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Abstract

Some classes of orthogonal polynomials are discussed in this paper which are expressed in
terms of (n + 1,m + 1)-hypergeometric functions. The orthogonality comes from that of zonal
spherical functions of certain Gelfand pairs.
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1. Introduction

We discuss some discrete orthogonal polynomials arising from Gelfand pairs [3.4]
of wreath products.

In the previous paper [4] one of the authors has shown that the Gelfand pairs
of complex reflection group, G(r,1,n)=Z/rZ} Sy, and symmetric group, S,, gives
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orthogonal polynomials which are expressed by the (r, 2r)-hypergeometric functions
[1,5].

Theorem 1.1 (Mizukawa [4, Theorem 4.6]). The zonal spherical functions of the
Gelfand pair (G(r,1,n),S,) have (r,2r)-hypergeometric expressions

).

().

koki,... ey
ol = F((—£, ooy ), (=K, oo =)=y

Here Z, = (1=&"),; i,y with &=exp(2nV/—=1/r) and (;,k; are non-negative
integers such that 37—y ki = S\1"y /i = n.
We denote the shifted factorial of an indeterminate x by
X),=x(x+1D)(x+2)-(x+m-1)
for meZ~( and
(x¥)o = 1.

In the theorem above F((—/i,...,—¢,—1),(=k1,...,—kr_1); —n;i) is called the
(r,2r)- hypergeometric function which is, by definition,

> ag<n
L]

(ay) € My_1,-1(No)

H;;ll (_/i)ZH a H]);ll (_k/)zgl‘% H(l _ éij)“if
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where M, ,,(Ng) is a set of n x m-matrix with non-negative integer elements.
Furthermore, their orthogonalities are described as follows.

Theorem 1.2 (Mizukawa [4, Corollary 4.7]). If k = (ko, ..., ke—1), k' = (ki ..., k|_,)

and ¢ = (L, ..., 0, 1) satisfies Sy ki = Sy k) = Sy /i = n, then we have
1 n ~ ~ = =~ =
— Z (/O ...,/,,I)F(_/’ —k;—m; E)F(—(, =k, —n; E,)

P
Lot +Lr_1=n

-1
— n
B (ko,...,kr,]) 5kk’.

Here we put / = (lryocaslry) for £ = (Lo, 00y ooy limt).

We see that these orthogonal polynomials are defined on the unit circle in the
complex plane. We take great interest in other orthogonal polynomials obtained
from the (r, 2r)-hypergeometric functions. Our purpose of this paper is to obtain the
orthogonal polynomials which are defined on a real interval, and expressed in terms
of the (r,2r)-hypergeometric functions. For this purpose we consider the wreath
products of a dihedral group with a symmetric group.



Note | Journal of Combinatorial Theory, Series A 104 (2003) 371-380 373
2. Main results

Now if —N is a negative integer, then we define the finite series called the
(n+ 1,m+ 1)-hypergeometric functions [1,5];

T @) T B~ 1w
F(o,B;—N,X) = Z Y Py e Ty
) ) ) — '
Zi.j aj<N ( N) Zi‘ fadd H dij:

(aj) € My m—n—1(No)

for o = (aty, ..., ,)€C", B= (B, ..., Prn_1) €C" "1 Our purpose of this paper is
to obtain the following orthogonality relations.

Theorem 2.1. For a positive integer m = [r/2], we assume that k = (ko, ..., kp), k' =
(kjy ...,k ) and ¢ = (Lo, ...,Lnm) are elements of NI\ such that ko + - +ky =
K+ okl =lo+ A lm=n. We put I = (l1,....0n) for £ = (Lo,l1,.rlm)
and 6, = (1 — cos(2nij/r))i<; j<m- Then we have

(1) If r is an odd positive integer,

Loy (4.0 )F (=2~ =m0, F (=7, ~ k5 ~n; ©,)

o
" T =n

_ 27n+ko n -1 5
- ko, ko Kk -

(2) If r is an even positive integer,

1 o ..
;f_”l 2 z:/ 2 fo=tm (/ " )F(_/7 _k; ) @I‘)F(_Z, —k,; —n; @r)
Lot +lm=n

.....

