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Abstract

A marked graph is a graph with a + or − sign on each vertex and is called consistent if each
cycle has an even number of − signs. This concept is motivated by problems of communication
networks and social networks. We present some new characterizations and recognition algorithms
for consistent marked graphs.
? 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Data in the social sciences can often be modeled using a signed graph, a graph where
every edge has a sign + or −, or a marked graph, a graph where every vertex has a
sign + or −. A marked graph is called consistent if every cycle has an even number of
− signs. The concept of consistency is analogous to the concept of balance in signed
graphs: A signed graph is called balanced if every cycle has an even number of −
signs. (For references on balance, see [12] and [16].) In this paper, we give a number
of new characterizations and recognition algorithms for consistent marked graphs.
Consistent marked graphs were introduced by Beineke and Harary [3]. (An analogue

for digraphs was introduced by Beineke and Harary [4].) The concept was motivated
by communication networks. If binary messages are sent through a network with −
vertices reversing messages and + vertices leaving them unchanged, then a consistent
marked graph has the following consistency property: If a message is sent from x to y
through two di?erent vertex-disjoint paths, and if x and y have the same sign, then y
will receive the same message no matter which path is followed. In a marked graph,
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let us say that the sign of a path or cycle is + if there is an even number of −
signs and − otherwise. (The signs of the end vertices of the path are counted.) Even
for consistent marked graphs, even if x and y have the same sign, there can be two
paths from x to y of di?erent signs; the hypothesis of vertex disjointness is needed to
conclude that they have the same sign. Consistent marked graphs arise in a similar way
in social networks, networks whose vertices represent people. If some people always
lie and some always tell the truth, a consistent social network has the property that if
a message is sent from x to y along two vertex-disjoint paths and x and y have the
same sign, then y will receive the same message independent of the path followed.
The notion of consistency of a marked graph has proven useful in the theory of

balance of signed graphs. Harary and Kabell [7,8] described an eEcient algorithm for
determining if a given signed graph is balanced by setting up a correspondence be-
tween marked graphs and balanced signed graphs. This correspondence has also been
useful in solving the problem of counting balanced signed graphs (Harary and Kabell
[8]). (The problems of enumerating both balanced signed graphs and marked graphs
have also been studied by Harary et al. [9].) The problem of characterizing consistent
marked digraphs was solved by Beineke and Harary [4]. Rao [15] obtained an early
characterization of consistent marked graphs and gave a polynomial algorithm for their
recognition and Acharya [1,2] gave other characterizations. Hoede [11] characterized
consistent marked graphs in terms of fundamental cycles of a cycle basis and observed
that the characterization gives rise to a polynomial algorithm for determining consis-
tency that is considerably simpler than Rao’s. Here, we shall give a still more eEcient
algorithm. Beineke and Harary [4] introduced the problem of determining if an un-
marked digraph can be marked using at least one − sign so that the resulting marked
digraph is consistent. Roberts [17] studied this problem for marked graphs.
In this paper, we use the following notation in a (marked) graph G: V+ is the set

of + vertices, V− the set of − vertices, n the number of vertices, m the number of
edges. If S is a set of vertices or edges of G, then G[S] is the subgraph induced by
S. If T is a tree in G, then the unique path in T between vertices x and y is denoted
by Txy. A special case of this notation is Pxy when the tree is a path P. Vertices x
and y in G are said to be k-connected (k-edge-connected) if there are k (internally)
vertex-disjoint (edge-disjoint) paths between x and y.
A set of cycles in a graph G is a cycle basis if it is a minimal set of cycles with

the property that every cycle can be expressed as a symmetric di?erence of cycles
in the set. One well-known way to construct a cycle basis is to Ind a spanning tree
T of G. A tree chord relative to T is an edge not in T . Every tree chord deInes a
unique cycle of G, called a fundamental cycle relative to T or a T-fundamental cycle,
whose remaining edges are in T . The set of fundamental cycles relative to a tree is
well known to be a cycle basis for G.

2. Characterizations of consistent marked graphs

The notion of 3-connectedness between a vertex pair plays a central role in studying
marked graphs, as is shown in the following theorem.
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Theorem 1 (Beineke and Harary [3]). If a marked graph is consistent; then any two
3-connected vertices receive the same sign.

Let G be a marked graph and let x; y∈V (G) have the same sign. If they are positive,
a path joining x and y is said to be coherent if it contains an even number of negative
vertices and is said to be incoherent otherwise. If they are negative, a path joining x
and y is said to be coherent if it contains an odd number of negative vertices, and is
said to be incoherent otherwise.

Theorem 2. A marked graph is consistent if and only if any two vertex-disjoint paths
between a pair of vertices with the same sign are either both coherent or both inco-
herent.

Proof. The necessity is obvious. For the suEciency; we note that every cycle C has
at least two vertices of the same sign. Since the two vertex-disjoint paths joining these
vertices on C are either both coherent or both incoherent; C is positive.

Theorem 3. Let G be a 2-connected marked graph that is not a cycle. Then G is
consistent if and only if any 3-connected pair of vertices receive the same sign and
paths between them either are all coherent or all incoherent.

