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I. I~vTR~DUCTI~N 

In this paper we are concerned with the asymptotic behavior of solutions 
of Volterra integrodifferential systems of the form 

x’(t) = Ax(t) + 1” B(t, 4 ~(4 ds +f(t>, (’ = d/dt), (1) ” 

where 0 < t < co, A and B are n x n matrices, and x and f are n-vector 
valued functions. 

To obtain our results for integrodifferential equations we first examine a 
general functional differential equation with unbounded delay and determine 
conditions of the Liapunov-Razumikhin type which guarantee that all 
solutions are bounded and tend to zero as t tends to infinity. The results for 
functional differential equations assume the existence of a Liapunov function 
defined on R x Rn rather than a Liapunov functional, and the techniques 
involved are similar to those employed by Seifert [I 1, 121 and R. Driver [3]l 
in obtaining similar results for functional differential equations with un- 
bounded delay. These results are then applied to Eq. (1) to obtain corre- 
sponding results for the solutions of (I). In particular, we are able to obtain 
results for the resolvent operator associated with Eq. (1) which when used 
in conjunction with the variation of constants formulas obtained by Grossman 
and Miller [5] yield immediate perturbation results for the nonlinear system 

W = Ax(t) + sot B(t, s){x(s) + (&(s)) ds + (w)(t) + f(t), (2) 

where gi , i = 1,2, is a nonlinear functional of higher order. 

* On sabbatical leave from Southern Illinois University, Carbondale, Illinois 62901. 
* The results in [1 11 on stability were in fact already obtained by Driver in [3]. 
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Our results are also valid for the convolution case, B(t, S) = B(t - s), 
if B(t) is integrable on the half line [0, co). Although necessary and sufficient 
conditions have been given for the resolvent of (1) to be integrable on [0, co), 
these conditions are often difficult to verify and our results will provide an 
alternate test which may often be easier to use than the known criteria. 
In general, we shall assume that A is a stable matrix. However, in the convolu- 
tion case we show that Eq (1) may be transformed into another equation of 
the same form where the matrix A in the new equation is stable and that the 
resolvent associated with Eq. (1) is in U(0, co) if and only if the resolvent 
of the new equation is L1(O, co). 

As Eq. (1) is not assumed to be of convolution type our results can be used 
to obtain global results for nonlinear equations of the form 

when g is uniformly Lipschitzian. This is accomplished by examining the 
difference of two solutions and applying the results and techniques previously 
obtained for the linear equation. 

2. FUNCTIONAL DIFFERENTIAL EQUATIONS 

Consider the equation 

x’(t) = f(4 xt 7 4, t > 0, 

where p E a, an arbitrary set of parameters and for each fixed CL, 
f: Rf x CB --+ Rn is continuous. Here Rn is n-dimensional Euclidean space 
with the usual inner product and norm, R+ is the set of nonnegative reals, 
and CB is the vector space of bounded continuous functions p: (- 00,0] --f Rn 
with the usual sup norm: /I /I. Given a function x(t) defined for t < T, xt is 
defined by x~(s) = x(t + S) for s < 0. By a solution of (3~) is meant a 
function x(t) defined on (- co, T), T > 0, which is continuously differentiable 
on (0, T) with xt E CB for t < T, and which satisfies (3~) on (0, T). Through- 
out our discussion of Eq. (3~), it is assumed that if x(t) is a solution of (3~) 
on (---co, T), 0 < T < co, then either x(t) can be continued past T or Ij xt I] 
is not bounded as t --+ T-. A solution to the initial value problem is defined 
in the usual manner and the reader is referred to Driver [3] on the subjects 
of existence, uniqueness, and continuability of solutions of (3~). 

The reader will notice that there is no requirement that f(t, v, p) depend 
on p in a continuous fashion. The reason for this is that we are not concerned 
with continuity of solutions with respect to the parameter but rather we wish 
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to make clear the rather obvious observation that if one has a Liapunov 
function which does not depend on p but which “works” equally well for each 
TV E 02 then the solutions of (3~) behave in a uniform fashion independent of p. 
Although this is basically an artificial problem in this form, it will arise in a 
rather natural fashion as one attempts to analyze Eq. (1) and its nonlinear 
generalization when the function f(t) is asymptotically periodic or asymp- 
totically almost periodic. 

In our discussion of boundedness and asymptotic behavior of solutions 
of (3~), V will be a continuous function defined on R x Rn into R and 
V’(t, x(t)), t 3 0, will denote the upper right-hand derivative of V(t, x(t)), 
where x(t) is a solution of (3~). Al so, h will be a function defined and continu- 
ous on R+ into Rf, satisfying h(0) = 0 and h(s) > s for s > 0. 

Given y E CB and t, > 0, x(t, t, , v, p) will denote a solution of (3~) which 
satisfies ~(t, + s) = 9)(s) for s < 0. Iff(t, 0, CL) is identically zero, we say that 
the zero solution of (3~) is 

(i) uniformly stable if for each E > 0 there exists S = S(C) > 0 so that 
4, 3 0, P E Qf, and II v II < 8 imply I x(t, to , F, P)I < E for t 3 t,, , 

(ii) uniformly asymptotically stable if it is uniformly stable and there 
exists a constant 6, > 0 so that for any 77 > 0 there exists T(v) > 0 such that 
CL E a, 4, 3 0, and II p7 II < 6, imply I x(t, to , P), P>I -=c rl for t 3 t,, + T(T). 

We say the the solutions of (3~) are 

(iii) uniform bounded if for any constant M > 0 there exists N = 
N(M) > 0 so that II v II < M, p E CZ and to 3 0 imply I x(t, t,, , F, p)I < N 
for t 3 t, . 

THEOREM 1. Suppose V: R x R” -+ R is continuous and satisjies: 

(i) a([ x 1) < V(t, x) < b(l x I) for all (t, x) where a, b: Rf -+ R+ are 
continuous and increasing with a(r) -+ co as r + 00, 

(ii) there exists M 3 0 so that if%(t) is a solution of (311) with 1 x(t)\ >, M 
for some t 3 0 and V(s, x(s)) < h(V(t, x(t))) for s < t, then V’(t, x(t)) < 0. 
Then the solutions of (3~) are uniform bounded. 

This theorem is analogous to Theorem 2 in [ll], and its proof is similar, 
and therefore is omitted. We remark that the hypothesis a(r) -+ co as r + 00 
of our theorem should also have been included in Theorem 2 in [l 11. 

We also note that if f (t, 0, p) = 0, b(0) = 0, and M = 0, the hypotheses 
of Theorem 1 imply uniform stability of the zero solution; we omit the details. 

