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Painlevé III and a singular linear statistics in Hermitian
random matrix ensembles, I

Yang Chena,∗, Alexander Itsb

a Department of Mathematics, Imperial College London, 180 Queen’s Gates, London SW7 2BZ, UK
b Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, 402 N. Blackford Street,

Indianapolis, IN 46202-3216, USA

Received 24 August 2008; received in revised form 1 May 2009; accepted 18 May 2009
Available online 23 May 2009

Communicated by Serguei Denissov

Abstract

In this paper, we study a certain linear statistics of the unitary Laguerre ensembles, motivated in part
by an integrable quantum field theory at finite temperature. It transpires that this is equivalent to the
characterization of a sequence of polynomials orthogonal with respect to the weight

w(x) = w(x, s) := xαe−x e−s/x , 0 ≤ x <∞, α > 0, s > 0,

namely, the determination of the associated Hankel determinant and recurrence coefficients. Here w(x, s)
is the Laguerre weight xαe−x perturbed by a multiplicative factor e−s/x , which induces an infinitely strong
zero at the origin.

For polynomials orthogonal on the unit circle, a particular example where there are explicit formulas,
the weight of which has infinitely strong zeros, was investigated by Pollaczek and Szegö many years ago.
Such weights are said to be singular or irregular due to the violation of the Szegö condition.

In our problem, the linear statistics is a sum of the reciprocal of positive random variables {x j : j =
1, . . . , n};

∑n
j=1 1/x j .

We show that the moment generating function, or the Laplace transform of the probability density
function of this linear statistics, can be expressed as the ratio of Hankel determinants and as an integral
involving a particular third Painlevé function.
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1. Introduction

It is a well known fact that the joint probability density of the eigenvalues, {x j : j = 1, . . . , n}
of any Hermitian matrix ensemble is [34]

p(x1, . . . , xn)dx1 . . . dxn =
1

Dn[w]

∏
1≤ j<k≤n

(x j − xk)
2

n∏
l=1

w(xl)dxl , (1.1)

where Dn , the normalization constant, reads

Dn[w] =
1
n!

∫
Rn
+

∏
1≤ j<k≤n

(x j − xk)
2

n∏
l=1

w(xl)dxl . (1.2)

For the sake of concreteness the domain of integration is Rn
+ := [0,∞)

n .

Here w (≥ 0) is a weight supported on R+. Furthermore we suppose that w has moments of
all orders, that is,

µ j :=

∫
R+

x jw(x)dx, j ∈ {0, 1, . . .}, (1.3)

exist.
We shall see that Dn will play a fundamental role in this paper.
It is also well known that the normalization constant defined above has two more alternative

representations; the first as the determinant of the Hankel or moment matrix and the second as a
product,

Dn[w] = det
(
µ j+k

)n−1
j,k=0

=

n−1∏
j=0

h j . (1.4)

The quantity h j in the second equality of (1.4) is the square of the weighted L2 norm of the
monic polynomials of degree j , orthogonal with respect to w;∫

R+
Pj (x)Pk(x)w(x)dx = h jδ j,k . (1.5)

The random variable known as the linear statistics is a sum of a function of the random variables
{x j : j = 1, . . . , n};

n∑
j=1

f (x j ),

whose probability density function is determined by the standard formula,

P f (Q) =
1
n!

∫
Rn
+

p(x1, . . . , xn)δ

(
Q −

n∑
j=1

f (x j )

)
dx1 . . . dxn . (1.6)

The moment generating function denoted as M f (s) (assuming f (x) > 0 for all x ∈ R+) is the
Laplace transform of P f (Q) with respect to s and has the following form:
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M f (s) =
∫
∞

0
P f (Q)e−s QdQ (1.7)

=

det
(
µ j+k(s)

)n−1
j,k=0

det
(
µ j+k(0)

)n−1
j,k=0

=
Dn[w(., s)]

Dn[w(., 0)]
=

n−1∏
j=0

h j (s)

n−1∏
j=0

h j (0)

, (1.8)

where

µ j (s) :=
∫
∞

0
x jw(x)e−s f (x)dx, j ∈ {0, 1, . . .} (1.9)

and

h j (s) =
∫
∞

0
P2

j (x)w(x)e
−s f (x)dx, (1.10)

are the moments and the square of the L2 norm of the polynomials Pj orthogonal with respect
to w exp(−s f ), respectively. Therefore we see that the moment generating function is the ratio
of the Hankel determinant generated by the perturbed weight w exp(−s f ) to the corresponding
quantity generated by the original weight w.

Because the moments depend on s, the coefficients of the polynomials Pj (z) also depend on
s; however, we shall not display this dependence most of the time.

Our monic polynomials are normalized so that

Pn(z, s) = zn
+ p1(n, s) zn−1

+ · · · + Pn(0, s), (1.11)

with P0(z, s) := 1 and p1(0, s) := 0.
We note here Heine’s multiple-integral representation of Pn(z),

Pn(z) =
1
n!

∫
Rn
+

n∏
j=1

(z − x j )p(x1, . . . , xn)dx1 · · · dxn . (1.12)

In Section 2, a description is given for a pair of ladder operators for smooth weights. These
will lead to a linear second-order ordinary differential equation satisfied by Pn(z) and two
fundamental compatibility conditions valid for all z ∈ C ∪ {∞}.

We denote the compatibility conditions as (S1) and (S2).
The compatibility conditions are essentially a consequence of the recurrence relations:

z Pn(z) = Pn+1(z)+ αn(s)Pn(z)+ βn(s)Pn−1(z), (1.13)

together with the initial conditions: P0(z) = 1, and β0 P−1(z) = 0, and the Christoffel–Darboux
formula (also a consequence of (1.13)).

In (1.13),

αn(s) ∈ R, n = 0, 1, . . .

and

βn(s) =
hn

hn−1
=

Dn+1 Dn−1

D2
n

> 0, n = 1, 2, . . .

are the recurrence coefficients.
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An easy consequence of (1.11) and (1.13) is that

p1(n, s)− p1(n + 1, s) = αn(s). (1.14)

Taking a telescopic sum of (1.14), together with p1(0, s) = 0, implies

n−1∑
j=0

α j (s) = −p1(n, s). (1.15)

We refer the readers to [40] for more on the basic facts about orthogonal polynomials.
In our problem,

f (x) :=
1
x
, 0 ≤ x <∞, (1.16)

and the unperturbed weight is given by the equation

w0(x) = xαe−x , α > 0.

The compatibility conditions (S1) and (S2), and a combination of these, (S2
′), produce a pair of

non-linear difference equations, satisfied by the auxiliary quantities an and bn . See (2.16) and
(2.17).

The recurrence coefficients αn and βn are ultimately expressed in terms of an and bn . See
(2.9) and (2.14).

The linear statistics (1.16) leads to the weight

w(x, s) = w0(x)e−s/x
:= xαe−x e−s/x , α > 0, s ≥ 0.

Such weights arise from a certain problem in mathematical physics: An integrable quantum field
theory at finite temperature [31].

In the theory of orthogonal polynomials, the effect of infinitely strong zeros on the Hankel
determinants, recurrence coefficients and polynomials themselves is of considerable interest.

