all cases. Practically, this means that a comparison among experiments of this type is valid.

Adhesive bonding of foam elements led to a distinct change in the global stress–strain response to confined uniaxial com-
pression (Fig. 13). An initial quasi-elastic deformation mode is followed by plastic deformation with a rather smooth tran-
sition between both modes. Adhesively bonded foam elements are fixed in their position and cannot rearrange. Contact to
neighboring spheres is associated with a defined area and, e.g., controlled by the coating thickness. The coating itself is con-
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tinuous and envelopes the neighboring spheres as well as the joint. Shear stresses perpendicular to the normal of the sep-
aration plane can thus be transmitted from sphere to sphere through this plane. Keeping friction out of consideration, this is
not possible among loose spheres. Under compressive loads both the polymer joint and the adjacent aluminum foam spheres
are first deformed quasi-elastically. Localized plastic deformation in the pore structure of the aluminum foam is possible but
not dominant; hence the term ‘‘quasi-elastic behavior” is used. The same holds true for the initiation of plastic yield at con-
tact points as described above. With increasing compressive force, the elastic deformation limit of the polymer joint and the
aluminum foam is reached. Plastic deformation in both components dominates the stress–strain response from this point
onwards and results in a slower stress increase. Fig. 12 further substantiates that the type of adhesive and the coating thick-
ness influence the stress level in compressive testing. With increasing bond strength, i.e., with increasing coating thickness,
higher deformation resistance is observed. At the same time, the general shape of the stress–strain curve approaches that of
conventional aluminum foams in showing a clear distinction between the quasi-elastic and subsequent failure modes. Be-
yond this transition, stress–strain curves of loose foam elements and joined aluminum foam-polymer hybrid samples devel-
op qualitatively similar in plastic deformation. Adhesive bonding of foam elements raises the deformation resistance and,
thus, the stress level but does not change general plastic deformation mechanisms significantly.

The precise point of transition from quasi-elastic to plastic deformation is difficult to quantify, the process being gradual.
Linear approximation of quasi-elastic and plastic regions of the stress–strain curvature delivers a point of intersection de-
scribed by the elastic compression limit eP and stress rP (Fig. 14). As boundaries for interpolation, 0.5% to 2.0% (quasi-elastic)
and 10% to 30% global compressive strain were selected.

A quantitative evaluation of both characteristics (eP; rP) as well as weight specific energy absorption reveals a depen-
dency primarily on sample density. Further influence is attributable to type and thickness of the polymer coating. Highest
values of rP and eP are observed for samples having greatest density and coating thickness (Figs. 15,16). For the PA bonded
samples with a b/D-ratio of 29 � 10�3, the experiments allow direct comparison of different sphere sizes. For the strain mea-
sure, the issue is unresolved, while stress levels seem to be higher in samples built up from smaller elements. However, due
to the scatter of data, which is much higher among the stress compared to strain values, no clear statement can be derived.
Density scaling is also more evident among strain values. Altogether, aluminum foam-polymer hybrids show compression
properties and density dependence similar to closed cell aluminum foams (Ashby et al., 2000). Opposing rP values to sim-
ilarly derived strength values of conventional aluminum foam based on the same matrix alloy yields similar results as in the
case of elastic properties: The conventional foam outperforms the hybrid material in absolute figures. The margin, however,
is negligible for low densities, with a compressive strength of 3.9 MPa recorded for a density of 0.4 g/cm3 and 9.0 MPa at
0.6 g/cm3 (Avalle et al., 2004). The latter exceeds the APM foam value by a factor of less than 1.4.

In terms of weight specific energy absorption, PA bonded samples with highest foam density and polymer coating thick-
ness yield best performance within this test series. Based on the assumption that influence of the element size may be ne-
glected, Fig. 17 shows dependence of the amount of energy absorbed from the density. For reasons of clarity, linear fit curves
have been provided for the various data sets. In this diagram, vertical translations of curves denote the influence of the adhe-
sive, while the inclination is mainly due to the density dependence of aluminum foam strength. Comparison of PA bonded
samples shows that a certain coating thickness is needed to heighten energy absorption levels. The steeper gradient found
for PA bonded samples with a b/D-ratio of 29 � 10�3 is probably a consequence of the larger density range covered by these
specimens, which leads to a more obvious expression of the power law linking foam strength to density. The example of the
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Fig. 15. Compression limit for quasi-elastic compression of adhesively bonded APM foams.
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EP bonded samples shows that superior strength of the adhesive can be used to tailor energy absorption, too. This hybrid
variant clearly outperforms PA variants with higher coating thickness at the same density.

Fig. 18 compares representative results from both tests series performed on aluminum foam-polymer samples and, as
reference, the result from unconfined uniaxial testing of closed cell aluminum foam (FOAMINAL�). Up to approximately
15% global compressive strain level the different testing conditions did not influence the stress–strain response of the hybrid
samples significantly. In these very early compression states transverse straining of the sample and friction forces are neg-
ligible in terms of stress–strain curvatures and analyzed characteristics. At higher compression levels the inhibited trans-
verse straining and additional friction forces in confined compression of these samples result in a more pronounced
stress increase for the confined sample.