THEOREM 2. Suppose all solutions of (3~) are bounded. Let Vz R x Rn + R 
be continuous and satisfy: 



VOLTERRA INTRGRODIFFERENTIAL EQUATIONS 145 

(i) ~(1 x I) < V(t, X) < b(l x I) for aZZ (t, x), where a, b: R+ -+ Rf are 
continuous and increasing. 

(ii) Given M > 0, there exist monotone sequences of positive reals {rj} 
and (uj} with rj ---f co and ui -+ 0 as j -+ 03, and continuous functions wj(s) 
which are positive on the set 42 < s < M so that given a solution x(s) = 
x(s, to , v, P) of (3~) with I x(s)1 < Mf or all s, if for some t > rj + to one has 
uj < 1 x(t)] and V(s, x(s)) < h(V(t, x(t)))for t - rj < s < t, then V(t, x(t)) < 
-wj(l 40). 
Then every solution of (3~) tends to zero as t -+ co. In particular, given M > 0 
and 7 > 0 there exists T(v, M) > 0 so that if x(t) = x(t, t, , y, CL) is a solution 
of (3~) with I x(t)1 < Mf or aZZ t, then 1 x(t)1 < 17 for al2 t > T(Q M) + t, . 

Proof. Let M > 0 be given and x(t) = x(t, to, v, p) be a solution of (3~) 
with the property that 1 x(t)] < M for all t. Let 7 > 0 be given, 77 < M. 

As h is continuous and h(s) > s for s > 0, there exists q, > 0 so that 
h(s) - s 2 Q, for a(~)/2 < s < b(M). Now, choose a positive integer N so 
that a(~) 3 b(M) - NcO 3 a(7)/2. (Th is choice is always possible if E,, is 
chosen sufficiently small.) Let ei = b(M) - je, and choose J > 0 so that 
UJ < b-l(+). 

If V(t, x(t)) > pi for t 3 rJ + to then 

h(V(t, x(t))) > V, x(t)) + E,, > ~1 + co = WW 2 W> x(s)) 

for t - rJ < s < t. Also, 6(1 x(t)) > v(t, x(t)) 3 or > Ed for t >, rJ + to, 

so / x(t)1 > b-l(q,,) > uJ for t > rJ + to. Hence, 

V’(t, x(t)) < -wJ(l x(t)\) < -7 < 0 

for t > rJ + to, where wJ(s) >, y > 0 for uJ < s < M. Thus, 

v(t, x(t)> - b(M) < v(t, x(t)) - V(rJ f to, +J + to)) < -y(t - rJ - to) 

for t > rJ + to which contradicts V(t, x) >, 0, and so there must be a value 
oft, say t, , in the interval [rJ + to , r, + to + co/y] so that V(tl , x(Q) < q . 
If there exists ta > t, for which V(t, , x(Q) > or , there must exist t, , 
tl < t, < t, , for which V(t, , x(Q) = l 1 and V(t, x(t)) > pi for t3 < t < t, . 
If t, < t < t, , we see that 1 x(t)\ > b-l(+) > uJ and 

V’(t, x(t)>) > W, x(t)> + q, 3 ~1 + ~0 = b(M) 3 V(s, x(s)) 



146 GRIMMER AND SEIFERT 

for t - rJ < s < t, and, hence, on (t3 , tJ, 

and we must have V(t, , x(Q) < V(tg , x(t,)) = or which is a contradiction. 
It now follows from this contradiction that V(t, x(t)) < or for t > r, + l ,,/y + t, 
If we now consider x(t) on the interval [2r, + Q-,/Y + to, co), by a slight 
modification of the above argument it can be shown that V(t, x(t)) < l a 
for t 3 2r, + 2~,,/y + t, . Continuing this process, V(t, x(t)) < cN = 
b(M) - NQ, < a(v) for t > N(r, + Q/Y) + t,, , Defining T(T, M) by 
VI, M) = WJ + dY> we obtain 1 x(t)/ < 7 for t 3 T(T, AZ) + t, . This 
completes the proof. 

Just as Theorem 1 may be slightly altered to provide a result on uniform 
stability for (3~), Theorem 2 may be modified to give sufficient conditions 
for uniform asymptotic stability. We state this result in a form easily applied 
to integrodifferential equations. 

THEOREM 3. suppose that f(t, 0, p) E 0 and that x = 0 is uniformly 
stable. Let V: R x Rn + R be continuous and satisfy; 

(i) ~(1 x [) < V(t, x) < b(l x I) for al2 (t, x) where a, b: Rf -+ R+ are 
continuous and increasing, 

(ii) there exists M > 0 and monotone sequences of positive reals {rj} and 
(uj} with rj --f co and uj + 0 as j + co, and continuous functions wj(s) which 
are positive on 142 < s < M so that given a solution x(s) = x(s, t,, , v, p) of 
(3~) with / x(s)1 < Mfor alls, iff or some t 3 ri + t, one has uj < 1 x(t)1 and 
V(s, x(s)) < h(V(t, x(t))) for t - ri < s < t, then V’(t, x(t)) < -wj(l x(t)l). 
Then x = 0 is uniformly asymptotically stable. 

The proof of this result is almost identical to the proof of Theorem 2 and 
is similar to Theorem 1 of [12]. This result differs from the result of Driver 
[3, Theorem 71 in that Driver assumed that for p fixed, f (t, xt , p) depended 
only on t and x(s) for g(t) < s < t where g(t) -+ co as t --f co to obtain 
asymptotic stability and to obtain uniform asymptotic stability it was further 
assumed that g(t) 3 t - r for some constant r. 

We note that an example exists showing that the uniform asymptotic 
stability of the zero solution does not follow by adding to the conditions 
sufficient for the uniform stability of the zero solution the requirement that 
for a solution x(t) such that h(V(t, x(t))) > V(s, x(s)) for all s < t we have 
V’(t, x(t)) bounded above by a negative definite function of 1 x(t)l; cf. [ll]. 
For the case where the delay interval is bounded, say by r > 0, for solutions 
with h(V(t, x(t))) > V(s, x(s)) for t - r < s < t, such an additional condi- 
tion on V’(t, x(t)) does imply the uniform asymptotic stability of the zero 
solution; cf. [3], for example. 
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3. INTEGRODIFFERRNTIAL EQUATIONS 

We now consider the integrodifferential equation 

where t > t, > 0 and where x(t) = e(t) on 0 < t < t, . Here A and B are 
n x n matrices with B defined for t, s > 0 and locally integrable on Rf x R+, 
and j: R+ -+ Rn and 8: [0, t,,] -+ R” are continuous. 