Remark 2.2. The single variable versions of Theorem 1.2, namely r =2 and
r=23, are the p=1/2 and 2/3 orthogonality statements for the Krawtchouk
polynomials and that Dunkl [2] had given a spherical function interpretation for
these cases.

Actually these relations are obtained from the orthogonality of the zonal spherical
functions of the Gelfand pair of finite groups (D(r,n), D(1,n)). In the rest of the
paper we prove Theorem 2.1 by computing the zonal spherical functions of
(D(r,n), D(1,n)).
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3. Zonal spherical functions of (D(r,n), D(1,n))

Fix reZ, and neNy = {0,1,2,...}. Put & = exp(2nv/—1/r). Let
D, =<ab;a®> =b = (ab)* = 1)
be the dihedral group of order 2r and S, be the symmetric group. We denote by
G = D(r,n) = D, S,. We define the subgroup H of G by
H={a>!S,=D(1,n).

We consider the pair of groups (G, H). Let E, be the n x n identity matrix. We can
represent G as a subgroup of GL,, by taking generators

0 1 ¢
A=11 0 , B= &t
B » by
and
Esi
0 E
T, = ’ (1<i<n - 1).
E, 0
Ey i

We remark that D(1,n) >~ W(B,), where W (B,) is the Weyl group of type B and that
D(2,n) = V4QS,, where V4 denotes by Kleinsche Vierergruppe. We define another
subgroup K of G by

K= {(bY18,=G(r,1,n),

where G(r, 1,n) is the imprimitive complex reflection group.

Proposition 3.1. (1) The representatives of double coset H\G/H are given by

m
Lo b, by b B e | €Gy Y Li=n,
lo /1 m =0

where m = % if ris odd, m =% if r is even, and e is a unit element of S,,.

2)

H| 1, b, b, b7 b e | H| = 22”7/0(0,,1/”,>"!’ ifir=2m+l

SN———— 2n—tLo—Cm n | . _
> P s 2 (/0,.“‘/,7,)’1'7 if r=2m.

Proof. Since (2) follows from (1), we only prove (1). Let d be an element of D,. For
0<t<m, any element of G is written uniquely as d = a*b'a" for suitable s,ue {0, 1}.
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For (dy, ...,dy;0) = (a®b"a", ..., a"b"a";6) e G(d;e D,,0€ S,), we have
(@O, ... a0 Y (@b d", ..., a" b a6 (a*W, ... a" ;e T)
= (b, ..., b0 e).

Since 7eS, can be chosen suitably, the representatives of double coset are
determined by the number of b’ for 0<t<m. O

Let (¢"b",...,a"b"™; ) be an element of G, where s;€{0,1},7,€{0,1,....,r — 1}
(1<i<n) and oeS,. The group G acts on the Laurent polynomial ring
Clxty veey Xy X7 1, oy x;, 1 as

(aSl bll IREER] asnbt”; O')f(X] 9 ey Xn) :f'(éita(l)x?(lﬁ ceey é*fq(n)xzf’(n)x
where & = (—1)"" for 1<i<n. We define the map from NJ""' to the set of all
partitions as follows;

(ko ki, ... km) = (()kolkl -~~mkm)7

where k; is the multiplicity of i for 0<i<m [3, I-1] .

Proposition 3.2. The induced representation 1%, is decomposed as follows.
qu[; @ W(kl);kls--wkm).
;iok,v:n
Each Wkokikn) is an irreducible G-module which is realized as follows:

W(ko,kl,.‘.,k,,,) _ @ ([:f
SeLu(W(koki,... o))