Generally, aluminum foam-polymer hybrids show a stress–strain curve similar to closed cell aluminum foams (FOAMI-
NAL�) of comparable density. However, for similar test conditions (un-confined compression) initial stiffness and stress level
in plastic deformation are significantly lower. This is related to the additional open porosity in aluminum foam-polymer hy-
brids, i.e., the space between the spherical foam elements which is virtually eliminated at approximately 20–30% global com-
pressive strain. Up to this point, contact area effects as described earlier will influence the expression of the stress–strain
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Fig. 17. Weight specific energy absorption (at 50% global compressive strain) of loose foam elements and adhesively bonded aluminum foam-polymer
hybrids as a function of density.
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curve, adversely affecting the global stress level. Beyond it, Fig. 18 testifies, within the limits of accuracy induced by scatter,
to an identical course of deformation for both materials. The slight advantage of the hybrid in confined compression in terms
of steepness of later stages of the stress–strain curve may be due to transverse straining and resulting friction between spec-
imen and die wall. Further investigations are required to gain more insight into the importance of this effect and its quan-
titative contribution to the stress response.

4.3. Hydrostatic compression

Hydrostatic compression test results are shown in Fig. 19. An obvious difference to the uniaxial compression test is the
lack of a clearly defined plateau. The same phenomenon was observed in hydrostatic tests on several other cellular materials
(Peroni and Avalle, 2007; Ruan et al., 2005; Ashby et al., 2000; Nusholtz et al., 1996).

As Fig. 19 evidently shows, the results are sufficiently repeatable among different samples of each material variant. In
Fig. 20, a direct comparison between them is shown. For simplicity, a single, average, curve is shown for each material. Ex-
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cept for the high-density foam bonded with PA, the first, quasi-elastic, part of the curve is not affected by both density and
adhesive type. In the second region, and towards densification, the PA bonded APM foams are significantly stiffer. This effect
is in good agreement with observations made on conventional aluminum foams in uniaxial compression. Typically, ductile
matrix materials (which would match, in terms of deformability, the PA as opposed to the EP bonded samples in this com-
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parison) are subject to more pronounced strain hardening and can thus bear higher loads at elevated strain levels than brittle
ones, the reason being that in the former, even at high compression, all members of the internal structure still bear load,
since global deformation is based on local plastic yield rather than brittle fracture (Lehmhus and Banhart, 2003).

Comparison of conventional aluminum foams and the hybrid material revealed a difference in the stress vs. compression
curves (Fig. 21). At low compression, the latter show a lower stress level than FOAMINAL�, thus matching uniaxial compres-
sion test results. Furthermore, the closed cell foam once more shows a clearly distinguishable transition from quasi-elastic to
plastic deformation mode. The explanation for this effect is along the same lines as in the case of uniaxial compression. The
growing difference (with increasing strain) between PA and EP bonded aluminum foam-polymer hybrid samples can partly,
but not fully be explained by differences in coating thickness. The open porosity is smaller for samples having the thicker PA
coating. Consequently, this open porosity reaches complete compression at lower global strain levels than is the case for
samples with a thinner EP coating. The earlier densification results in the observed stress increase occurring at lower global
strain values. The divergence is already visible in Fig. 20.

5. Conclusions

In the present study, mechanical strength and stiffness of APM foam under different loading conditions have been exam-
ined. The respective values fall short of conventional aluminum foams of the same matrix alloy, but only slightly in terms of
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strength. Aluminum foam-polymer hybrid properties are influenced by the type of adhesive and coating thickness. Further-
more, there is the effect of (foam element) density, which is again similar to what is known from conventional aluminum
foams. The influence of the foam element volume/diameter is negligible in most cases. For samples produced from larger
foam elements with diameters D = 10 or 15 mm alone, random element arrangement might have been disturbed by bound-
ary effects. Filling the comparably small sample volume (geometry: cylinder, diameter = 50 mm, height = 75 mm/50 mm)
with these elements reproduced the sample geometry roughly. Therefore individual element arrangement potentially influ-
enced mechanical properties. Further investigations with constant ratios between element and sample dimensions (e.g., 1 to
10) will provide more insight into this aspect. A noticeable effect seems possible, since deviations in element arrangement
affect coordination numbers and thus contact points between a foam element and its neighbors, as well as orientation
relationships.

The elemental built-up of APM foams plays a key role for mechanical performance in initial quasi-elastic deformation.
Random arrays of spherical/ellipsoid aluminum foam elements are joined to each other by adhesive bonding. Approximately
40% of the hybrid volume remains as open porosity (open space between elements). The cross section of the polymer joints
between foam elements is comparably small (compared to element total surface). During initial loading of the hybrid these
joints are the ‘‘weakest link” in the global structure. Individual absolute joint properties (stiffness, compressive yield
strength) determine global performance of the hybrid structure. Polymer coating thickness, foam element volume and den-
sity are subject to scatter. Thus properties of joints have scatter as well. With increasing load on the hybrid structure a grow-
ing number of joints transfer from quasi-elastic to plastic deformation. This effect explains the rather ‘‘soft” transition of the
hybrid from quasi-elastic to plastic deformation.

In the course of compression, the difference between such localized stiffnesses/stresses and the global stiffness/stress le-
vel decreases—it disappears as soon as the initial fraction of open porosity in the sample is (predominantly) eliminated. Due
to random arrangement of spheres in the hybrid material, this is typically the case at a global compressive strain level of
approximately 30%. From this level onwards, the material deforms nearly identically to conventional aluminum foam.

Energy absorption levels of certain APM foams (EP bonded, b/D = 10 � 10�3; PA bonded, b/D = 29 � 10�3) reach high lev-
els, which are competitive with conventional aluminum foams. Scatter in APM foam properties is significantly lower than in
conventional aluminum foams. While it is necessary to work under a suitable safety factor in the design, the apparent advan-
tage of conventional foams in terms of specific strength and stiffness might be lost.
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