This type of initial value problem for (1) is not the usual one. The usual 
initial value problem for (l), and the one we are ultimately concerned with 
here, is when t, = 0 and ~9 is an initial vector f?(O). It can be very useful, 
however, to study the initial value problem where t, > 0 is also considered 
and the reader is referred to Miller [8] and Grossman and Miller [6] where 
this type of initial value problem has been examined to obtain significant 
results on the behavior of solutions to the usual initial value problem where 
t, = 0. 

In what follows, we shall assume 

ii 1” 1 B(t, s) - B(t + h, s)j ds = 0 
0 

WI 

and 

s t+h 

p-g 1 B(t + h, s)i ds = 0 
* t 

for each t > 0. 
To see that the results obtained for Eq. (3~) can be applied to (l), let x*(t) 

be a solution of (1). Then x(t) = x*(t) for t >, 0, x(t) = 0(O) for t < 0 is 
clearly a solution of x’(t) = F(t, xt) which is of the form of (3~); here 

F(t, d = 4-+') + /;t B(t, t + s) v(s) ds + j(t); 

y E CB, and x~(s) = x(t + s), s < 0; as before. The fact that F is continuous 
on R+ x CB follows from our hypotheses on B and j. When applying our 
results for Eq. (3~) to (1) we shall assume x(t) = 0(O) for t < 0 and we 
denote this solution x(t, to, 0). 

It is of interest to note that if j(t) is identically zero that the definitions 
given by Miller [S] for the uniform stability and uniform asymptotic stability 
of the zero solution of (1) are equivalent to the definitions for uniform 
stability and uniform asymptotic stability of the zero solution of (1) when it is 
written as x’(t) = F(t, xt) where F is as above. 
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Associated with eq. (1) is the resolvent equation 

$ R(t, s) = -R(t, s) A - /” R(t, u) B(u, s) du, R(t, t) = I (4) 
I 

on the interval 0 < s < t. Grossman and Miller, in [5, Lemma 11, have 
shown under weaker assumptions than we have imposed on (1) that R(t, S) 
is defined and continuous on the set 0 < s < t and that (a/&) R(t, S) exists 
a.e. on the set 0 < s < t and is locally integrable on that set. Further, the 
solution of (1) with initial condition to = 0, x(0) = x,, , can be written in 
the form 

x(t) = R(t, 0) xo + lt R(t, ~)f(s) ds. 

In order to obtain results on the asymptotic behavior of the solutions of (2) 
it will be necessary to examine the operators p, p: C -+ C defined by 

and 

Pb)(t) = jot ww w, 4 T-M ds. 
Here C = C([O, co), P), the space of continuous functions v: [0, co) + Rn, 
with the compact open topology. As R(t, S) is continuous it is clear that p 
maps C into C continuously. That p maps C into C continuously follows 
immediately from (4) and the assumption on B upon using Fubini’s Theorem. 

In particular, we are concerned with obtaining conditions so that the 
linear subspaces, 

BC = {v E C: g(t) is bounded for t > 0}, 

BC1 = (9’ E BC: v has a limit at infinity}, 

BC, = {p’ E BC,: 9, has limit zero at infinity}, 

A(w) = (v E BC: 9 is asymptotically w-periodic}, 

AAP = {p’ E BC: v is asymptotically almost periodic), 

endowed with the usual sup norm, /I 11, are invariant under the operators p 
and p. Here a function v is asymptotically w-periodic if there is a continuous 
w-periodic function p(t) so that p)(t) - p(t) --+ 0 as t + 00 while a function q 
is asymptotically almost periodic if there are functions P(t) and q(t) such that 
p(t) is almost periodic on R, q(t) is continuous for t > 0, q(t) -+ 0 as t + co, 
and v(t) = p(t) + dt). 
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As the topology on each of these subspaces is stronger than the topology 
on C it follows easily from the closed graph theorem that if any of the above 
subspaces are invariant under p and p then there operators are continuous 
in the sup norm (cf. [7, p. 2521). 

Throughout this section we will impose the following condition: 
(H2) A is a stable matrix, i.e., all eigenvalues of A have negative real parts, 
and C is the positive definite symmetric solution of the matrix equation ATC + 
CA = -1. Also, there exists a constant M > 0 so that 

I t / CB(t, s)I ds < M 
0 

for all t > 0 and 2pM/a? < 1 where 01~ and /3” are, respectively, the smallest 
and largest eigenvalues of C. Here and henceforth xT denotes the transpose 
of X, x either a vector or a matrix. 

THEOREM 4. Suppose (Hl) and (H2) are true. Then if f is bounded, all 
solutions of (1) are bounded. Inparticular, R(t, 0) is bounded andp, p: BC-+ BC. 

Proof. Define V(t, x) by V(t, X) = xr& As a2 j x I2 < V(t, X) < 
/3” 1 x 12, we see that (i) of Theorem 1 is satisfied for this V. 

Along solutions of (I) we have for t > to 

t” = -I X(t)12 + 2x=(t) 1” CB(t, s) x(s) ds + 2x=(t) Cf(t) 
0 

G -I @>I2 + 2 I +)I 1’ I CW, 41 I x(s)1 ds + 2 I x(t)1 [ C 1 11 f II. 
0 

Now, if h2V(t, x(t)) > V(s, x(s)) f or s < t, where h > 1 is a constant to be 
determined, then 

h”/32 I x(t)/2 3 hvyt, x(t)) > V(s, x(s)) 3 2 1 x(s)12 

and 

Thus, 
w/4 I 401 z I x(s)I, for s < t. 

v’ < -I W2 + G%3/4 I 4t>12 s’ I Wt, 41 ds + 2 I +)I I C I Ilf II 
0 

and as 2jlM/c~ < 1, h may be chosen so that h > 1 and 2hfiM//(y < 1 so that 

v’ < KWW4 - 11 I +W12 + 2 I C I llfll I @>I < 0 

if I Ml 2 2 I C I Ilf II/[1 - CWW41. 
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It now follows from Theorem 1 that if f is bounded, all solutions of (1) 
are bounded. From Eq. (5), the solutions of (1) with t,, = 0 and x(O) = x,, 
may be written as x(t) = R(t, 0) x,, + p(f)(t) and the conclusion that 
R(t, 0) is bounded follows by taking f (t) to be identically zero and p(X) C BC 
follows by taking x0 = 0. 

To see that P(BC) C BC, let f E BC and consider 

~(f)(t) = Lt VP4 W, 4 f (4 ds. 

From Eq. (4), we obtain 

P(f >@> = - j-” R(t, s) Af (s) ds - j-” j-’ R(t, u) B(u, s) f (s) du ds 
0 0 s 

= --p(Af)(t) - 1” R(t, u) l” B(u, s)f(s) ds du 
0 0 

from Fubini’s Theorem. As si 1 CB(t, s)] d s is bounded and C is invertible it 
follows that Ji 1 B(t, s)I a!~ is bounded. Also, from (HI) we see that 
$, B(t, s) f (s) ds is continuous. Thus, as sl B(t, s) f (s) ds E BC and p(BC) C BC 
we have P(BC) C BC and the proof is complete. 