Proof. Necessity: By Theorem 1; a 3-connected pair of vertices u and v receive the
same sign. Let P1; P2 and P3 be three vertex-disjoint paths from u to v. Since G is
consistent; P1; P2 and P3 are all coherent or all incoherent. Suppose the former; the
latter case is similar. Suppose there is also a path P from u to v which is incoherent.
Choose P such that |V (P) \ V (P1 ∪ P2 ∪ P3)| is minimum. By consistency of G and
incoherence of P; P must have common vertices with V (P1 ∪ P2 ∪ P3) \ {u; v}.
Suppose P and P1 have common vertices. Let x and y be two vertices on both P

and P1 such that at least one of x; y is not u or v and vertices between x and y on
P1 are not on P. We now note that there are three vertex-disjoint paths from x to y,
one of which is P1

xy. If at most one of V (P2) and V (P3) intersects V (Pxy), then the
other two paths are Pxy and the path obtained by Pxu; P2 or P3 from u to v, then
Pvy. Suppose both V (P2) and V (P3) intersect V (Pxy) and on Pxy, the Irst vertex on
V (P2) ∪ V (P3) is a and the last is b. Without loss of generality, a∈V (P2). If b is
also in V (P2), then the other two paths are Pxa; P2

ab; Pby and Pxu; P3
uv; Pvb. If b is in

V (P3), then the other two paths are Pxa; P2
av; Pvb, and Pxu; P3

ub; Pby. Therefore, x and y
are 3-connected and hence they receive the same sign.
The paths Pxy and P1

xy form a cycle. Since G is consistent, the cycle is positive and
the two paths either are both coherent or both incoherent. Therefore if we replace Pxy
by P1

xy on P to get P′, then P′ is also incoherent since P is, but |V (P′) \V (P1 ∪P2 ∪
P3)|¡ |V (P) \ V (P1 ∪ P2 ∪ P3)|, which is a contradiction.
Su<ciency: Let C be a cycle of G. Since G is 2-connected and not a cycle, there

are two vertices u and v on C which are 3-connected. Then u and v receive the same
sign and two paths on C from u to v either are both coherent or both incoherent, which
implies that C is positive.
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Theorem 4 (Acharya [2], Rao [15]). If G is a consistent marked graph; then

(1) G[V−] is bipartite;
(2) between each connected component of G[V+] and each partite set in the biparti-

tion of each component of G[V−]; there is at most one edge.

Condition (2) of Theorem 4 will be called single joining and a marked graph satis-
fying conditions (1) and (2) will be called a split marked graph.
Let G be a graph and A ⊆ V (G). We use the terminology “shrink A to a vertex

a” to mean to replace A by a single vertex a and replace an edge bv for b∈A by an
edge av (omitting duplications). If G[A] is connected and bipartite with partite sets C
and D, “shrink A to an edge cd” will mean to shrink C to c and D to d in G, add an
edge cd, and replace any edge xv for x∈C by cv and any edge yv for y∈D by dv.
Given a marked graph G, suppose we shrink each component of G[V+] to a vertex

to get a graph G′. Then, as indicated in [3], if G is split, then G is consistent if and
only if G′ is.

Theorem 5. Let G be a split marked graph and let G′ be the result of shrinking each
nontrivial component of G[V−] to an edge. Then G is consistent if and only if G′ is.

Proof. Suppose u and v are in the same partite set of a component of G[V−]; they
have a common neighbor x∈V−; and G′ is obtained from G by shrinking them to a
vertex w. We prove that there is a negative cycle in G if and only if there is a negative
cycle in G′. This will prove the theorem; since by iterating the procedure; we shrink
each nontrivial component of V [G−] to an edge.
First assume that G has a negative cycle C. If C does not contain both u and

v, then clearly G′ has a negative cycle. Suppose both u and v are on C, say C =
u; u1; : : : ; ur ; v; v1; : : : ; vs; u. If either r or s = 1, say r = 1, then since u and v have no
common positive neighbor by single joining, u1 is a negative vertex. After shrinking,
there is a cycle C′ = w; v1; : : : ; vs; w, with fewer negative vertices than C. If s is also
1, then C negative implies that v1 is positive, which violates single joining. There-
fore, s¿ 1 and so C′ is a negative cycle. Now suppose both r; s¿ 2. Then G′ has a
negative cycle since one of the two cycles w; u1; : : : ; ur ; w and w; v1; : : : ; vs; w must be
negative.
Now assume that G′ has a negative cycle C′. If C′ does not contain w, then C′

is also a negative cycle in G and the conclusion holds. Suppose C′ contains w, say
C′ = w; w1; : : : ; wt ; w. Suppose that the following condition P holds: either both uwt