Here, in the case that r = 2m + 1,
Ly (2) = {xJ0\ 55 - xpnsee{ £ 1}, 0 €S, },
and if r = 2m,
A —4 / —/ j"m 71’»1
Ly(2) = { (xab) + xaul)) (’%) + xa(ﬁ) (xa?km + xa(kAm))
fm-+1 4 e +2 Mo +2 Enn .
X xfr’(k;‘fl)“xi(k;é) cexinee{£ 13, oeS,,}

fO}" A= (/11,/12, ...,ln),iiZ;LHl >0

ko, ...k

Proof. It is easy to see that each W' ») is G-invariant. From definition we have

( " k)zn—ko if r=2m+1,
dim W koK) oK

( " ’ )2"’]‘0’]‘"1 if r=2m.
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We define the inner product on each Wo:-kn) as follows:
: aff n
E141 | \Enl M gty ] — I | A
[OCXI xn” ”|Bxl xnn ] - 53%:’-,’7,‘#,"

n n—ko =
(k(]:kl;---skm)z 0 =1

Here o, BeC,¢&,n,e{+ 1}, and (41,42, ..., A ) = (0% 151 ...y, Tt is easy to see that
this inner product is G-invariant on W("O **** k) For A= (A1, ..., An) = (0F0 151 oofon)
we define the polynomial of n variables by

filx) = kolk21 kok vZ( o+ 5t) (i x5 ) (o + 50

Since f; is an H-invariant element in W®*o-%n) we see that Wkokn) includes
some irreducible components of 1%. We define the map ¢(x gl“x?} 2o bty =
DT)P(52) B (i) by
X if k>0,
¢ 2 Whokn) S Cly, o 3], XF <1 k=0,
Xt if k<.

We remark K acts on C[x] (cf. [4]). Since ¢ is a K-homomorphism, we obtain that

@ V(ICO«,SI‘~--7A\'r—]> if r = 2m + 1’
Si+s,—i=k;
ko ks ) ~ I<sism
W(OV] ’7>:K (K0sS15esSm—1 K8, Sr—1) 3
@ VK081 53 Sm—15Km s S 155571 if r =2m.
Sit+s,—i=ki
1<i<m—1

Here Vkookimt) — Span@{xi‘(l)xi2(2> --~x2’En>|oeS,,} for = (0k 1% ...(r — 1)) and
Z;;& k; = n. Note that V% os15-1) are irreducible K-modules and not equivalent to
each other, and this decomposition is multiplicity free. The inverse image of
pkosis51) contains a monomial in L,(A). Since G acts transitively on L,(4) and

this decomposition is unique, we find that W %o-kn) are irreducible and not
equivalent to each other as G-module. Finally an easy calculation shows that

dim Wkokn) — 1 —dlmlG O
f:ok':n

By this proposition we see that the induced representation 1% is multiplicity
free. Then we say that (G, H) = (D(r,n), D(1,n)) is a Gelfand pair. Since 1§ is
multiplicity free f 00 141 .. pm is unique H-invariant element in irreducible component
W ikoki,km) Note that f; satisfies

/2 fu(x)] = O
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Then the function [f;(x)|(gf;)(x)] is called the zonal spherical function. Let
g=(a"b",...,a*"b";0)eG. Since f; is H-invariant, it follows that
(@) (x) = (@, ....a™; Q) (B, ..., B ) ()
z(b’““) ey D )5 ()
=fi(E T Wxy, ..., ET ).

Therefore the zonal spherical functions (cf. [3,4]) are

1) [(af2) (0] = [fa ()& 0, ., E70a)]
— [xbl‘l}-l . s,mnlxblm .. Pn u]f (ilu(]) . .7(;1’5('1))

=/ (&N L E ().

Theorem 3.3. For (k, ...,k») NG and Y7 ki = n, we have the zonal spherical
function w® ¥k of the Gelfand pair (G, H);

ook k) L1, bbb e
——— N — ———
lo 2 Cm
:ﬁ 17 71767 557 75m7 75"’! /A( 3 )
) 2 Cm

4. Hypergeometric expression of zonal spherical functions

For A = (A1, 22, ..., ) = (0K 151 ..pfm)  we define

71765 "'76’ "'7ém7 ""6”1
S—— N——

f(kn,kl,...,km) _ Lf- :
(Codrvtm) — ol 4|
/H‘l

lo 2

and

(koskty .. k)

:ﬁf%/l,.../m) ’
k,
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From definition of f;, the value of zonal spherical functions on each double coset can
be described by the term of trigonometric functions,

c(z) = cos(2nz/r).