For orthogonal polynomials with weight w supported on [−1, 1], the classical Szegö theory
gives a comprehensive account of the large n behavior of the recurrence coefficients and the
polynomials (both outside [−1, 1] and on (−1, 1)), if w is absolutely continuous and satisfies the
Szegö condition,∫ 1

−1

| lnw(x)|
√

1− x2
dx <∞.

See [pp. 296–312, [40]], [24,35] regarding Szegö’s theory.
However, there is a class of orthogonal polynomials discovered by Pollaczek and extended

by Szegö which is in some sense irregular. See [pp. 393–400, [40]] and [41] on this class of
orthogonal polynomials. The Pollaczek–Szegö weight behaves like

exp
(
−

c
√

1− x2

)
, c > 0,

near ±1, and consequently just violates the Szegö condition.
We reproduce here some of the results of [41] to illustrate the irregularity.
Associated with the weight

w(x; a, b) :=
e(2θ−π)φ(θ)

cosh[πφ(θ)]
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where x := cos θ, 0 < θ < π and

φ(θ) :=
a cos θ + b

2 sin θ
, a, b ∈ R, a ≥ |b|,

are the normalized Pollaczek polynomials {pn(x; a, b)},∫ 1

−1
[pn(x; a, b)]2w(x; a, b)dx = 1.

If x → 1, then

w(x; a, b) ' 2e(a+b)(1−π/θ), as θ → 0,

which shows that the weight vanishes exponentially at x = 1.An easy computation demonstrates
the same behavior at x = −1.

The large n behaviors of pn(x; a, b) are as follows:

(a) pn(1; a, b) ∼ n1/4e2
√

a+b
√

n,

(b) pn(x; a, b) ∼ nK
[x + (x2

− 1)]n, K = K (x) =
ax + b

2
√

x2 − 1
, x 6∈ [−1, 1],

(c) pn(cos θ; a, b) = A(θ) cos [nθ − φ(θ) ln n + B(θ)]+ εn(θ),

lim
n→∞

εn(θ) = 0, 0 < θ < π,

where the n independent functions A(θ) (> 0), B(θ) are analytic in (0, π).
This is to be contrasted with the large n behavior of the normalized Jacobi polynomials

{pn(x)} associated with the weight

(1− x)α(1+ x)β , α > −1, β > −1, x ∈ [−1, 1],

(a′)pn(1) ∼ nα+1/2,

(b′)pn(x) ∼
[
x +

√
x2 − 1

]n
, x 6∈ [−1, 1]

(c′)pn(cos θ) = A1(θ) cos [nθ + B1(θ)]+ εn(θ),

where A1(θ) and B1(θ) are functions of the same kind.
The symbol ∼ indicates that the ratio of the given quantities approaches a non-zero limit,

while w indicates that the limit is 1. This is the convention adopted by [41] and it will not be
used later.

Our paper is a first step in the study of the Pollaczek–Szegö type orthogonal polynomials
supported on infinite intervals.

With reference to the Heine formula, we see that

(−1)n Pn(0, s) =
Dn[w(., s, α + 1)]

Dn[w(., s, α)]
. (1.17)

For the unperturbed or Laguerre weight, we have the explicit evaluation

(−1)n Pn(0, 0) =
Γ (n + α + 1)

Γ (α + 1)
, (1.18)
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since

Dn[w(., 0, α)] =
G(n + 1)G(n + α + 1)

G(α + 1)
, (1.19)

where G(z) is the Barnes G-function that satisfies the functional relation G(z+ 1) = Γ (z)G(z),
together with G(1) = 1.

In Section 3, by taking the derivative with respect to s on the orthogonality relations we obtain
a pair of differential–difference equations or the Toda equations. Combining the Toda equations
and the non-linear difference equations obtained in Section 2, we produce a particular Painlevé
III equation satisfied by αn(s), up to linear shift in n.

The τ -function for this PIII turns out to be intimately related to the Hankel determinant

Dn(s) = det
(∫
∞

0
x j+k xαe−x−s/x

)n−1

j,k=0
. (1.20)

We also express the recurrence coefficients αn and βn in terms of the logarithmic derivative of
the Hankel determinant

Hn := s
d
ds

ln Dn(s),

and obtain a functional equation involving Hn, H ′n and H ′′n . The resulting second-order non-linear
ordinary differential equation satisfied by Hn is recognized to be the Jimbo–Miwa–Okamoto σ -
form of our PIII.

In Section 4, we show, with the aid of the non-linear difference equations derived in Section 2,
another functional equation involving Hn, Hn+1 and Hn−1. We call the resulting non-linear
second-order difference equation satisfied by Hn the discrete σ -form of PIII.

In Section 5, the Riemann–Hilbert approach to orthogonal polynomials and the isomon-
odromy deformation theory of Jimbo and Miwa are used to re-derive the PIII and thereby identify
the auxiliary quantities, an and bn , introduced in Section 2, with the objects of the Jimbo–Miwa
isomonodromy theory of Painlevé equations.

In Section 6, we show that the Hankel determinant is the isomonodromy τ -function in the
sense of Jimbo and Miwa, and put into the context of the general theory of integrable systems
the identities derived in Sections 2 and 3.

As we are studying an example of orthogonal polynomials where the otherwise classical
weight

w0(x) = xαe−x , x ∈ R+, α > 0

is perturbed by an infinitely strong zero,

w(x, s) := w0(x)e−s/x , s ≥ 0,

the natural questions of interest are about the large n behavior of the Hankel determinant,
recurrence coefficients and the orthogonal polynomials. Such investigations will therefore
provide valuable insights into the asymptotics of the associated Painlevé transcendent. These
results will be published in a forthcoming paper [14].

We want to emphasize that in this paper and in its follow-up we do not claim the introduction
of new concepts. Our main aim is to investigate a concrete important example of the linear
statistics which leads to a strong zero at x = 0 using the known techniques. In addition, taking
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this example as a “case study” we show how the types of apparatus which are used by the two
communities — the orthogonal polynomial community and the integrable system community —
match with each other.

2. Ladder operators and non-linear difference equations

The pair of ladder operators has been known to various authors over many years. Here we
provide a brief guide to the literature on this subject. See, for example, [3,4,10,7,9,8,12,19,20,
32,33,38]. In fact, Magnus in [33] noted that such operators were known to Laguerre. However,
we find that (2.1)–(2.5) suit our purpose well.

Because the associated fundamental compatibility conditions and their use in the derivation
of the Painlevé transcendent [16,11,19,21,33] are perhaps less well known we summarize these
findings in (2.1)–(2.5), (S1), (S2) and (S2

′) in a form which we find particularly easy to use.
We note here that (S1), (S2) and (S2

′) were also known to Magnus [33] and (S2) also appeared
in [26]. See also [21].

For polynomials orthogonal on the unit circle the analogous ladder operators can be found
in [27]. See [22] for the circular case applicable to bi-orthogonal polynomials. The compatibility
condition in the circular case can be found in [1] where it was used to obtain in explicit form
the Toeplitz determinant generated from the pure Fisher–Hartwig symbol and the discriminant
of the associated orthogonal polynomials.

The compatibility conditions can also be adapted to the situation where the weight has
discontinuities. See [16,2].