and uw1 or both vwt and vw1 are in G. Then there is a corresponding negative cycle
in G. Note that if x is w1 or wt , the condition is satisIed. If condition P fails, we
know that uw1 or vw1 and uwt or vwt are in G. If uw1 is in G (which we may
assume without loss of generality), then uwt; w1v are not in G. If x is not on C′ in
G′, then C = u; w1; : : : ; wt ; v; x; u is a negative cycle of G. If x is on the cycle C′, say
C′=w; w1; : : : ; wr; x; wr+2; : : : ; wt ; w, then there are two cycles C1 =u; w1; : : : ; wr; x; u and
C2 = x; wr+2; : : : ; wt ; v; x in G and one must be negative.
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Suppose G is a split marked graph and G′ is obtained from G by shrinking each
component of G[V+] to a vertex and shrinking each nontrivial component of G[V−]
to an edge. We already know that G is consistent i? G′ is consistent. Furthermore, as
indicated by Hoede [11], if we insert a + vertex on each edge of G′[V−] to get graph
G′′, then G′ is consistent if and only if G′′ is consistent.
Since G′′ is bipartite with one partite set having only positive vertices and the other

only negative vertices, G′′ is consistent if and only if the length of every cycle is a
multiple of 4. In other words, after polynomial time translating, the problem of checking
if a marked graph is consistent reduces to the problem of checking if a bipartite graph
only contains cycles with length 4k.
Another way to see this is as follows. Let G be a marked graph. Form graph T (G)

by inserting a + vertex in each edge incident to two − vertices and three vertices
with signs −;+;− in that order in each edge incident to two + vertices. Then T (G) is
bipartite with one part of + vertices and another part of − vertices, and G is consistent
if and only if T (G) only has cycles with length 0mod 4. To prove this, use induction
on s(G) = m(G) − q(G), where m(G) is the number of edges of G and q(G) is the
number of edges of G joining vertices of di?erent sign. The inductive step follows
from the observation that if W (G) is obtained from G by adding vertices on one edge
according to the procedures in the deInition of T (G), then G is consistent if and only
if W (G) is consistent, T (W (G)) = T (G), and s(W (G))¡s(G).
In fact, we have the following result.

Theorem 6. The problem of determining if a marked graph is consistent is polyno-
mially equivalent to the problem of determining if a bipartite graph has all cycles of
length 0mod 4.

The polynomial reduction from the second problem to the Irst goes as follows. Let
G be a bipartite graph. Assign + signs to vertices of one bipartite class and − signs
to vertices of the other class, getting a marked graph H . Then every cycle of G has
length 0mod 4 if and only if H is consistent.
To state another characterization of consistent marked graphs, we use the terminology

“the common path of a pair of T -fundamental cycles” to mean the maximal common
path.

Theorem 7 (Hoede [11]). Let G be a marked graph and let T be a spanning tree of
G. Then G is consistent if and only if it satis>es the following two conditions:

(1) Each T -fundamental cycle is positive.
(2) On the common path of a pair of intersecting T -fundamental cycles; the two end

vertices always have the same sign.

Theorem 7 also provides a polynomial algorithm to check if a marked graph is
consistent. There are m − n + 1 fundamental cycles relative to any spanning tree.
Hence there are O(m2) pairs of cycles to check for condition (2). For each pair, the
checking time is O(n). The complexity to check condition (1) is O(mn). Therefore the
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complexity of this simple algorithm of Hoede’s is O(m2n). Algorithm 1 in Section 3
gives an O(mn) algorithm.
The following theorem is equivalent to Theorem 7.

Theorem 8. Let G be a marked graph and let T be a spanning tree. Then G is
consistent if and only if it satis>es the following two conditions:

(1) Each T -fundamental cycle is positive.
(2) Each cycle which is the symmetric di@erence of two T -fundamental cycles is

positive.

Proof. We show that under condition (1); conditions (2) in Theorems 7 and 8 are
equivalent. Suppose that condition (2) of Theorem 7 holds. Let C be a symmetric
di?erence of two T -fundamental cycles C1; C2; where C1 has a − signs; C2 has b −
signs; and the common path has c − signs (excluding end vertices). Then C has
a+b−2c − signs if end vertices have the + sign or a+b−2c−2 − signs otherwise.
Since a and b are even; C is positive. The other direction is similar.

Because of Theorem 6, the following theorem can be thought of as the bipartite
version of Theorem 8.

Theorem 9 (Conforti and Rao [5]). Let G be a bipartite graph and T be a spanning
tree of G. All cycles in G have length 0mod 4 if and only if G satis>es the following
two conditions:

(1) Each T -fundamental cycle has length 0mod 4.
(2) Each cycle which is the symmetric di@erence of two T -fundamental cycles has

length 0mod 4.

Theorem 9 leads to an algorithm with complexity O(m2n) to determine if all cycles
in a graph G have length 0mod 4. In Section 3 we will provide two O(mn) algorithms
(Algorithms 2 and 3) to complete the same task.

Theorem 10. Let G be a marked graph and T a spanning tree of G. The following
are equivalent:

(1) On the common path of a pair of intersecting T -fundamental cycles; the two end
vertices always have the same sign.

(2) Two 3-connected vertices always have the same sign.
(3) Two 3-edge-connected vertices always have the same sign.

The proof of Theorem 10 will use the following two lemmas.