COROLLARY 1. Assume that the hypotheses of Theorem 4 are valid and in 
addition, B(t, s) = B(t - s). Then R(t, s) = R(t - s), R(t) and R’(t) ELP(R+) 
for 1 < P < a~ and both R(t) andR’(t) --f 0 us t -+ co. 

Proof. That R(t, s) = R(t - s) follows from Lemma 2 of [5] while a 
result of Corduneanu [2] states that p(BC) C BC if and only if 

s 
t / R(t, s)I ds < M < co 

0 

for some constant M and all t 3 0. Thus, R(t) ELI@+) and similarly 
B(t) ELI@+). The rest of the corollary follows from Theorem 2.5 of [6] 
and standard arguments. 

THEOREM 5. Let (HI) and (H2) be valid and let 

(s 
t-T 

lim sup 
T-CC 

1 B(t, s)/ ds : t > T = 0. 
0 

If f E BC, then every solution of (1) tends to zero as t + co. More specifically, 
given MI > 0 and 7 > 0 there exists T(q, M,) > 0 so that $x(t) = x(t, to , 0) 
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is a solution of (1) with 1 x(t)1 < MI for all t then j x(t)1 < 7j for t > 
T(T, MI) + t,, . Also, p, p: BC,, + BC, and R(t, 0) -+ 0 as t -+ co. 

Proof. Let f E BC, . As the hypotheses of Theorem 4 are satisfied we 
know the solutions of (1) are bounded. Let MI > 0 be given and suppose 
x(t) = x(t, to, 0) is a solution of (1) which satisfies 1 x(t)\ < MI for all t. As 
in the previous theorem, we define V(t, x) = xrCx. Along x(t) we have for 

t 3 to, 

F” < -I $>I2 + 2 I x(t)1 1” I CB(t, s)l I x(s)1 ds 
0 

+ 2 I 4t)l I c I If (t>l- 

Defining yi = j, j = 1, 2 ,..., and letting h > 1 we obtain as above that 
h2V(t, x(t)) > V(s, x(s)) for t - rj < s < t, t > ri + to , implies that 
(h/I/a) I x(t)] > 1 x(s)\, t - rj < s < t. Thus, 

b’/’ d -I +)I2 + 2 I +)I s,;,. I CB(t, 4 Ix(s)1 ds 
1 

+ 2 I +>I i-r’ I CB(t, s)/ I 4s)l ds + 2 I x(t)1 I C I If(t)I 

< -I +)I2 + (2h&) j “(t),lf 1 CB(t, s)l ds + 2M12 j’-“l CB(t, s)I ds 
0 0 

+ 2% I C I If (t)l 

< [WW3/4 - 11 I @)I2 + 2441 (M, f,ot-” I Wt> $11 ds + I C I IfW). 

Now as 2flM/m < 1, h > 1 can be chosen so that -K = (2hpM/oI) - 1 < 0. 
Now let uK be defined to be 2/k. For each k we may choose vk = rj, so that 
for t > vk , 

2% (W jot-‘” I CW, 41 ds + I C I If (01) < K/2k2. 

Thus, for t > vK + to and MI 3 1 x(t)] > u,/2 = l/k, we have 

I/” < -K I x(t)12 + K/2k2 3 -wk.1 x(t)l) < -K/2k2 < 0. 

As the hypotheses of Theorem 2 are satisfied we see that if f E BC, , the 
solutions of (1) behave in the prescribed manner. As in Theorem 4, if we take 
to = 0 and x(O) = x0 , R(t, 0) -+ 0 as t + co and p(BC,) C BC, follows 
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from (5). To show @C,) C BC, one argues as in Theorem 4 and notes that 
(H2) and (6) imply that li B(t, s)~(s) ds is in BC,, iffis in BC,, . 

It is convenient to note here that Theorems 4 and 5 have immediate 
generalizations to the equation 

x’(t) = Ax(t) + Iot W, s, 1.4 x(s) ds +fu(t), UP) 

parameterized by p E GE We will assume that (HI) is valid for B(t, s, CL), for 
each p E GZ and also: 

(H2p). A is a stable matrix, C is the positive definite symmetric solution 
of the matrix equation ATC + CA = -1, and there exists a constant 
M > 0 so that 

s t 1 CB(t, s, ~)j ds < M 
0 

for all t > 0 and all TV E 0Z and, also 2j3Mjor < 1 where 01~ and /3” are, respec- 
tively, the smallest and largest eigenvalues of C. 

The following is an extension of Theorems 4 and 5; it is stated as a corollary 
since it may be proved in the same fashion as these theorems are, and will be 
used in establishing subsequent results. 

COROLLARY 2. Suppose (HI) is validfor B(t, s, p) for each ,u E CY and that 
(H2p) holds. If there exists K > 0 so that 1 f,(t)/ < Kfor t > 0 and all p E Q?, 
then the solutions of (1~) are uniform bounded. If further, 

Is 
t-T 

&i+t sup / B(t, s, p)j ds : t 3 T, CL E LJ’ = 0 
0 I 

and f,(t) -+ 0 as t -+ 0~) uniformly in p, given MI > 0 and v > 0 there exists 
T(q, MJ > 0 so that if x(t) is a solution of (1~) with 1 x(t)] < M, for all t 
then 1 x(t)] < 7 for t > T(q MI) + to uniformly for p E GZ. 

Remark Although we could continue with the initial value problem as 
stated for (1) and (Ip), the purpose of this general initial value problem was 
to obtain Theorem 5 in the case where to = 0, and so henceforth we shall 
always assume to = 0 and x(0) = x0 is the initial value problem for (1). 

We now consider some results involving the function spaces BC1 , A(w), 
and AAP. 

THEOREM 6. Suppose that (Hl), (H2), and (6) are valid. Suppose in 
addition, 

B(t, s) ds = 9(co) (7) 
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exists and A + &Y(W) is nonsingular. Then if f E BC, every solution x(t) of (1) 
satis$es 

;% x(t) = -(A + .@(cQ))-~ kirr~ f (t). (8) 

Also, p, p: BC, + BC, . 

Proof. Let f E BC, and f (a) be defked by 

f(m) = Ezf(t). 

Let x1 = -(A + B(W))-‘f(a) and w(t) = x(t) - x1 , where x(t) is a 
solution of (1). Then w(t) satisfies 

w’(t) = A@) + lt B(t, 4 w(s) ds + (A + it B(t, s) ds) xl +f (t). 