The ladder operators are(
d
dz
+ Bn(z)

)
Pn(z) = βn An(z)Pn−1(z), (2.1)(

d
dz
− Bn(z)− v′(z)

)
Pn−1(z) = −An−1(z)Pn(z), (2.2)

where

An(z) =
1

hn

∫
∞

0

v′(z)− v′(y)
z − y

P2
n (y)w(y)dy, (2.3)

Bn(z) =
1

hn−1

∫
∞

0

v′(z)− v′(y)
z − y

Pn(y)Pn−1(y)w(y)dy, (2.4)

v(z) := − lnw(z), (2.5)

and the associated fundamental compatibility conditions are

Bn+1(z)+ Bn(z) = (z − αn)An(z)− v′(z), (S1)

1+ (z − αn)(Bn+1(z)− Bn(z)) = βn+1 An+1(z)− βn An−1(z). (S2)

In the case of rational v′(z), these compatibility conditions are valid for all z ∈ CU{∞}. See [13]
for a recent derivation of the compatibility conditions. To arrive at Eqs. (2.3) and (2.4) we have
assumed that w(0) = w(∞) = 0. This is certainly the situation for our problem since we have
assume that α > 0 and s ≥ 0.

Combining suitably (S1) and (S2) gives an expression involving
∑n−1

j=0 A j (z), Bn(z) and v′(z)
from which further insight into recurrence coefficients may be gained.
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The equation (S2
′) may be thought of as the first integral of (S1) and (S2).

Although (S2
′) first appeared in [33] in a slightly different form, we present here a derivation

of a version which we find useful in practice.
Multiplying (S2) by An(z) we see that the r.h.s. of the resulting equation is a first-order

difference, while the l.h.s., with (z − αn)An(z) replaced by Bn+1(z) + Bn(z) + v′(z) is a
first-order difference plus An(z). Taking a telescopic sum, together with the initial conditions
B0(z) = A−1(z) = 0, produces the lemma:

Lemma 1.

B2
n (z)+ v′(z)Bn(z)+

n−1∑
j=0

A j (z) = βn An(z)An−1(z). (S2
′)

If v′(z) is rational then so are An(z) and Bn(z). See (2.3) and (2.4). Furthermore, eliminating
Pn−1(z) from (2.1) and (2.2) it is easy to show that y(z) := Pn(z) satisfies the second-order
linear ordinary differential equation

y′′(z)−

(
v′(z)+

A′n(z)

An(z)

)
y′(z)+

(
B ′n(z)− Bn(z)

A′n(z)

An(z)
+

n−1∑
j=0

A j (z)

)
y(z) = 0. (2.6)

Note that (S2
′) has been used to simplify the coefficient of y(z) in (2.6).

Eq. (2.6) can also be found in [38], albeit in a different form.
For the problem at hand, f (x) = 1/x, x ≥ 0, the weight and associated quantities are

w(x, s) = xαe−x−s/x ,

v(z) = z + s/z − α ln z, v′(z) = 1− s/z2
− α/z,

v′(z)− v′(y)
z − y

=
1
z

(
α

y
+

s

y2

)
+

s

z2 y
.

Using these we have the next lemma.

Lemma 2. The coefficients An(z) and Bn(z) appearing in the ladder operators are

An(z) =
1
z
+

an

z2 , (2.7)

Bn(z) = −
n

z
+

bn

z2 , (2.8)

an :=
s

hn

∫
∞

0

P2
n

y
wdy, an(0) = 0,

bn :=
s

hn−1

∫
∞

0

Pn Pn−1

y
wdy, bn(0) = 0.

Proof. From the definitions of An(z) and Bn(z) and with the identities

1 =
1

hn

∫
∞

0

(
α

y
+

s

y2

)
P2

nwdy,

−n =
1

hn−1

∫
∞

0

(
α

y
+

s

y2

)
Pn Pn−1wdy,

obtained by integration by parts, we find (2.7) and (2.8). �
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We see that at this stage there are four unknowns, αn, βn, an and bn . In what follows we will
show how (S1) and (S2

′) can be applied to obtain amongst other things the pair of non-linear
difference equations involving an and bn mentioned earlier.

Equating the residues on both sides of (S1), we find

αn = 2n + 1+ α + an, (2.9)

bn+1 + bn = s − αnan . (2.10)

Carrying out a similar calculation with (S2
′) gives

βn = n(n + α)+ bn +

n−1∑
j=0

a j , (2.11)

βn(an + an−1) = ns − (2n + α)bn, (2.12)

b2
n − sbn = βnanan−1. (2.13)

The upshot of these equations is that αn and βn are entirely determined by an and bn, where
αn is simply an plus 2n + 1+ α.

Eliminating an−1 from (2.12) and (2.13) we have the next lemma.

Lemma 3.

βna2
n = [ns − (2n + α)bn]an − (b

2
n − sbn). (2.14)

Therefore (2.14) expresses βn in terms of an and bn , and importantly bypasses the finite sum in
(2.11). Eliminating βn from (2.11) and (2.14), an expression can be found for

∑n−1
j=0 a j , in terms

of an and bn .

We state this in the next lemma.

Lemma 4.

n−1∑
j=0

a j = −n(n + α)− bn +
ns − (2n + α)bn

an
−

b2
n − sbn

a2
n

. (2.15)

Note that because an(0) = bn(0) = 0, (2.9) and (2.11) reduce to αn(0) = 2n + 1 + α and
βn(0) = n(n + α), respectively, which we recognize as the recurrence coefficients of the monic
Laguerre polynomials.

In summary, with reference to (2.13) and (2.14), we obtain two non-linear difference
equations, satisfied by an and bn,

bn+1 + bn = s − (2n + 1+ α + an)an, (2.16)

(b2
n − sbn)(an + an−1) = [ns − (2n + α)bn]anan−1, (2.17)

to be iterated in n with the initial conditions

a0(s) =
√

s
Kα(2
√

s)

Kα+1(2
√

s)
, (2.18)

b0(s) = 0, (2.19)

where Kα(z) is the MacDonald function of the second kind.
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We call (2.16) and (2.17) together with the initial conditions (2.18) and (2.19) the MacDonald
hierarchy. See also [4] for a general treatment of a class of semi-classical weights.

Solutions for an and bn that are rational functions of 2
√

s are found for α = p+ 1/2, p ∈ Z,
since

K p+1/2(z) = K−p−1/2(z) =

√
π

2z
e−z

p∑
k=0

(p + k)!

k!(p − k)!(2z)k
.

3. Toda evolution and Painlevé III

Taking derivatives with respect to s on the orthogonality relation will give rise to Toda type
equations, which we discuss below.

Because

hn =

∫
∞

0
P2

nwdy,

we have

s
d
ds

hn = −s
∫
∞

0

P2
n

y
wdy,

and hence

s
d
ds

ln hn = −an (3.1)

s
d
ds

lnβn = an−1 − an . (3.2)

We also have

0 =
d
ds

∫
∞

0
Pn Pn−1wdy (3.3)

= hn−1
d
ds

p1(n)−
∫
∞

0

Pn Pn−1

y
wdy (3.4)

s
dp1(n)

ds
= bn (3.5)

s
dαn

ds
= s

dan

ds
= bn − bn+1
= βn − βn+1 + αn . (3.6)

Eq. (3.6) follows from (2.9), (1.14) and (2.11).
There is another identity involving

∑n−1
j=0 a j :

s
d
ds

n−1∑
j=0

a j = −bn, (3.7)

which is an immediate consequence of a telescopic sum of the second equality of (3.6).
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We now show that the Hankel determinant, Dn , is up to scaling transformation the τ -function
of the Toda equations. Let

D̃n(s) := s−n(n+α)Dn(s).