Lemma 1. Let u and v be a pair of 3-connected vertices in graph G and let T be a
spanning tree of graph G. Then there exist vertices v1; v2; : : : ; vr such that with u= v0
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and v = vr+1; each pair vi and vi+1 are the end vertices of the common path of two
T -fundamental cycles.

Proof. For any two 3-connected vertices u and v; let  (u; v) be the smallest k so that
there are three pairwise vertex-disjoint paths in G from u to v with k tree chords
on these paths. We use induction on  (u; v) to prove the lemma. If P1; P2 and P3

are three pairwise vertex-disjoint paths from u to v; at least two of them contain tree
chords. If  (u; v) = 2; then u; v themselves are end vertices of common paths of two
T -fundamental cycles.
Assume the conclusion holds for all 3-connected vertex pairs u; v with  (u; v)6 k

and consider a 3-connected vertex pair x; y with  (x; y) = k + 1. Let P1; P2 and P3

be three pairwise vertex-disjoint paths from x to y such that the total number of tree
chords on these paths is  (x; y) = k + 1. There is a unique path P on T joining x and
y. Suppose edge xw is on P. We claim xw is on one of P1; P2 and P3. If not, let z
be the Irst vertex on P from x to y and on one of P1; P2 or P3. Assume z is on P1.
We replace P1

xz by Pxz to get three paths with fewer tree chords, which contradicts the
deInition of P1; P2 and P3.
Suppose without loss of generality that xw is on P2. Then P1 and P3 must contain

tree chords. Let the Irst tree chords on P1 and P3 from x to y be e′ and e′′ respectively.
The removal of edge xw divides T into two parts and the two tree chords e′ and e′′

join these two parts. Consider the fundamental cycles with tree chords e′ and e′′,
respectively. One end vertex of their common path is x. Let the other one be u. We
claim that u; y are 3-connected and  (u; y)6 k, which will complete the proof.
Case 1: u is on P2. In the fundamental cycle containing e′′, suppose the path from u

to P3 hits P3 at b. Then there are three paths from u to y, i.e., P2
uy; P

2
uxP

1 and TubP3
by.

Since the numbers of tree chords on P2 and P2
uy are the same, on P1 and on P2

uxP
1

are the same, and on TubP3
by is less than on P3, we have  (u; y)6 k.

Case 2: u is not on P2. In the common path on the two fundamental cycles, let b be
the last vertex on P2. In the fundamental cycle containing e′, suppose the path from u
to P1 hits P1 at a, and in the fundamental cycle containing e′′, suppose the path from
u to P3 hits P3 at c. Then TuaP1

ay; TubP
2
by and TucP3

cy are three paths from u to y. By
similar reasoning as in Case 1, we have  (u; y)6 k.

Lemma 2. Let u and v be a pair of 3-edge-connected vertices in graph G. Then there
exist vertices v1; v2; : : : ; vr such that with u= v0 and v= vr+1; each pair vi and vi+1 is
3-connected.

Proof. If u and v are 3-connected; the conclusion obviously holds. Suppose u and v
are not 3-connected and select three edge-disjoint paths P1; P2 and P3 from u to v
with minimum total length. Let X = {v1; : : : ; vr} be the set of vertices other than u and
v on at least two of P1; P2 and P3. If two paths; say P1 and P2; each contain vertices
vi ∈X and vj ∈X ; and vi precedes vj on path P1 from u to v; then vi precedes vj on
path P2 from u to v. For; if vj precedes vi on P2; then P1 = P1

uviP
2
viv; P

2 = P2
uvjP

1
vjv and

P3 are three edge-disjoint paths with total length less than the original ones.
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Let X ′ = X ∪ {u; v}. By the previous observation, we can arrange the vertices in
X ′ in order according to their appearance on three paths from u to v. Suppose the set
in order is X ′ = {v0; v1; : : : ; vr ; vr+1}. We show that vi and vi+1 are 3-connected. Take
i = 0. If v1 is on all three paths, then v0 and v1 are 3-connected. If v1 is on P1 and
P2 but not on P3, there is a vertex vi; i¿ 1, on P3 and P1 since v is on P3 and P1.
Take the smallest i. Then P1

v0v1 ; P
2
v0v1 and P3

v0viP
1
viv1 are three vertex-disjoint paths from

v0 to v1. The case i = k is analogous.
Suppose 0¡i¡k. If vi and vi+1 are both on the three paths, they are 3-connected.

If one is on the three paths, the proof is as above, so we may assume neither is on
the three paths. Now suppose both vi and vi+1 are on P1 and P2. Let vs be on P1 and
P3 with the biggest s¡ i and vt be on P1 and P3 with the smallest t ¿ i + 1. Then
P1
vivi+1

; P2
vivi+1

and P1
vivsP

3
vsvt P

1
vtvi+1

are three vertex-disjoint paths from vi to vi+1. Suppose
vi is on P1 and P2 and vi+1 is on P2 and P3. Let vs be on P1 and P3 with the biggest
s¡ i and vt be on P1 and P3 with the smallest t ¿ i + 1. Then P2

vivi+1
; P1

vivsP
3
vsvi+1

and
P1
vivt P

3
vtvi+1

are three vertex-disjoint paths from vi to vi+1.