From the definition of x1 it follows that (A + $, B(t, s) ds) x1 + f (t) tends to 
zero as t -+ co and so by Theorem 5, w(t) tends to zero as t--f co. That 
p, p: BC, + BC, follows from (4), (5), (6), and (7). Q.E.D. 

THEOREM 7. Suppose (Hl) and (H2) are valid and that (6) holds. Suppose 
in addition, for n, m = 0, 1, 2 ,..., 

s t I B(t + mw,s+mw)-B(t+nw,s+nw)lds-+O (9) 
0 

as t -+ co uniformly in n and m. Then ;f f (t) is asymptotically w-periodic, the 
solutions of (1) are asymptotically w-periodic. Also, p, p: A(w) -+ A(w). 

Proof. Suppose f(t) is asymptotically w-periodic. As our problem is 
linear, it follows from Theorem 5 that we may assume with no loss of 
generality that f (t) is w-periodic. 

Let x(t) be a solution of (1) and consider the uniformly bounded family of 
functions y,,,(t), m, tl = 0, 1, 2 ,..., defined by 

ym,,(t) = x(t + mu> - x(t + nw). 

The functions y,&t) satisfy the equations 

An&> = &n,,(t) + 1” B(t, 4 Y,,&> ds 

+ Lt P(t +‘mw, s + mu> - B(t, 41 Y,,&) ds 

+ Lt Mt + mw, s + mw) - B(t + nw, s + nw)] x(s + nw) ds 

+ lmw B(t + mw, s) x(s) ds - JnU B(t + nw, s) x(s) ds. 
0 



154 GRIMMER AND SEIFJXT 

Now, as 

f 
*" 

T+no-T 

I B(T + mu, s)j ds = 
s I B(T + nw, s)l ds 

0 0 

Is 
t-T 

G sup 1 B(t, s)i ds : t 3 T 
0 I 

it follows from (6) that 

I nw I B(r + nw, s)j ds -+ 0 
0 

as t --+ co uniformly in n. As y,&t) and x(t + no) are uniformly bounded for 
m, n = 0, l,...) and since (9) holds, it follows that y,,,,(b) satisfies 

whereg,,,(t) -3 0 as t -+ co uniformly in m, it. It follows now from Corollary 2 
that the functions y*,%(t) tend to zero as t --+ 00 uniformly in m and n; that is, 
given E > 0 there exists NW so that t 3 iyU, implies 1 yPtaSBE(t)l < E for all m 
and n. 

If we now consider the functions x(t + n,) for 0 .< t < w we see that for 
n,m > N, 

1 x( t + nw) - x(t + mw) j 

= j x(t + NW + (n - N)w) - x(t + NW + (m - N)w)l 

= I Yn-N,rn-NO + NW)1 < E- 

Thus, the sequence of functions {x(t + nw)> is uniformly Cauchy on 
0 < t < w and must converge uniformly to a continuous function x,(t) on 
LO, w]. Clearly, x,(O) = o( ) x w an so x,(t) may be extended periodically to d 
[O, co) and x(t) - x0(t) -+ as t -+ co. 

Taking x0 = x(O) = 0, it follows from (5) that p: A(w) + A(w). Also, for 

f EAhJ) 

and as p: X’s -+ BC, we may assume without loss of generality that f (t) is 
w-periodic. Arguing as above using (6) and (9) it is easily shown that the 
family of functions 
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is uniformly Cauchy on [0, W] and so the function ji B(t, s)f(s) ds is in A(w). 
As p: A(W) ---f A(w) it now follows that p: A(w) --f A(w) and the proof is 
complete. 

Before considering Eq. (1) when f(t) is asymptotically almost periodic 
(hereafter, a.a.p.) we state the following characterization of a function being 
a.a.p. which may be found in Fink [4, Chap. 9, Sect. 31 or in Yoshizawa 
[13, Chap. 1, Sect. 31. 

LEMMA 1. A function f (t) is a.a.p. if and only if for each E > 0 there exist 
Z(E) > 0 and T(E) > 0 such that in each interval [to, t, + Z(e)], t, >, 0, there 
exists 7 = T(E, to) so that 

if(t + 4 -f(t)1 < % t 3 T(E). (10) 

THEOREM 8. Let (HI), (H2), and (6) hold and suppose for each E > 0 
there exists Z(E) > 0 and T(E) > 0 such that in each subinterval of R-t of length 
E(E), there exists 7 such that 

I t I B(t + T, s + T) - B(t, s)l ds < E, t 2 T(c), (11) 
0 

and that there exists 6 = 6(c) > 0 so that (11) holds for 0 < 7 < 6. Then if 
f(t) is a.a.p., every solution of (1) is a.a.p. and p, p: AAP + AAP. 

Proof. For each E > 0, we denote the set of Q- for which (10) holds by 
E(E, f) and the set of 7 for which (11) holds by E(E, B). It can be shown that 
under the above hypotheses on f and B that E(e, f) n E(E, B) is relatively 
dense in Rf; that is, there exists L = L(E) > 0 such that each interval 
[to , to + L], to > 0, contains points of E(E, f) n E(e, B). The proof of this 
is analogous to the corresponding proof that the intersection of analogous sets 
for almost periodic functions is relatively dense on R, (cf. for example 
Besicovitch [I, pp. l-5]), and although somewhat more complicated, is 
omitted here. 

Let x(t) be a solution of (1). It follows from Theorem 4 that there exists B, 
so that j x(t)1 < B, for t 3 0. Also, as p(BC) C BC, it follows from a result 
of Corduneanu [2] that there exists N such that $1 R(t, s)l ds < N for t > 0. 
For any fixed 7 > 0, define y7(t) = x(t + 7) - x(t). It follows that 

y,‘(t) = AW) + JI: B(t, 4 Y,(S) ds + At, 4 (12) 
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where 

g& 4 = j-” VW + T, s + T) - B(t, s)) x(s + T) ds 
0 

From the above remarks, given E > 0, there exists L = L(E) > 0 and 
T,(E) > 0 so that each subinterval of R+ of length L contains a number 7 
such that 

and 

s t I B(t + T, s + T) - B(t, s)I ds < ~/(16&N) (13) 
0 

I f(t + 4 - f@)l G aw (14) 

for t > Z’~(E). F rom (6), it follows that there exists Z’s(e) > T,(e) such that 

i 
f / B(t + T, s)\ ds < •~(16~o~~ (15) 

0 

for t 2 Z’,(E) and any 7 > 0. Finally, from Theorem 5 we see that there 
exists TV > Z’z(~) such that Z’,(E) > 1 and 

for t > 7’s(~), We find then that given E > 0 there exists L(E) > 0 such that 
in each subinterval of R+ of length L(E), there exists 7 such that for t 2 T&E), 
(13), (14), (15), and (16) hold. Using the estimates (13)-(15) and the fact that 
I y&N < zt3, for t 2 0, we find that 1 g(t, T)I < 3~~~8~) for t 2 Z’,(E). 
Also, from the definition of g(t, 7) we see that there exists a constant K > 0 
so that ] g(t, T)\ < K for 0 < t < T,(E). We now decompose g(t, T) by 
letting g(t, T) = gl(t, T) + gz(t, T) where 