We find, by summing (3.1),

s
d
ds

ln Dn = −

n−1∑
j=0

a j , (3.8)

since
n−1∑
j=0

ln h j = ln Dn .

Applying s d
ds to (3.8) and keeping in mind (3.7), (2.11) and (3.8) gives

s
d
ds

(
s

d
ds

ln Dn

)
= bn

= βn − n(n + α)−
n−1∑
j=0

a j

= βn − n(n + α)+ s
d
ds

ln Dn .

The last equation simplifies to

s2 d2

ds2 ln Dn(s) =
Dn+1 Dn−1

D2
n

− n(n + α),

since

βn =
Dn+1 Dn−1

D2
n

.

In terms of D̃n(s) we have

d2

ds2 ln D̃n(s) =
D̃n+1 D̃n−1

D̃2
n

. (3.9)

Eq. (3.9) is the Toda molecule equation [39] and shows that D̃n(s) is the corresponding τ -
function of the Toda equations (3.2) and (3.6).

As the Hankel determinant is now identified with the τ -function (see Section 6 for more on this
issue), we may expect the emergence of a Painlevé equation. In fact, an(s) satisfies a particular
PIII. To see this, we first investigate the evolution of an and bn as functions of s.

Lemma 5. For a fixed n, the auxiliary quantities an and bn satisfy the following coupled Riccati
equations:

s
dan

ds
= 2bn + (2n + 1+ α + an)an − s (3.10)

s
dbn

ds
=

2
an
(b2

n − sbn)+ (2n + α + 1)bn − ns. (3.11)
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Proof. Eq. (3.10) follows from applying s d
ds to (2.9) together with the first equality of (3.6) and

with (2.10) to replace bn+1 by s − αnan − bn .
A little bit more work is required to prove (3.11). Apply s d

ds to (2.11) to find

s
dβn

ds
= s

dbn

ds
+ s

d
ds

n−1∑
j=0

a j

= s
dbn

ds
− bn

= βnan−1 − βnan

=
b2

n − sbn

an
−

[
ns − (2n + α)bn −

b2
n − sbn

an

]
,

where the last three equalities follow from (3.7), (3.2), (2.13) and (2.14). Now the second and
last equalities imply (3.11). �

The next theorem identifies an as a particular third Painlevé function.

Theorem 1. For a fixed n ∈ {0, 1, 2, . . .} the auxiliary quantity an satisfies

a′′n =
(a′n)

2

an
−

a′n
s
+ (2n + 1+ α)

a2
n

s2 +
a3

n

s2 +
α

s
−

1
an
, (3.12)

with the initial conditions

an(0) = 0, a′n(0) =
1
α
, α > 0. (3.13)

If an(s) := −q(s), then q(s) is PIII′(−4(2n + 1 + α),−4α, 4,−4), following the convention
of [36].

Proof. Eliminating bn from (3.10) and (3.11) gives (3.12). The initial conditions follow from a
straightforward computation. �

Remark I. If n = 0, then b0 = 0 and (3.10) is solved by

√
s

Kα(2
√

s)

Kα+1(2
√

s)

which is (2.18). We observe that the above also solves (3.12) for n = 0.

Remark II. An alternative form, obtained from

an(s) =:
s

Xn(s)
,

reads

X ′′n =
(X ′n)

2

Xn
−

X ′n
s
−
αX2

n

s2 −
2n + 1+ α

s
+

X3
n

s2 −
1

Xn
, (3.14)

which is a PIII′(−4α,−4(2n + 1+ α), 4,−4). If the derivatives in (3.14) are neglected, then Xn
solves the quartic

X4
− αX3

− (2n + 1+ α)s X − s2
= 0. (3.15)
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We may interpret an appropriate solution of (3.15) as the geometric mean of the end points
of the support of a single-interval equilibrium density. This appears in a potential theoretic
minimization problem, the detail of which is in a forthcoming paper [14]. We note that another
PIII associated with the Toeplitz determinant

det[I j−k+ν(
√

t)]0≤ j,k≤n−1,

was found in [22] (see also [23]). Here Ir (z) is the modified Bessel’s function of the first kind.
We note that this Toeplitz determinant can be thought of as a Toeplitz analog of the Hankel
determinant of this paper. The above Toeplitz determinant with ν = 0 appeared in connection
with a certain ensemble of n×n unitary matrices and Ulam’s problem in combinatorics. See [42].

In the next theorem, we display two alternative integral representations of Dn, in terms of an
and Xn .

Theorem 2.

ln
Dn(s)

Dn(0)
=

∫ s

0

[
t

2
−

1
4

(
t

an
− α

)2

− an

(
n +

α

2

)
−

a2
n

4
+

1
4

(
1−

ta′n
an

)2
]

dt

t
(3.16)

=

∫ s

0

[
t

2
−

1
4
(Xn − α)

2
−

(
n +

α

2

) t

Xn
−

t2

4X2
n
+

t2 X ′2n
4X2

n

]
dt

t
. (3.17)

Proof. From (3.8) and (2.15) we see that the logarithmic derivative of Dn(s) is expressed in
terms of an and bn . If we use (3.10) to eliminate bn in favor of an and a′n from the resulting
equation, then (3.16) follows after some simplification. Eq. (3.17) follows from the substitution
an(s) =: s/Xn(s). Note that Dn(0) is given by (1.19). �

Put

Hn := s
d
ds

ln Dn . (3.18)

In Section 6 we will show that the Hankel determinant Dn(s) can be identified with the Jimbo–
Miwa τ -function corresponding to the solution an(s) of the Painlevé III′. See (3.12). Namely, we
will show that

Dn(s) = const τ(s)e
s
2 s

n(n+α)
2 . (3.19)

In turn, this relation yields the following formula for the quantity Hn :

Hn = σ(s)+
s

2
+

n(n + α)

2
, (3.20)

where σ(s) ≡ s d
ds ln τ is the Jimbo–Miwa–Okamoto σ -function corresponding to the equation

PIII′ . Therefore, Hn, H ′n and H ′′n should satisfy a functional equation

f (Hn, H ′n, H ′′n , n, s, ) = 0,

known as the Jimbo–Miwa–Okamoto σ -form of our PIII′ .

With Hn defined above, it is easy to see from (3.7), (3.8) and (2.11) that

bn = s H ′n (3.21)

βn = n(n + α)+ s H ′n − Hn . (3.22)
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In the next theorem we state the non-linear second-order ordinary differential equation satisfied
by Hn .

Theorem 3. If

Hn := s
d
ds

ln Dn(s), (3.23)

then

(s H ′′n )
2
= [n − (2n + α)H ′n]

2
− 4[n(n + α)+ s H ′n − Hn]H

′
n(H

′
n − 1). (3.24)

Proof. First we rewrite (2.14) and (3.11) as

βnan +
b2

n − sbn

an
= ns − (2n + α)bn (3.25)

2
an
(b2

n − sbn) = sb′n − bn + ns − (2n + α)bn (3.26)

respectively. Eliminating an from (3.25) and (3.26) produces(
sb′n − bn

)2
= [ns − (2n + α)bn]

2
− 4βn(b

2
n − sbn). (3.27)

Eq. (3.24) follows by substituting bn and βn from (3.21) and (3.22) into (3.27). �

Hence the recurrence coefficients αn and βn of the orthogonal polynomials associated with
our weight,

w(x, s) = xαe−x−s/x , 0 ≤ x <∞, α > 0, s > 0,

are expressed in terms of Hn, H ′n and H ′′n , as follows:

αn = 2n + 1+ α +
2s(H ′n)

2
− s H ′n

s H ′′n + n − (2n + α)H ′n
(3.28)

βn = n(n + α)+ s H ′n − Hn, (3.29)

and Hn itself satisfies (3.24).