To complete the proof of Theorem 10, note that Lemmas 1 and 2 show that (1)
implies (2) and (2) implies (3). Since the common path of a pair of fundamental
cycles has end vertices that are 3-edge-connected, (3) implies (1).
By Theorem 10, the following theorem is equivalent to Theorem 7. However, we

give a direct proof.

Theorem 11. Let T be a spanning tree of a marked graph G. G is consistent if and
only if it satis>es the following two conditions:

(1) Each T -fundamental cycle is positive.
(2) Each 3-connected vertex pair has the same sign.

Proof. The necessity follows from Theorem 1. To prove the suEciency; we prove that
every cycle is positive by induction on the number of non-T edges in the cycle. If there
is one such edge; condition (1) gives the result. If there are at least two non-T edges
in cycle C and all cycles with fewer non-T edges than C are positive; Ind vertices u
and v in C such that Tu;v has no vertices in common with C except u and v. If C1 and
C2 are the two paths in C from u to v; then C1Tuv and C2Tuv form cycles with fewer
non-T edges than C; and therefore each is positive. Moreover; C1; C2; and Tuv show
that u and v are 3-connected and therefore have the same sign. We conclude that C is
positive.

To generalize Theorem 11, we ask: can we replace “each T -fundamental cycle” by
“each cycle in a basis”, i.e., replace tree basis by any basis. The answer is given in
Theorem 14.
Let G be a graph. We can get a basis by repeating the following process until we

can no longer do so. Pick an edge e. If there is a cycle containing e, put the cycle
in the basis. Delete e. A basis which is obtained by this method is called an ordering
basis. (In [10], it is called a fundamental basis.) Note that a tree basis is an ordering
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basis. We Irst note that Theorem 11 holds for ordering bases. In the proof, we use
the term block in a graph to mean a maximal 2-connected subgraph.

Theorem 12. Let G be a marked graph and B be an ordering basis of G. G is
consistent if and only if G satis>es the following two conditions:

(1) Each cycle in B is positive.
(2) Each 3-connected vertex pair has the same sign.

Proof. The necessity follows from Theorem 1. To prove the suEciency; we let cycles
in B be Cn; : : : ; Cm according to the order they are found in the construction of the
ordering basis and arrange edges such that ei; i= n; : : : ; m; is the edge we are using to
Ind Ci and ei; i = 1; : : : ; n− 1; are the other edges. For i¿ n; let Gi be the subgraph
induced by edges e1; : : : ; en−1 and all edges in cycles Cj; j = n; n + 1; : : : ; i: Note that
Gm = G. We use induction on i¿ n to prove that Gi is consistent. By condition (1);
this holds for i= n. Suppose it holds for i= k − 1. To prove it for i= k; we only have
to prove that the block of Gk which contains edge ek is consistent; so we can suppose
Gk itself is a block. There is a spanning tree T in Gk−1 which contains Ck \ ek .
Since Gk−1 is consistent; all T -fundamental cycles of Gk−1 are positive. T is also
a spanning tree of Gk and since Ck is positive by condition (1); all T -fundamental
cycles of Gk are positive. This plus condition (2) implies that Gk is consistent; by
Theorem 11.

We now generalize the conclusion of Theorems 11 and 12 to any basis. An even
graph is a graph in which each vertex has even degree. An even graph is an edge-
disjoint union of cycles. Let G be a marked graph and G′ a subgraph of G. Denote
by d−(v) the number of − vertices adjacent to v in G′ and let %(G′)=&v∈V (G′)d−(v).
Suppose G′ is an even subgraph. Then G′ is said to be coherent if %(G′) ≡ 0mod 4
and incoherent if %(G′) ≡ 2mod 4. Notice that %(G′) is always even if G′ is even.
We can also generalize the deInition to paths. Let P be a path whose end vertices
have the same sign. Then P is said to be coherent if %(P) ≡ 0mod 4 and incoherent
if %(P) ≡ 2mod 4. Notice that %(P) is even if and only if the end vertices of P have
the same sign. This deInition of coherent is the same as that in the beginning of this
section. The following theorem is easy to prove.

Theorem 13. A marked graph is consistent if and only if each of its even subgraphs
is coherent.

The following theorem is the desired generalization of Theorem 11.

Theorem 14. Let G be a marked graph and let B be a basis of G. Then G is
consistent if and only if it satis>es the following two conditions.