Thus, I gdt, 41 G WW f or t > 0, 1 gz(t, T)/ < K for t 2 0 and 
g&t, T) + 0 as t -+ co uniformly in 7 E E(E~ ,f) A E(.s, , B) where or = 
min~(~~(8~)), (43 @3dvHl~ F rom Corollary 2, taking f,(t) = gz(t, T), where 
7 = p, and x0 = 0 in (If*), we see that for the solution fi Rft, s) g&s, T) ds 
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there exists T4(c) 3 Ta( ) l so that 1 si R(t, s) gs(s, r) ds 1 < c/4 for t 3 T4(c) 
and all r E E(Q ,f) n E(E~ , B). From (5) we see that 

and, hence, 1 y7(t)j < E for t 3 T4(c). 
From this estimate and Lemma 1, we conclude that x(t) is a.a.p. and if we 

take x(O) = x0 = 0, p: AAP + AAP is immediate. To see that p: AAP + AAP 
we need only consider si B(t, s)f(s) ds when f is almost periodic. However, 
with the aid of (6) and (11) it is easy to show that si B(t, s)f(s) ds satisfies 
condition (10) of Lemma 1 and sop: AAP ---f AAP and the proof is complete. 

Remark. It is clear that (9) and (11) are satisfied in the convolution case 
when B(t, s) = B(t - s). Another case of interest is when B(t, s) = 
C(s) B,(t - s). If C(s) is asymptotically w-periodic, say C(s) = p(s) + q(s) 
with p(s) w-periodic and Q(S) -+ 0 as s ---f 03, then 

where 

1 B(t + mw, s + mu) - B(t + nw, s + nw)l 

< I ds + mu> - PCS + fiw>l I &(t - 41 
G &7,(s) I Bl(f - Sk 

q,(s) = sup{1 &)I: t 3 4. 

Now, if B1 E Ll(O, co), si 2p,(s) I B,(t - s)[ ds + 0 as t + co since the 
convolution of an L1 function with a function in BC, is a function in BC, . 
Hence, B(t, s) = C(s) B,(t - s) satisfies (9) if B, EU(O, co) and C(s) is 
asymptotically w-periodic. In a similar manner, one can show that if 
B, E L1(O, co) and C(s) is a.a.p. then B(t, s) = C(s) B,(t - s) satisfies (11). 

Before proceeding further, we now will consider equation (1) when 
B(t, s) = B(t - s) and examine the results we have obtained in the light 
of some results of Grossman and Miller. In this case (1) takes the form 

x’(t) = Ax(t) + l’ B(t - s) x(s) ds +f(t). (17) 

For Eq. (17), Grossman and Miller proved: 

THEOREM 9 [6, Theorem 3.51. Suppose B(t) EL’(R+). Then the resolvent 
R(t) is in Ll(R+) if and only if 

Det(s1 - A - B*(s)) # 0 (18) 

for Re s > 0 where B*(s) is the Laplace transform of B(t). 
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We first note that the condition J’i 1 CB(t, s)] ds < M for all t > 0, of 
(H2) is just the statement that B(t) eLl(R+) in the convolution case. In 
Theorems 5 and 6, hypotheses (6) and (7) are again just the requirement that 
B(t) ELM and the requirement of Theorem 6 that A + a(co) is non- 
singular is the determinant condition (18) when s = 0. 

Now suppose that (17) is a scalar equation with A a negative constant and 
B(t) > 0 for t 3 0. In this case, C = -(24-l, a2 = /Ia, and 

J; I CB(t, s)I ds = -(2A)-l it B(s) ds 

< -(2A)-1 B*(O). 

Thus, we may choose M = -(2A)-lB*(O) in (H2) and the requirement 
2pM/a < 1 is seen to be B*(O) < -A or ---A - B*(O) > 0. In this case, 
this is precisely condition (18) and we see that the inequality 2/3M/,.~ < 1 
cannot be relaxed in general. 

We must note, however, that the result obtained by Grossman and Miller 
does not require A to be a stable matrix. 

To broaden the scope of applicability of our results to a larger class of 
equations we now present a transformation for the convolution case. As the 
transformation consists of changing Eq. (17) into an integral equation and 
then transforming the integral equation into another integrodifferential 
equation of the form of (17), the transformation will be presented in two 
parts, one of which may be of independent interest in the study of integral 
equations. 

We consider first the integral equation 

x(t) = j” B,(t - s) x(s) ds +-f(t). 
0 

Associated with (19) is the resolvent equation 

r(t) = --B,(t) + Lt B,(t - s) Y(S) ds 

and the variation of constants formula 

x(t) = f(t) - LZ r(t - s) f(s) ds. 

(19) 

(20) 

For Eq. (19) we first note the following result of Paley and Wiener. 
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THEOREM 10 [lo, p. 601. Suppose B,(t) ELM. Then r(t) ELM ifand 
only if 

det(1- B,*(s)) # 0 

for Re s 2 0, where B,*(s) is the Laplace transform of B,(t). 

THEOREM 11. Suppose B,(t) is absolutely continuous and B,(t) and B,‘(t) 
aye in Lf(R+) and let D be a stable matrix. Then the resolvent r(t) associated with 
Eq. (19) is in Ll(R+) if and only if the resolvent R(t) associated with the equation 

r’(t) = P + WY1 r(t) + j” LB,’ - W’l(t - 4 Y(S) ds + f (t) (22) 
0 

is in Ll(R+). 

Proof. Although one may prove this result by defining y(t) by y’(t) = 
Dy(t) + r(t) and substituting into equation (20) to obtain an equation of the 
form of (22) and argue from there, we will make use of the determinant 
criteria of Grossman and Miller and Paley and Wiener. 

From Theorem 9 we see that the resolvent R(t) associated with Eq. (22) is 
L1(R+) if and only if 

det(s1 - [D + B,(O)] - [B,’ - BID]*(s)) # 0 

for Re s 3 0. However, 

sI - D - B,(O) - (B,‘)*(s) + B,*(s)D = (I - B,*(s))(sI - D) 

and the conclusion follows from Theorem 10 since D is a stable matrix. 
Of course, one could differentiate (19) to obtain an integrodifferential 

equation and one would obtain Eq. (22) with D = 0. However, as one sees 
from the proof of Theorem 11, the resolvent of the integrodifferential equation 
will not be in Ll(R+). 