Remark III. With the identification (3.20) of the function Hn as the σ -function (up to a linear
shift), Eq. (3.24) coincides, up to a change of the independent variable s to the variable t =

√
s,

with equation (C.29) of [29]1.

4. Discrete σ -form

We may anticipate due to the recurrence relations and non-linear difference equations, (2.16)
and (2.17), that, for a fixed t, Hn , and Hn±1 would satisfy a discrete analog of (3.24). It turns out

1 When comparing Eq. (3.24) with equation (C.29) of [29], one also has to take into account that, if we denote the
σ -function of [29], for which equation (C.29) is written, as σJ M then the precise relation with our σ -function is given
by the equation, σJ M (t) = 2σ(t2).
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that in this instance an has a simpler expression in terms of Hn±1. We shall obtain an expression
for bn in terms of Hn and Hn±1. From

Hn = −

n−1∑
j=0

a j ,

we have

an = Hn − Hn+1, (4.1)

and

an + an−1 = Hn−1 − Hn+1 =: δ
2 Hn .

Multiplying the above by βn we find

βn(an + an−1) = βnδ
2 Hn (4.2)

= ns − (2n + α)bn, (4.3)

where the last equation follows from (2.12). Now (2.11) becomes

βn = n(n + α)+ bn − Hn .

Substituting the above into (4.2) produces a linear equation in bn whose solution is

bn =
ns + δ2 Hn[Hn − n(n + α)]

2n + α + δ2 Hn
. (4.4)

Hence the auxiliary quantities an and bn , and the βn , are now expressed in terms of Hn , and
Hn±1. Substituting these into (2.13) give rise to the discrete σ -form stated in the next theorem.

Theorem 4. If

Hn := s
d
ds

ln Dn,

then

{[Hn − n(n + α)]δ2 Hn + ns}{[Hn − n(n + α)− s]δ2 Hn − (n + α)s}

= (2n + α + δ2 Hn){ns + (2n + α)[n(n + α)− Hn]}(Hn − Hn+1)(Hn−1 − Hn). (4.5)

We also have the discrete analog of (3.28) and (3.29),

αn = 2n + 1+ α + Hn − Hn+1 (4.6)

βn = n(n + α)+
ns − n(n + α)δ2 Hn − (2n + α)Hn

2n + α + δ2 Hn
. (4.7)

Now the obvious equalities, (4.6) = (3.28) and (4.7) = (3.29), imply two further differential–
difference equations which Hn must satisfy:

Hn − Hn+1 =
2s(H ′n)

2
− s H ′n

s H ′′n + n − (2n + α)H ′n
(4.8)

ns − n(n + α)δ2 Hn − (2n + α)Hn

2n + α + δ2 Hn
= s H ′n − Hn . (4.9)
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Remark IV. From the point of view of general Jimbo–Miwa isomonodromy theory of Painlevé
equations, which we will be discussing in Sections 5 and 6, Eq. (4.5) should be related to the
Bäcklund–Schlesinger transformations of the τ -function. However, we failed to identify Eq. (4.5)
with any of the difference equations for the τ -function discussed in [29] and to describe the
possible Schlesinger transformations. Since it is written for the logarithmic derivative of the τ -
function, and not for the τ -function itself as in [29], Eq. (4.5) might be in fact of a different
nature than the ones considered in [29]. We would also like to mention that Eq. (4.5) is an
integrable discrete equation — its Lax pair is formed by the first and the third equations of the
triple (see (5.17)) of Section 5, and the equation itself, as has already been noticed, represents a
Bäcklund–Schlesinger transformation of the third Painlevé equation. Therefore, we expect this
equation to be equivalent to one of the known discrete Painlevé equations, which we have not
yet identified. Apparently this identification is not quite straightforward. One of the referees has
suggested that (4.5) could be a composition of the basic Schlesinger transformations T1 and
T2 found in [23] (see Proposition (4.6) of [23]). We should also mention here that Okamoto’s
paper [37], the key reference for the symmetries and the transformation theory of the third
Painlevé equation, might provide further insight into (4.5).

5. An alternative derivation of the Painlevé III equation

In this section we present an alternative derivation of the third Painlevé equation (3.12)
for the quantity an(s). This derivation is based on the Riemann–Hilbert point of view [19,20]
on orthogonal polynomials and makes use of the general Jimbo–Miwa–Ueno theory of
isomonodromy deformations. This in turn allows us to place some of the key identities of the
preceding sections into the general framework of integrable systems.

The Riemann–Hilbert problem for the orthogonal polynomials at hand is the following:

• Y : C \ R+→ C2×2 is analytic.

• Y+(x) = Y−(x)
(

1 xαe−x−s/x

0 1

)
for x ∈ R+ \ {0}, with R+ oriented from left to right.

• Y (z) = (I + O(1/z))
(

zn 0
0 z−n

)
as z→∞.

• Y (z) = O (1) as z→ 0.

Here Y±(z) denote the non-tangential limiting values of Y (z) on R+ taken (in the usual
pointwise sense) from the ± side. The Riemann–Hilbert problem has the unique solution
expressed in terms of the orthogonal polynomials Pn(z)

Y (z) =

 Pn(z)
1

2π i

∫
R+

Pn(x)xαe−x−s/x

x − z
dx

−
2π i

hn−1
Pn−1(z) −

1
hn−1

∫
R+

Pn−1(x)xαe−x−s/x

x − z
dx

 . (5.1)

We also note that an immediate consequence of the unimodularity of the jump matrix of the
above Riemann–Hilbert problem is the identity2

det Y (z) ≡ 1. (5.2)

2 A more conventional derivation of this identity is based on the use of the basic three-term recurrence Eq. (1.13) (see
e.g. [15]).
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Eq. (5.1) implies, in particular, that the asymptotic behavior of the function Y (z) at z = ∞
and z = 0 can be specified as the following full asymptotic series:

Y (z) ∼

(
I +

∞∑
k=1

Y−k

zk

)
znσ3 , z→∞, (5.3)

and

Y (z) ∼ Q

(
I +

∞∑
k=1

Yk zk

)
, z→ 0, (5.4)

where σ3 denotes, as usual, the third Pauli matrix

σ3 =

(
1 0
0 −1

)
.

Moreover, the matrix coefficients Y±k and Q of these series are the smooth functions of n and
s (and of course of α), and they all can be easily expressed in terms of the fundamental objects
associated with the orthogonal polynomials Pn(z), i.e. in terms of the functions p1(n, s), hn(s),
and the negative moments of the polynomials Pn(z). Indeed, by a straightforward calculation we
have from (5.1) the following expressions for the coefficient Y−1 and for the matrix multiplier
Q ≡ Y (0):

Y−1 =

 p1(n) −
hn

2π i
−

2π i
hn−1

−p1(n)

 , (5.5)

Q =

(
1 pn
−qn 1− pnqn

)
Pσ3

n (0), (5.6)

where

pn =
Pn(0)
2π i

∫
R+

Pn(x)xαe−x−s/x

x
dx, qn =

2π i
hn−1

Pn−1(0)
Pn(0)

, (5.7)

and we have taken into account the determinant identity (5.2).
We are now going to write down a triple of differential and difference equations for the

function Yn(z, s) following the standard procedure of the theory of integrable systems (see
[17,30,29]; see also [19,28,15,18]).