(1) Each cycle in B is positive.
(2) Each 3-connected vertex pair has the same sign.
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Proof. The necessity of conditions (1) and (2) follows by Theorem 1. The suEciency
follows by Theorem 13 if we can prove that each even subgraph of G is coherent.
Since an even subgraph is an edge-disjoint union of cycles; each even subgraph G′

is the symmetric di?erence of cycles in B. We prove the claim by induction on the
number k of these cycles. If k = 1; G′ is just a cycle in B and is positive by con-
dition (1) and therefore coherent. Arguing by induction on k; we suppose that each
even subgraph which is the symmetric di?erence of at most k − 1 cycles in B is
coherent; let G′ be an even subgraph which is the symmetric di?erence of k cycles in
B; let C be one of these cycles; and let G′′ be the symmetric di?erence of the remain-
ing k − 1 cycles. Clearly; G′′ is again even and hence is coherent by the induction
hypothesis.
If E(C)∩ E(G′′) = ∅, the conclusion holds. So we suppose E(C)∩ E(G′′) �= ∅. First

assume that G′′ is connected. Let P=v1; : : : ; vk be a path of C such that v1; vk ∈V (G′′)
and v2; : : : ; vk−1 �∈ V (G′′). If v1 and vk are in the same block of G′′, then v1 and vk
are 2-connected in the block and 3-connected in G′′ ∪ P. Therefore v1 and vk receive
the same sign and %(P) is even.
Suppose v1 and vk are not in the same block of G′′. Pick a path Q from v1 to vk

in G′′ and let u1; : : : ; us be the cut vertices of G′′ in order on Q. Then v1 and u1; ui
and ui+1; i = 1; : : : ; s − 1; us and vk are pairwise 2-connected in G′′. Vertices v1 and
u1 are 3-connected in G because we can Ind a third path vertex-disjoint from the Irst
two by using P followed by Qvku1 . The other cases are proved in the same way using
P followed by Qvkui+1 and P followed by Qvkus . Therefore, v1 and vk receive the same
sign and %(P) is even.
C is the union of paths, which we can partition into two subsets, C∩G′′ and C \G′′.

By the above conclusion, %(C \ G′′) is even. Since %(C) ≡ 0mod 4; %(C ∩ G′′) ≡
%(C \ G′′)mod 4. G′ is obtained from G′′ by replacing C ∩ G′′ by C \ G′′. Therefore
%(G′) ≡ %(G′′)mod 4, i.e., G′ is coherent.
Now assume that G′′ is disconnected. If E(C) intersects only one of the components

of G′′, the proof is the same as for the case where G′′ is connected. So suppose that
there are at least two components in G′′; G1 and G2, such that E(C) ∩ E(Gi) �= ∅ for
i = 1; 2. Let C = v0; v1; : : : ; vk ; vk+1; : : :. Suppose that P = v1; : : : ; vk such that v1 and vk
are in the same component and v0 and vk+1 are not in this component. Then v1 and
vk are 3-connected in G′ and therefore in G, and receive the same sign by condition
(2). We can partition C into two subgraphs F1 and F2, where F2 is a union of paths
whose end vertices are in di?erent components of G′′ but whose middle vertices are
not in G′′. By the above discussion, %(F1) is even, and so therefore is %(F2).
By the proof of the case when G′′ is connected, %(F1 \ G′′) is even. Hence, so is

%(C \ G′′), since %(F2) is even and F2 ∩ G′′ = ∅, so

%(C \ G′′) = %((F1 ∪ F2) \ G′′) = %(F1 \ G′′ ∪ F2):

Moreover, %(C ∩G′′) = %(F1 ∩G′′) is also even since %(F1) and %(F1 \G′′) are even.
Thus, since %(C) ≡ 0mod 4, it follows that %(C ∩ G′′) ≡ %(C \ G′′)mod 4, as before,
and then, as before, %(G′) ≡ %(G′′)mod 4, i.e., G′ is coherent.
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3. Algorithms

The above theorems provide an algorithm to test the consistency of a marked graph.
By Theorems 10 and 14, it suEces to check if there is a positive basis, a basis with
all cycles positive, and each 3-edge-connected vertex pair has the same sign. Checking
the former can be done by constructing any basis; either all cycles in it are positive
or there is a negative cycle in it and G is inconsistent. Checking the latter can be
limited to vertices of degree at least 3 because, obviously, a vertex of degree at most
2 cannot be 3-edge connected to any other vertex. Let p(u; v) be the largest number
of pairwise edge-disjoint paths between u and v. The key observation we shall use is
the following.

Theorem 15 (Even [6]). Given a graph G of m edges; checking whether or not p(u; v)
¿ k can be accomplished in O(km) time.

Here is a sketch of the proof of Theorem 15. Given G, deIne a directed network N
with the same vertex set as G, by taking arcs from x to y and y to x whenever xy is
an edge of G, and by putting a capacity of 1 on each arc. Then p(u; v) is the maximum
Pow from u to v in N . (See the proof of Theorems 6.4, 6.8 in [6].) Thus, we can test
whether or not p(u; v)¿ k by running a network Pow algorithm until the Pow reaches
k or cannot be continued. A standard network Pow algorithm ([13,14]) proceeds by
searching for augmenting chains. Each augmenting chain increases the total Pow by at
least 1, so we need at most k searches for augmenting chains to test if p(u; v)¿ k.
Each such search requires a number of steps on the order of the number of arcs in the
network, so it is O(m). We conclude that checking whether or not p(u; v)¿ k can be
accomplished in O(km) time (see [6, p. 132]). We shall apply this result for the case
k = 3, so we have an O(m) algorithm.
We now get the following algorithm.