If in addition we assume that D is chosen so that D + B,(O) is stable, we 
have the following corollary of Theorem 11 and Corollary 1. 

COROLLARY 3. Suppose B,(t) is absolutely continuous and that B,(t) and 
B,‘(t) are in Ll(R+) and let D be u stable matrix so that D + B,(O) = A is 
stable. Suppose Cis thepositive definite solution of the equation ATC + CA = -I 
and 

W/4 lrn I CB,' - CB,D 1 (s) ds < 1, 
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where a2 1 x j2 < xTCx < /P 1 x 12. Then the resolerent r(t) of Eq. (19) is in 
Ll(R+). 

The following result may be useful when the matrix A in Eq. (17) is not 
stable. 

THEOREM 12. Suppose B(t) is in Ll(R+). Let D and E be stable matrices with 
the property that A + D - E is stable and let F(t) be the principal matrix 
solution of the d;ferential equation 

y’ = Ey. (23) 

Then the resolvent associated with Eq. ( 17) is in Ll(R+) if and only if the resolve& 
associated with the equation 

x’(t) = [A + D - E] x(t) + Jb’ [B,’ - B,Q](t - s) x(s) ds (24) 

is in Ll(R+). Here B,(t) = [FA + F * B - F’](t), where F * B is the convolu- 
tion of F and B. 

Proof. As F(t) is the principal matrix solution of (23), F(0) = I, 
Ftk)(t) ELM for K = 0, 1, 2 ,..., and det F*(s) # 0 when Re s 3 0. 
Following Miller [9, Theorem 61, if we convolution multiply Eq. (17) by F(t) 
and integrate by parts we obtain the equation 

x(t)=[FA+F*B-F’]*x+F*f, (25) 

where x denotes convolution. Letting B,(t) = [FA + F * B -F’](t) we see 
that 

I - B,*(s) = F*(s)(sI - A - B*(s)) 

and the resolvent r(t) of (25) is in Ll(R+) if and only if the resolvent R(t) of (17) 
is in Ll(R+). We now apply Theorem 11 to complete the proof. 

To illustrate the use of the above transformation, we consider the equation 

x’(t) = [” B(t - s) x(s) ds, 

where B(t) eLl(R+). Here we set D = -yI and E = --hI where y > X > 0 
are constant and F(t) = e-Atl. In this case Eq. (24) takes the form 

x’(t) = (A - y) Ix(t) + jt [B + (y - h) F * B + (y - A) Wj(t - s) x(s) ds 
0 

(27) 
The Liapunov matrix C is obvious in this case, C = @J/(r - h))l and 
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2 - 01 -rs 2. From Theorem 12 and Corollary 1 we obtain that the resolvent R(t) 
associated with Eq. (26) is in U(R+) if 

I m ) B + (y - h) F * B + (y - A> w I (4 du < (y - 4, (28) 
0 

for some constants y > h > 0. As B, X, and F are independent of y we may 
let y -+ 00 to obtain that R(t) is inU(R+) if 

i 
m~F*B+hli~(u)du<l (29) 

0 

for some h > 0. 
For example, in the special case 

B(t) = f BjeCojt 
j=l 

(30) 

with oi > 0, j = 1, 2 ,..., ule # uj , for k # j, if we let X = 4 , 

F * B(t) = BlteC’~t + f Bj(ewojt - ep’@)/(crl - uj) 
j=Z 

(31) 

we see that (29) is satisfied if 

I m 1 B,t + 0~11 emuIt dt + f 1 Bi l/(quJ < 1. 
0 j=Z 

Although the transformation of Theorem 12 is motivated by the desire to 
apply our results to equations where the matrix A is not stable, there is no 
reason why the transformation cannot be used when A is stable. If A is a 
stable matrix, a transformation that is suggested by the form of (24) is to let 
E = A and D = -yI, where y > 0 is a constant. This choice yields 
F(t) = eAt and B,(t) = F * B(t) and Eq. (24) becomes 

x’(t) = -yIx(t) + j-” [B + yF * B + AF f B](t - s) x(s) ds. (32) 
0 

One advantage of making this transformation is that the Liapunov matrix 
C = (WY)-l is now obvious. From Theorem 12 and Corollary 1 one obtains 
now that the resolvent R(t) associated with Eq. (17) is in Ll(R+) if for some 

y l=- 0, 

s 
mIB+yF*B+AF*BI(u)du<y. 

0 
(33) 
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Letting y -+ co as before yields the result that R(t) EU(Z?+) if 

s 

cc 

iF*BI(u)du<l, 
0 

(34) 

whereF(t) = eAt. 
Although we have considered only linear Volterra integrodifferential 

equations thus far, Theorems 4-8 may be applied to obtain results for per- 
turbed versions of Eq. (1) w h ere the perturbing terms are of higher order in 
the following sense: 

D~~FINITION. Let E be a Banach subspace of C with a stronger topology 
and let g(E) C E. Then g is of higher order with respect to E if and only if 
g(0) = 0 and for each E > 0, there exists S > 0 such that [I gcp, - gva j/ < 
t: /I ‘p1- cp2 i/ when qr and ptz are in E and jj ~~ jj, j/ ‘ps /] < S. The perturbed 
version of (1) that we consider is 

where A and B are as before, gi maps C into C continuously and has the 
property that if qr(t) = vs(t) on LO, Tl then gth)W = gddt) on PA T1 
fora’= 1,2. 

For Eq. (2), Grossman and Miller proved the folowing result which can 
be used if E is BC, BC, , BC, , A(w), or AAP to obtain perturbation results 
corresponding to each of the Theorems 4-8. 

THEOREM 13 [5, Theorem 51. Suppose g, is of higher order with respect 
to Efor i = I, 2 arzd the resolvent Rft, s) associated with (1) is such that both ,LJ, 
6 map E into E. If f E E and R(t, 0) E E, then for each E > 0, there exists am 
r] > 0 such that ;f 1 x0 j < 7 and ilfli < 7 then Eq. (2) has a unique solution x 
in E with Ij x IIE < E. 

The techniques used in the proofs of Theorems 4, 5, 7, and 8 can also be 
applied directly to nonlinear equations which are almost linear in a certain 
sense. In particular, consider the equations 

x’(t) = Ax(t) + f” B(t, s) g@(s)) ds +fi(t), 
‘0 

(35.i) 

i = 1, 2, where A, B, and fi are as before, andg is Lipschitz continuous with 
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g(0) = 0. Given two points x = (x1 ,..., x,) and y = ( yr ,..., yn) in R”, we 
define the matrix G(x, y) = (BJ by 

&(Yl s-*- ,yj-1 xj ,*.., x,) - &(l ,...,yi , Xi+1 ,..a, %J 
2 

xj - Yi 
oij = if xj # yj 

if xj = yj . 