Put

Ψ(z) ≡ Ψ(z, n, s, α) := Y (z)e
−

1
2

(
z+ s

z

)
σ3 z

α
2 σ3 , (5.8)

where the branch of the function z
α
2 is defined by the condition, −π < arg z < π . The

Riemann–Hilbert relations in terms of the function Ψ(z) are as follows:

(i) Ψ : C \ R→ C2×2 is analytic.
(ii) Ψ+(x) = Ψ−(x)

(
1 1
0 1

)
for x ∈ R and x > 0.

(iii) Ψ+(x) = Ψ−(x)eπ iασ3 for x ∈ R and x < 0.
(iv) Ψ(z) ∼

(
I +

∑
∞

k=1
Ψ−k

zk

)
z(n+

α
2 )σ3e−

z
2σ3 as z→∞.

(v) Ψ(z) ∼ Q
(
I +

∑
∞

k=1 Ψk zk
)

z
α
2 σ3e−

s
2z σ3 as z→ 0,
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where the real line R is oriented as usual from left to right. The coefficients Ψ±k of the asymptotic
series are easily evaluated via combinations of the coefficients Y±k and the coefficients of the
expansions of the exponential function e−

s
2z and e−

z
2 near z = ∞ and z = 0, respectively. In

particular, we have that

Ψ−1 =

p1(n)−
s

2
−

hn

2π i
−

2π i
hn−1

−p1(n)+
s

2

 . (5.9)

The important feature of the Ψ -RH problem is that the jump matrices of the jump relations (ii)
and (iii) do not depend on z, s, and n. Therefore, by standard arguments based on the Liouville
theorem (cf. [17,19]), we conclude that the logarithmic derivatives,

A(z) :=
∂Ψ(z)
∂z

Ψ−1(z), B(z) :=
∂Ψ(z)
∂s

Ψ−1(z), and

U (z) := Ψ(z, n + 1)Ψ−1(z, n),
(5.10)

are rational functions of z. Using the asymptotic expansions (iv) and (v), we can evaluate the
respective principal parts at the poles at the points z = 0 and z = ∞ and arrive, taking into
account (5.9) and (5.6), at the following explicit formulae for the function A(z), B(z), and U (z):

A(z) = −
1
2
σ3 +

A1

z
+

A2

z2 , (5.11)

B(z) = −
A2

sz
, (5.12)

and

U (z) = z

(
1 0
0 0

)
+U0, (5.13)

where3

A1 =
1
2
[σ3,Ψ−1] +

(
n +

α

2

)
σ3

=

n +
α

2
−

hn

2π i
2π i

hn−1
−n −

α

2

 , (5.14)

A2 =
s

2
Qσ3 Q−1

=
s

2

(
1− 2pnqn −2pn

2qn (pnqn − 1) 2pnqn − 1

)
, (5.15)

and

U0 = Ψ−1(n + 1)
(

1 0
0 0

)
−

(
1 0
0 0

)
Ψ−1(n)

=

p1(n + 1)− p1(n)
hn

2π i
−

2π i
hn

0

 ≡
 −αn

hn

2π i
−

2π i
hn

0

 . (5.16)

3 The notation [M1,M2] means the usual commutator of two matrices, [M1,M2] = M1 M2 − M2 M1.
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According to the standard methodology (cf. [30,29,19]), relations (5.10) should be now re-
interpreted as a system of linear differential–difference equations:

∂Ψ(z)
∂z

= A(z)Ψ(z)

∂Ψ(z)
∂s

= B(z)Ψ(z)

Ψ(z, n + 1) = U (z)Ψ(z, n),

(5.17)

which we call the Lax triple.
The compatibility conditions of this system, i.e. the equations

∂A(z)

∂s
−
∂B(z)

∂z
= [B(z), A(z)]

(
Ψzs = Ψsz

)
(5.18)

∂U (z)

∂s
= B(z, n + 1)U (z)−U (z)B(z, n),

(
(Ψ(z, n + 1))s = Ψs(z, n + 1)

)
(5.19)

and

∂U (z)

∂z
= A(z, n + 1)U (z)−U (z)A(z, n),

(
(Ψ(z, n + 1))z = Ψz(z, n + 1)

)
, (5.20)

yield the Painlevé type (Eq. (5.18)), the Toda type (Eq. (5.19)) and the discrete Painlevé or Freud
type (Eq. (5.20)) equations, respectively, for a proper combination of functions hn , pn and qn .
Moreover, using the Jimbo–Miwa list of the Lax pairs for Painlevé equations [29] and noticing
that the “master equation”, i.e. the first equation of system (5.17), is a 2 × 2 system with two
irregular singular points of Poincaré rank 1, one concludes that the relevant Painlevé equation is,
in fact, the third Painlevé equation. In order to make a precise statement, i.e. to point out the exact
combination of functions hn , pn and qn which make up the solution of Painlevé III equation, we
only need to perform a simple scaling transformation of the system (5.17) which would bring it
to the normal form of [29]. To this end, we introduce the new independent variables

λ := s−1/2z, and t :=
√

s, (5.21)

and pass from the function Ψ(z, s) to the function Φ(λ, t) defined by the equation

Φ(λ, t) := t−(n+
α
2 )σ3Ψ(tλ, t2). (5.22)

We notice that in terms of the function Φ(λ, t) the asymptotic relations (iv) and (v) transform
into the relations

Φ(λ) ∼

(
I +

∞∑
k=1

Φ−k

λk

)
λ(n+

α
2 )σ3e−

tλ
2 σ3 , λ→∞, (5.23)

and

Φ(λ) ∼ R

(
I +

∞∑
k=1

Φkλ
k

)
λ
α
2 σ3e−

t
2λσ3 , λ→ 0, (5.24)

with the new coefficients connected to the old ones by the equations

R = t−(n+
α
2 )σ3 Qt

α
2 σ3 , Φ−k = t−k t−(n+

α
2 )σ3Ψ−k t(n+

α
2 )σ3 , Φk = tk t−

α
2 σ3Ψk t

α
2 σ3 .
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Simultaneously, the first two equations of system (5.17) transform into the Jimbo–Miwa Lax pair
for the third Painlevé equation,

∂Φ(λ)
∂λ

=

(
−

t

2
σ3 +

A−1

λ
+

A−2

λ2

)
Φ(λ) ≡ AJ M (λ)Φ(λ)

∂Φ(λ)
∂t
=

(
−
λ

2
σ3 + B0 +

B−1

λ

)
Φ(λ) ≡ BJ M (λ)Φ(λ).