Namely, for u = (uy, fto, ..., i) = (0°0171-..m’n), it follows that

(Kot o) _ ! : : .
Tnte iy = Teolly 1k, E; c(Aatto(1))e(Aabto(2) - (Pnblo(n)
geS,
= > c(Ouo) - c(Op)e(lpm) -+ e(Lum) - c(mpm ) -+ c(mpm),
kT o 1 ko 1 ky 1 Yem

where the summation runs over

7 1 (1 .(m .(m

I,I;Okl '”—{{z1 - lko l() ...,l]<ﬂ>7...,l§ ),...,zf(m)};
U7 isis<it? <<l <n) = (1.2, 0m),
Jj=0

Proposition 4.1.

(k k P ) m 27_c a,]

0:5K0 5+ 5Km) i — g7

f(/o,/l,--./m) - l (flioﬁan ----- flim) H <COS< r lj)) ’
. LJ<m

where
m m
Kookt om
A=A = {a = (ay) e M1 (No); Y ay = kj, Y ay = f,}.
=0 =0

The proof is similar to that of [4, Proposition 4.1]. For (uj,u,,...,H,) =
(070171-..m’n), we put &; = {k;p, =i} and
ay = |Li0{it”, i)Y,

Then we see that a;; satisfy
m m
Zag/:kj and Zai/:f,'.
i=0 Jj=0

And we obtain the claim of Proposition 4.1.
The proof of the following lemma is similar to [4, Proposition 4.4].
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Lemma 4.2.

m

f(kﬂskla-->7krl1) _ 2 : 1<11<m ajj H
((07/1 yeee a/m) ko,aor ... dom 1070117 <im

aed i=1

< 11

Proof. We compute that

m ki

fown = > 11

frorhm =0 5=1

m
> > Il eeCmn

A0 kmo 0<t; <k j=1
(1<i<m)

<

2n %
(cos (—l]) - 1) .
1<i,j<m r

k,

<

g = S T TIO + (i) - 1)
1 =

lr/’r0~~-km Jj= —1

-1 (JM,-;{/)) —1).
J

Here ¢, denotes the elementary symmetric function. Putting

m

0=n-30=3 G

+k05

it follows that

m

I
form = Sy U 1:[ ()

0<t;<k; 1’0 “im
(I1<ism)

to
) X (kl_[l«,uukm_[m k[))

Analogous to the previous proposition, we can compute

m

E:IIII Jhgn

“tm J s=1

_1)

I i
N
) ::1

Here /' = {a = (a;) € Mys1(No); D" ay = 1,

computations, we obtain the claim of lemma.

j=

m

( w0 ) TT(eCi) = 1)
i

Jj=1

(a0 ) TL et =1y,

1<i,j<m

m

0 @j = /i}. By combining these
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Using this lemma, the zonal spherical functions are written as

(koo don) (n— ZKL em@ip) K1kl L) (c(if) — 1)
0 = Z J H

(0]
£0,... !
(%o, m) nlagy ! agnlaio! - amo!

ae.of I1<i,j<m
Iy

m m
_ oy O O o
— ]
Zléi,jémaijsn (n)ZKi-,iémaij Isijsm al]'

=F((={1y ..., —lm), (k1 ..., —km); —n; (1 — cos(2mij/r)).

Therefore we have a hypergeometric expression of the zonal spherical functions.

Theorem 4.3.

Oy = F((=l1y s =Cm), (=K1, ooy —kim); =15 (1 — c0S(27ij /7)) < j<m)-

2o, dal i =2m 1
(H(1, ... 1,b, b, . b . b™ ) H| =
" 21=t0=m (//)m if r=2m,

and we already know the dimension of each irreducible component of 1% from

Proposition 3.2. From the orthogonality of the zonal spherical functions [3,4] we
have Theorem 2.1.
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