We will require: 

(H3) I G(x>y)l < 1 

for all x, y E Rr. 
We remark that the requirement that g be globally Lipschitzian and that 

(H3) is valid for all X, y in Rn is for convenience only. If one desires local 
results or if it is already known by other means that every solution of (35.i) 
eventually enters and remains in some set D C Rn, 0 E D, it is clear that g 
need be Lipschitzian only on D and that (H3) need be satisfied only on D. 

To examine the solutions of (35. ) i , i = 1, 2, let x(t) be a solution of (35.1) 
and y(t) be a solution of (35.2). Then z(t) = x(t) - y(t) satisfies the linear 
equation 

z’(t) = AZ(~) + lt W, 4 G@(s), Y(S)) 44 ds + fi(t> -f&h (36) 

and if B(t, s) satisfies (Hl) it is easy to see that B,(t, s) = B(t, s)G(x(s), y(s)) 
satisfies (Hl). 

We now can apply Theorems 4 and 5 to Eq. (36) to obtain the parallel 
results for Eqs. (35.i) which in turn are used to obtain results corresponding 
to Theorems 7 and 8 for Eqs. (35.i). 

THEOREM 14. Suppose (Hl), (H2), and (H3) me valid and thatfi(t) -fi(t) 
is bounded. Then if x(t) and y(t) are solutions of (35.1) and (35.2), respectively, 
then x(t) -y(t) is bounded. In particular, if fi(t) is bounded, every solution 
of (35.1) is bounded. 

If in addition (6) is valid and fi(t) - fi(t) -+ 0 as t -+ co, x(t) - y(t) -+ 0 
as t + co. In particular, iffi(t) E BC,, then every solution of (35.1) is in BC, . 

Proof. It follows from (H3) that (H2) is valid for the kernel B,(t, s) = 
B(t, s) G(x(s), y(s)) and the first conclusion follows from Theorem 4. By 
takingy(t) = fi(t) = 0 we see thatfr(t) b ounded implies that x(t) is bounded. 
The rest of the theorem follows from Theorem 5 in a similar manner. 
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THEOREM 15. Suppose (Hl), (H2), and (H3) are elaft’d a7md that (6) and (9) 
hold. IffL(t) is asymptotically w-periodic, every solution of (35.1) is asymptotica& 
w-periodic. 

Proof. It follows from the previous theorem that we may assume fi(t) 
is u-periodic. As in the proof of Theorem 7, let 

ym.&) = x(t + mw> - x(t + nw), m, n = 0, 1, 2,..., 

where x(t) is any solution of (35.1). Then yin,%(t) satisfies the equation 

+ I’ W, 4 G(x(s + mw), 4s + nw)) Ye,&) ds + L,&), 

where h,,,(t) is given by 

h,,,(t) = j’ [B(t + mw, s + mw) 
0 

- B(t, 41 G~~(s -I- mw>, 4s 4 @WI> ym.&f ds 
+ jot P(t + mw, s + mw) - B(t + nw, s + YZW)] g(x(s + nw)) ds 

+ jmw B(t + -9 8) g(W ds - jnw BP + w, 4 Gus) & 
0 0 

The argument of Theorem 7 may now be used to finish the proof after noting 
that (H2) and (H3) imply that (H2p) with p = (m, n) is valid for 
B(t, $1 G(x(s + mm), 4s + nw)). 

THEOREM 16. Suppose (Hl), (H2), and (H3) are valid and, in addition, 
conditions (6) and (11) hold. If fi( t) is a.a.p. then every solution of (35.1) is a.a.p. 

Proof, Here one proceeds as in the proof of Theorem 8 to obtain the 
equation 

s’(t) = -k(t) + j h, 4 GM + 4, 4s)) ~44 ds + h,(t), (37) 
0 

where 

h,(t) = jot tW i- T, s + 4 - B(t, 41 &fs + 7)) ds 

+ joT B(t + 7,s) &W ds + f @ + 4 - f @I (38) 

and y7(t) = x(t + 7) - x(t). 
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Here one shows that the validity of (H2p) with p = T for the kernel 
W, s> G(x(s + 7), x(s)) f o 11 ows from (H2) and (H3) and proceeds as in the 
proof of Theorem 8. 

In the case wheref,(t) E BC, a somewhat different approach than that used 
in Theorem 6 seems to be necessary. 

THEOREM 17. Suppose (Hl), (H2), (H3), and (6) hold. Suppose also, 
for each E > 0 there exists T(E) so that 

j t I Btt + T, s + T) - B(t, s)I ds < E (3% 
0 

for t 3 T(E) and all T > 0. Then iffi(t) E BC, , every solution of (35.1) is in 
BC, . 

Proof. Let x(t) b e a solution of (35.1) and r > 0 be any fixed constant 
and define y7(t) = x(t + 7) - x(t). Then yr(t) satisfies Eq. (37) with h,(t) 
defined by (38). H ere, one argues as in the previous theorem and as in 
Theorem 8 that given E > 0, there exists T,(E) > 0 so that 1 y7(t)l < E if 
t 3 T,(E) uniformly in 7. However this is the statement that 1 x(t+T)-x(t)1 < 4 
if t > T,(E) for all T > 0 or equivalently that 1 x(tJ - x(t)1 < E if 
t, t, > T,(E). This last statement is equivalent to x(t) E BC, . 

We note that condition (39) with (6) implies condition (7) of Theorem 6 
and, also, that if B(t, s) = C(s) B,(t - s) where B,(t) EU(R+) and C(s) 
has a limit at infinity then 

(” I cts + 4 - C(s)1 I B,(t - s)l ds < j-” I B,(t - s)l q(s) ds, 
0 0 

where q(s) = sup{1 C(s + T) - C(s)l: T >, 0} + 0 as s -+ co. As B,(t) EI?(R+), 

s 
t / B,(t - s)] q(s) ds -+ 0 

0 

as t + co and (39) is verified in this case. 

4. FINAL REMARKS 

As we noted earlier, our results from Theorem 6 on could have been 
obtained for the more general initial value problem. It is clear that a number 
of other generalizations and extensions of our results can also be obtained. 
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For example, the matrix in Eq. (1) need not be constant as the proofs we have 
presented require very minor modifications if the equation 

x’(t) = [A + 4(t)l 44 + .c W, s) 44 ds +f(O, 

where A,(t) + 0 as t + co were considered in place of (1). Of more interest 
would be results which ensure that the solutions of (1) are inLP(O, co) iff(t) 
is in Lp(O, co) and that p and p map Lp(O, co) into itself. The question of 
how the hypotheses of Theorem 5 can be modified to obtain such results 
seems open. 
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