(5.25)

Here, the matrix coefficients A−1, A−2, B0, and B−1 are given by the equations

A−1 = t−(n+
α
2 )σ3 A1t(n+

α
2 )σ3 =

−θ∞2 u

v
θ∞

2

 , (5.26)

A−2 =
1
t

t−(n+
α
2 )σ3 A2t(n+

α
2 )σ3 =

ζ + t

2
−wζ

ζ + t

w
−ζ −

t

2

 , (5.27)

B0 =
1
t

A−1 −
1
t

(
n +

α

2

)
σ3 =

1
t

(
0 u
v 0

)
, (5.28)

B−1 = −
1
t

A−2 = −
1
t

ζ + t

2
−wζ

ζ + t

w
−ζ −

t

2

 , (5.29)

where

θ∞ = −α − 2n, (5.30)

and the new scalar functional parameters u, v, ζ , and w are defined in terms of the original
functions hn , hn−1, pn , and qn via the formulae

u = −
hn

2π i
t−2n−α, v =

2π i
hn−1

t2n+α, (5.31)

ζ = −tpnqn, w = −
1
qn

t−2n−α. (5.32)

With the u, v, ζ, w notation, the Lax pair (5.25) matches, up to the replacement t → −t and the
use of the letter z instead of the letter ζ , the Lax pair presented on page 439 of [29], and hence
we can use the general results of [29].

Theorem 5 ([29]). Consider the overdetermined linear system (5.25) with the matrix coefficients
defined by the equations

A−1 =

−θ∞2 u

v
θ∞

2

 , A−2 =

ζ + t

2
−wζ

ζ + t

w
−ζ −

t

2

 , (5.33)

B0 =
1
t

(
0 u
v 0

)
, B−1 = −

1
t

ζ + t

2
−wζ

ζ + t

w
−ζ −

t

2

 , (5.34)
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i.e., by the right hand sides of the last equalities in the formulae (5.26)–(5.29) not necessarily
assuming any specific, “orthogonal polynomial” choice of the parameters θ∞, u, v, ζ and w.
Then the following is true.

1. The compatibility condition of system (5.25), i.e. the matrix equation

∂AJ M

∂t
−
∂BJ M

∂λ
= [BJ M , AJ M ], (5.35)

is equivalent to the following set of scalar equations:

t
du

dt
= θ∞u + 2tζw, (5.36)

t
dv
dt
= −θ∞v +

2t

w
(ζ + t), (5.37)

t
dζ
dt
= 2ζwv + ζ +

2u(ζ + t)

w
, (5.38)

t
d lnw

dt
=

2u

w
− 2wv − θ∞, (5.39)

with the quantity

θ0 := −
θ∞

t
(2ζ + t)+

2u(ζ + t)

tw
−

2ζ
t
wv, (5.40)

being the first integral of system (5.36)–(5.39).
2. The quantity θ0 is very similar to the parameter θ∞. Indeed, they describe the formal

monodromy at the relevant irregular points: θ∞– at λ = ∞ and θ0– at λ = 0. This means
that they appear as the branching exponents in the following formal matrix solutions4 of the
Lax pair (5.25) at the points λ = ∞ and λ = 0:

Φ(∞)
formal(λ) =

(
I +

∞∑
k=1

Φ(∞)
k

λk

)
λ−

θ∞
2 σ3e−

tλ
2 σ3 , (5.41)

and

Φ(0)
formal(λ) = R(0)

(
I +

∞∑
k=1

Φ(0)
k λk

)
λ
θ0
2 σ3e−

t
2λσ3 . (5.42)

3. The function

y := −
u

ζw
, (5.43)

satisfies the third Painlevé equation,

d2 y

dt2 =
1
y

(
dy

dt

)2

−
1
t

dy

dt
−

1
t

(
4θ0 y2

+ 4(1− θ∞)
)
+ 4y3

−
4
y
. (5.44)

In the standard notation [25], this is the Painlevé III equation, PIII(−4θ0,−4(1−θ∞), 4,−4).

4 All the coefficients Φ
(∞)
k of the series (5.41) are uniquely defined as rational functions of u, v, ζ, w, and t via simple

recurrence relations [30]. The matrix factor R(0) is defined, up to a right diagonal multiplier, R(0) → R(0)Λ, by the

equations, t
2 R(0)σ3

(
R(0)

)−1
= A−2, det R(0) = 1. The coefficients Φ

(0)
k of the series (5.42) are defined as rational

functions of u, v, ζ, w, and t up to the conjugation Φ
(0)
k → Λ−1Φ

(0)
k Λ. We will discuss this issue in more detail in the

next section.
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Comparing the general formal expansions (5.41) and (5.42) with the asymptotic series (5.23)
and (5.24), we conclude that in our case the parameters θ∞ and θ0 assume the values (see also
(5.30))

θ∞ = −α − 2n, and θ0 = α. (5.45)

Simultaneously, from (5.31) and (5.32) we see that in our case

y =
hn

2π itpn
. (5.46)

In other words, the relation (5.46) provides us with the combination of the functions hn, pn, qn
which satisfies the third Painlevé equations and which we have been looking for, while (5.45)
specifies the parameters of the Painlevé equation. We conclude then that the function y defined
in (5.46) satisfies the following Painlevé III equation:

d2 y

dt2 =
1
y

(
dy

dt

)2

−
1
t

dy

dt
−

1
t

(
4αy2

+ 4(2n + 1+ α)
)
+ 4y3

−
4
y
. (5.47)

What is still left for us is to establish the connection between the function y(t) defined in (5.46)
and the function an(s) defined in (2.7). This is easy. Indeed, we have that∫

∞

0

P2
n

x
wdx =

∫
∞

0
Pn(x)

(
xn−1
+ p1(n)x

n−2
+ · · · +

Pn(0)
x

)
wdx

= Pn(0)
∫
∞

0

Pn

x
wdx,

and hence (see (5.7)),

pn =
hn

2π i
an

s
, (5.48)

which in turn implies that

y =
t

an
≡

Xn

t
. (5.49)

It is an elementary exercise to check that the substitution

y =
t

an
, t =

√
s,

transforms Eq. (5.47) into Eq. (3.12) for the quantity an(s).
We conclude this section by revealing the connections of some of the key identities established

in the previous sections with the general constructions of the isomonodromy theory of Painlevé
equations discussed above.

We first note that the following equation, similar to Eq. (5.48), holds:

qn =
2π i
hn

bn

an
. (5.50)
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Therefore all the matrix coefficients of the Lax triple (5.17) can be expressed in terms of the
functions αn, hn, an, and bn . Actually, we need only to rewrite the coefficient A2 from (5.15),

A2 =
s

2

 1−
2bn

s
−

hn

π i
an

s
4π i
hn

bn

an

(
bn

s
− 1

)
2bn

s
− 1

 . (5.51)

Substituting this representation together with the similar formulae for A1 and U0 (see (5.14) and
(5.16)) into the compatibility Eq. (5.20) we obtain the set of the scalar difference equations (2.9)–
(2.13) of Section 2. Similar operation with the compatibility equation (5.19) results in the
differential–difference equations (3.1)–(3.6) of Section 3. The scalar form of compatibility
equation (5.18) we have already discussed in detail in this section. As we have seen, this
equation is equivalent to the set of scalar equations (5.36)–(5.39) which, in terms of the functions
hn(s), hn−1(s), an(s), bn(s), transforms into the system

s
dhn

ds
= −hnan, (5.52)

s
dhn−1

ds
=

h2
n−1

hn

bn

an
(s − bn), (5.53)

s
dbn

ds
= bn −

bn

an
(s − bn)−

hn

hn−1
an (5.54)

s
dan

ds
= 2bn + (2n + 1+ α + an)an − s, (5.55)

which is equivalent to the system of equations derived in Lemma 5 of Section 3.
We want to highlight the theoretical meaning of the important identity (2.14). It is, in fact, the

formal monodromy identity (5.40) written in terms of the functions hn(s), hn−1(s), an(s), bn(s).
It is also worth mentioning that the ladder equations (2.1) and (2.2) are just the first column

of the master, z-equation of the Lax triple (5.17). The first column of the second equation of the
triple (5.17) yields the ladder operators in s,(

zs
d
ds
− bn

)
Pn(z) = −βnan Pn−1(z), (5.56)(

zs
d
ds
− bn−1 − αn−1an−1 + zan−1

)
Pn−1(z) = an−1 Pn(z). (5.57)

When deriving these equations we have made use of the relations (2.10) and (2.13). Eqs. (5.56)
and (5.57) of course can be derived using the orthogonality relations, bypassing the isomon-
odromy theory.