Algorithm 1

Input: A 2-connected marked graph G.
Output: The answer to the question: Is G consistent?
Step 1: Construct a basis of G and check if it is positive. If not, G is not consistent.
Step 2: Let V0 be the set of vertices of degree at least 3. Check if any two vertices

of V0 with di@erent signs are 3-edge-connected. Do this as follows:
Step 2a: Pick vertices u∈V+ ∩V0 and v∈V− ∩V0. Use Even’s algorithm to check

if p(u; v)¿ 3: If so, then by Theorem 14, G is not consistent.
Step 2b: If p(u; v)¡ 3, then there is an edge cut in the graph consisting of two

edges, and this divides the graph into two subgraphs. Repeat Step 2a for each of
these subgraphs while there are u; v of di@erent signs in V0.
Step 2c: If inconsistency has not been concluded for any subgraph, conclude that

G is consistent.

The complexity of Algorithm 1 is O(mn). To see why, note that we can build a tree
basis by Inding a spanning tree T using an O(m) algorithm such as Kruskal’s and
then we can check if each tree chord produces a positive cycle. There are O(m) tree
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chords. For each, since there are only n−1 edges in T , checking that the corresponding
T -fundamental cycle is positive requires O(n) steps. So, the overall complexity of Step
1 is O(mn). (Instead, we can use ordering basis. Pick an edge xy. Use an O(n) shortest
path algorithm to Ind a path between x and y. If there is no such path, delete xy and
continue. If there is a path, this plus xy forms a cycle of length at most n and we can
check whether or not it is positive in O(n) steps. Since we must repeat the procedure
for each edge, the total complexity of the procedure is O(mn).) Step 2a uses an O(m)
algorithm. It is easy to see by induction on n that the number of subgraphs for which
Step 2a must be repeated in Step 2b is O(n). Therefore the overall complexity of
Algorithm 1 is O(mn), as claimed.
As noted in Theorem 6, the problem of determining if a marked graph is consistent

and the problem of determining if a bipartite graph has the property that every cycle has
length 0mod 4 are polynomially equivalent. In the following we give two algorithms
to test if a bipartite graph has the latter property. Let G be a 2-connected graph. A
starjoin path or sj-path for short is a path whose inner vertices have degree 2 and
whose end vertices have degree at least 3. Let G be a 2-connected graph and suppose
that {uv; xy} is an edge cut whose edges are not on the same sj-path. We contract u
and v into one vertex and insert a vertex in edge xy to get a graph G′. This operation
is called sliding (relative to the Irst edge).

Lemma 3. If G′ is obtained from graph G by sliding; then every cycle of G has
length 0mod 4 i@ every cycle of G′ has length 0mod 4 and; moreover; G is bipartite
i@ G′ is bipartite.

Proof. There is a one-to-one; length-preserving correspondence between cycles of G
and cycles of G′.

Lemma 4. In any graph; 3-edge-connectedness is a transitive relation.

Proof. Let G be a graph and let u and v be 3-edge-connected and v and w be
3-edge-connected. If u and w are not 3-edge-connected; there is a minimal cut E0

separating u and w with at most two edges. Suppose v is in the same part with u in
G \ E0. Then the cut is also a cut separating v and w; a contradiction.

It is easy to see that in a 2-connected graph, a vertex v is 3-edge-connected to some
vertex if and only if the degree of v is at least 3. Hence, if we deIne u ∼ v to mean
that u= v or u and v are 3-edge connected, then Lemma 4 implies that ∼ deInes an
equivalence relation on V0, the set of vertices of degree at least 3. We use the notation
r(G) for the number of equivalence classes.

Algorithm 2

Input: A 2-connected bipartite graph G, which is not a cycle, with bipartition V (G)=
V ′ ∪ V ′′.
Output: The answer to the question: Does every cycle have length 0mod 4?
Step 0: Set k ← 0; V ′

k ← V ′; V ′′
k ← V ′′, and G(k) ← G.
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Step 1: Let V (k)
0 be the set of vertices of G(k) with degree at least 3. Do the

following for graph G(k).
Step 1a: Check if one of the vertex classes in the bipartition of G(k) has no vertices

of V (k)
0 . If so, let G ∗=G(k) and V ∗

0 = V (k)
0 and go to Step 3.

Step 1b: Pick u∈V (k)
0 ∩V ′

k ; v∈V0∩V ′′
k , and check if u and v are 3-edge-connected

using Even’s procedure. If they are, then because u and v are in di@erent partite
classes, we get the conclusion that some cycle of G does not have length
0mod 4.
Step 1c: Otherwise we >nd an edge cut {e1; e2} with cardinality 2 separating u

and v. Then edges e1 and e2 are on sj-paths P1 and P2 respectively. Say P1 goes
from vertex x to vertex y. By repeatedly sliding using an edge of P1 and edge e2, we
eventually merge x and y and obtain graph G′. (Note that in G′, the vertex y is no
longer present and it is replaced by a vertex of degree 2 in P2. The equivalence classes
under ∼ remain unchanged except that the equivalence classes containing x and y in
G(k) are merged to form one equivalence class, omitting y. Thus, r(G′)=r(G(k))−1:)
By Lemma 3, G′ is bipartite with bipartite classes U ′

1 and U
′
2. Set k ← k+1; G(k) ←

G′; V ′
k ← U ′

1, and V ′′
k ← U2.