Finally, the third equation in (5.17) is equivalent to the basic recurrence relations (1.13) for
the polynomials Pn . It should be pointed out that for the general solutions of the Painlevé III
equations, only the first two equations, which are equivalent under scaling to the Lax pair (5.25),
hold. From the point of view of the general isomonodromy theory of Painlevé equations, the
third equation of the triple (5.17) describes the Bäcklund–Schlesinger transformation of the third
Painlevé equation (see [30]; see also Chapter 6 of [18]).
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6. The Hankel determinant as the isomonodromy τ -function

Let us remind the reader of the Jimbo–Miwa definition of the τ -function corresponding to the
third Painlevé equation (5.44).

Consider the formal series (5.41) and (5.42) of Theorem 5. In the footnote to this theorem
we have already mentioned that all the coefficients of these series can be evaluated as rational
functions of the parameters u, v, ζ, w, and t . For example, the first coefficients in each of the
series are given by the relations (see p. 440 of [29])

Φ(∞)
1 =

1
t

uv − tζ −
t2

2
u

−v −uv + tζ +
t2

2

 , (6.1)

and

Φ(0)
1 =

1
t

ũṽ − tζ −
t2

2
−ũ

ṽ −ũṽ + tζ +
t2

2

 , (6.2)

where the parameters ũ and ṽ are related to the basic parameters u and v through the equation

(
R(0)

)−1

−θ∞2 u

v
θ∞

2

 R(0) =

θ0

2
ũ

ṽ −
θ0

2

 , (6.3)

which, in particular, means the identity

ũṽ = uv +
θ2
∞ − θ

2
0

4
. (6.4)

Denote as Ŷ∞(λ) and Ŷ0(λ) the series in the brackets of formulae (5.41) and (5.42), i.e.

Ŷ∞(λ) =

(
I +

∞∑
k=1

Φ(∞)
k

λk

)
, (6.5)

and

Ŷ0(λ) =

(
I +

∞∑
k=1

Φ(0)
k λk

)
. (6.6)

The Jimbo–Miwa–Ueno isomonodromy τ -function [30] in the case of the Lax pair (5.25) is
defined by the formula

d ln τ = −Trace Resλ=0Ŷ−1
0 (λ)

∂Ŷ0

∂λ
(λ)dT0(λ)

−Trace Resλ=∞Ŷ−1
∞ (λ)

∂Ŷ∞
∂λ

(λ)dT∞(λ), (6.7)
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where

dT0(λ) = −
1

2λ
σ3dt, and dT∞(λ) = −

λ

2
σ3dt.

Substituting (6.5) and (6.6) into (6.7), we arrive at the equation

d ln τ =
1
2

Trace
(
Φ(0)

1 σ3 + Φ(∞)
1 σ3

)
dt,

which, taking into account (6.1), (6.2) and (6.4), implies that

d ln τ(t) = HIII(u(t), v(t), ζ(t); t)dt, (6.8)

where

HIII(u, v, ζ ; t) =
1
t

(
2uv − 2tζ − t2

−
θ2

0 − θ
2
∞

4

)
. (6.9)

Let us now turn to the Hankel determinant Dn(s) and consider the quantity

Hn := s
d
ds

ln Dn,

which has played a central role in Sections 3 and 4. From (3.8) and (2.15) we have that

Hn = n(n + α)+ bn −
ns − (2n + α)bn

an
+

b2
n − sbn

a2
n

. (6.10)

At the same time, in our case (see (5.45)),

θ0 = α, θ∞ = −α − 2n, uv = −βn, and ζ = −
bn

t
,

where for the last two formulae we have used (5.31), (5.32), (5.48) and (5.50). Substituting
these formulae into (6.9) we obtain that for our special solution of the system (5.36)–(5.39), the
function HIII assumes the form

HIII =
1
t

(
−2βn + 2bn − s + n(n + α)

)
. (6.11)

Recalling now identity (2.14) (which we remind the reader is the formal monodromy identity
(5.40) in disguise) we arrive, after some simple algebra, at the relation

HIII =
2
t

Hn − t −
n(n + α)

t
. (6.12)

This equation, in turn, implies that

s
d
ds

ln τ =
t

2
d
dt

ln τ =
t

2
HIII = Hn −

s

2
−

n(n + α)

2

= s
d
ds

ln Dn −
s

2
−

n(n + α)

2
, (6.13)

and hence we obtain the following relation between the Hankel determinant Dn and the τ -
function of the third Painlevé equation (compare with [28] where similar formula is derived
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for a class of Toeplitz determinants),

Dn(s) = const τ(s)e
s
2 s

n(n+α)
2 . (6.14)

Remark V. The function HIII(u, v, ζ ; t) actually depends on ζ and the product uv. The latter
can be expressed, with the help of the formal monodromy relation (5.40), in terms of ζ , t , and y.
Indeed, we have that

2uv = (θ0 + θ∞)t y + 2ζ yθ∞ + 2y2ζ(ζ + t),

and expression (6.9) can be transformed to the following equation defining HIII as a function of
y, ζ and t :

HIII(y, ζ ; t) =
1
t

(
2y2ζ 2

+ 2(t y2
+ θ∞y − t)ζ + (θ0 + θ∞)t y − t2

−
θ2

0 − θ
2
∞

4

)
.

(6.15)

This is the canonical (see again p. 440 of [29]) representation of the logarithmic derivative
of the τ -function for Painlevé III equation (5.44). The remarkable fact of the general Jimbo–
Miwa–Ueno theory is that the function HIII(y, ζ ; t) is the Hamiltonian of the third Painlevé
equation.

Remark VI. In Sections 2 and 3, an important role has been played by Eq. (2.15) which
transforms a non-local object—the sum of a j from j = 0 to j = n − 1, to a local expression,
which involves only an and bn . We can see now an intrinsic reason for that. Indeed, on the
one hand, the sum mentioned is, by its very nature, the logarithmic derivative of the Hankel
determinant. On the other hand, the latter is a τ -function and hence its logarithmic derivative
must admit a local representation in view of the general formula (6.7).

Remark VII. The isomonodromy context for orthogonal polynomials and, in particular, the
interpretation of the Hankel determinants as isomonodromy τ -functions have been well
understood for some time, since the works from the early nineties [19,33]. For the most general
semi-classical weights this fact was established in the recent paper [5] (see also [6]).
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