Step 2: Repeat Step 1 (with the new G(k); V ′
k ; V

′′
k ) until G

(k) and V (k)
0 are such

that in the bipartition of G(k), one of the two classes has no vertices of V (k)
0 . (This

will eventually happen since it happens when we get to G(k) with r(G(k)) = 1.) Let
G ∗=G(k) and V ∗

0 = V (k)
0 .

Step 3: By construction, G∗ is bipartite and one of the two classes in the bipartition
has no vertices of V ∗

0 . Find a spanning tree T of G∗ and check if each T -fundamental
cycle has length 0mod 4. If there is a T -fundamental cycle with length not 0mod 4,
output the answer “no”. Otherwise, output the answer “yes”.

To see that Algorithm 2 is correct, say that after Steps 1 and 2, V 1 and V 2 are
the two classes in the bipartition of G∗ and one of these, say V 2, has no vertices of
degree ¿ 3. Suppose that in Step 3, we conclude that all T -fundamental cycles have
length 0mod 4. Any sj-path must go between vertices in V 1 and therefore must have
even length. Any common path of two T -fundamental cycles is a path on T and joins
two vertices in V ∗

0 and all its middle vertices have degree 2. Thus, the path is an
sj-path and so has even length. This together with the conclusion that all fundamental
cycles have length 0mod 4 implies that any cycles which are a symmetric di?erence
of fundamental cycles have length 0 mod 4. By Theorem 9, all cycles have length
0mod 4.
The complexity of this algorithm can be calculated as follows. Step 1, using Even’s

method, requires O(m) steps. Step 2 must be carried out at most O(n) times. Step 3 has
complexity O(mn), as in Algorithm 1. Thus, the overall complexity of the algorithm
is O(mn).
There is a variant on Algorithm 2, which we call Algorithm 3, that is the same

except that we replace Step 3 by

Step 3′: By construction, G∗ is bipartite and one of the two classes in the bipartition
has no vertices of V ∗

0 . Check if we can partition V ∗
0 into two sets V1 and V2 such
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that any sj-path joining one vertex in V1 and one in V2 has length 2mod 4 and any
sj-path joining two vertices both in V1 or both in V2 has length 0mod 4. If so, output
the answer “yes”. If no, output the answer “no”.

Let T be a spanning tree of G∗. We show that after Steps 0, 1, and 2, Step 3 of
Algorithm 2 has a positive answer i? Step 3′ of Algorithm 3 has a positive answer.
This will show that Algorithm 3 is correct. Suppose that Step 3 has a positive answer.
We divide V ∗

0 into two parts V1 and V2 as follows. Pick a vertex v∈V ∗
0 and put it into

V1. For any other vertex u∈V ∗
0 , if Tuv has length 0mod 4, we put it into V1, otherwise

into V2. We show that this partition has the property stated in Step 3′. It is clear that
if u and w are in V ∗

0 , then Tuw has length 0mod 4 if u and w are in the same class
Vi and length 2mod 4 otherwise. Let P be an sj-path from u to w. If P has no tree
chords, then P = Tuw and so has the desired property. If P has a tree chord, then P
plus Tuw form a fundamental cycle. We know that P has even length since it joins
two vertices of the same class in the bipartition. Since all T -fundamental cycles have
length 0mod 4 and Tuw has the property required in Step 3′, it follows that P does as
well.
Conversely, suppose that Step 3′ has a positive answer and V1; V2 are the sets in

the partition. Since G is not a cycle, G∗ is also not a cycle. Thus, any T -fundamental
cycle of G∗ has at least two vertices of V ∗

0 and we can look at the fundamental cycle
as consisting of a sequence of sj-paths. Each sj-path that has endpoints in the same set
Vi has length 0mod 4 and each sj-path that has endpoints in di?erent sets has length
2mod 4. Since following around the cycle returns us to the starting set Vi, there are
an even number of sj-paths that have endpoints in di?erent sets. We conclude that the
cycle has length 0mod 4.
We note that the complexity of Algorithm 3 is O(mn). By the discussion of the

complexity of Algorithm 2, it suEces to check that Step 3′ can be completed in
O(mn) time. Once we reach Step 3′, one of the classes in the bipartition V 1; V 2 of
G∗, say V 2, has no vertices of degree ¿ 3. Let H∗ be obtained from G∗ by replacing
each path x; y; z with y in V 2 by an edge xz. Then V ∗

0 is contained in the vertex set
of H∗ and an sj-path P in G∗ corresponds to an sj-path Q in H∗ of half the length.
We can partition the vertices of V ∗

0 in G∗ to satisfy the condition in step 3′ if and
only if we can partition the vertices of V ∗

0 in H∗ so that sj-paths joining vertices in
di?erent classes have length 1mod 2 and sj-paths joining vertices in the same class
have length 0mod 2. This is essentially the question of whether or not H∗ is bipartite,
and bipartiteness can be checked by any of a number of well-known algorithms in
O(mn) time.
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