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Abstract

We investigate the following vertex percolation process. Starting with a random regular graph of constant
degree, delete each vertex independently with probability p, where p = n−α and α = α(n) is bounded
away from 0. We show that a.a.s. the resulting graph has a connected component of size n − o(n) which
is an expander, and all other components are trees of bounded size. Sharper results are obtained with extra
conditions on α. These results have an application to the cost of repairing a certain peer-to-peer network
after random failures of nodes.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we investigate the effect of randomly deleting some vertices in a random regular
graph. Take a random d-regular graph G on n vertices and independently delete each vertex with
probability p. The result is a random graph Ĝ with maximum degree at most d. We analyse the

structure of Ĝ, with particular focus on whether (the largest connected component of) Ĝ is an
expander graph. Here d is fixed, n tends to infinity such that dn is even, and we take p = n−α

for some function α = α(n). In this paper we treat only the case where α is bounded away
from 0, since otherwise even the largest component of the graph is not an expander. Our work is
motivated by an application in peer-to-peer networks, as described below.
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In Section 1.1 we describe our main result. Related work is described in Section 1.2. The
application to a certain peer-to-peer network is explained in Section 1.3. Our calculations will be
carried out in the configuration model which is described in Section 2. Then our calculations are
presented in Section 3.

1.1. Notation, terminology and our main result

There are several related definitions of expander graphs. We will say that a graph G on n
vertices is a β-expander if every set S of s ≤ n/2 vertices has at least βs neighbours outside
S. An alternative definition involves d(S), the sum of the degrees of vertices in S, and e(S), the
number of edges leading out of S, and defines G to be an γ -expander if e(S) ≥ γ d(S) for all sets
S ⊆ V (G) of vertices with d(S) ≤ |E(G)|. For bounded-degree graphs these give equivalent
notions of expanders, up to a constant factor in translating γ to β.

In this paper, all asymptotics are as n → ∞. We say that an event holds asymptotically almost
surely (a.a.s.) if the probability that it holds tends to 1. We adapt the standard O(·), o(·) notation
to accommodate versions which hold a.a.s., following [14, Section 8.2.1]. Specifically, let f (n),
g(n) and φ(n) be functions such that | f | < φg. If φ(n) is bounded for sufficiently large n then
we write f = O(g), and if φ → 0 as n → ∞ then we write f = o(g). If f/g = 1 + o(1) then
we write f ∼ g and say that f and g are asymptotically equal. If a statement S about random
variables involves the notation O(·) or o(·) then S is not an event, and we define “a.a.s. S” to
mean that all inequalities of the form | f | < φg which are implicit in S hold a.a.s.

Let Gn,d denote the uniform probability space of all (simple) d-regular graphs on the vertex
set [n] = {1, . . . , n}. Our main result is the following.

Theorem 1. Fix d ≥ 3 and a constant η > 0. Suppose that α = α(n) satisfies

α(n) ≥ η (1)

for n sufficiently large. Let G ∈ Gn,d and let Ĝ be the graph obtained by independently deleting
vertices of G independently with probability n−α . Then

(a) there is a constant β > 0 such that a.a.s. Ĝ has a connected component of size n − o(n) that
is a β-expander, and all other components are trees of bounded size;

(b) if η > 1
2(d−1)

then there is a constant β > 0 such that a.a.s. Ĝ consists of a connected

component that is a β-expander, together with o(n(d−2)/(2d−2)) isolated vertices;
(c) if η ≥

1
d−1 then there is a constant β > 0 such that a.a.s. Ĝ is a β-expander.

The result in (a) is best possible, in the sense that if α goes to 0 in the deletion probability
n−α then there is no fixed positive expansion rate: that is, there is no fixed β > 0 as stated in
the theorem. The reason for this is as follows. It can be shown by the second moment method
that if k < 1/(α(d − 2)) then there are a.a.s. many paths of degree 2 vertices of length at least
k in the large connected component. Any one such path causes the expansion rate to be at most
2/(k − 1). This is explained further after Lemma 5 below.

1.2. Related work

While the vertex deletion process which we analyse in this paper does not seem to appear
in the literature, there are various papers [7,8,11] investigating the result of deleting edges of
random regular graphs independently with some given probability. This is usually described as
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edge percolation, and the resulting graph is sometimes called the faulty graph. These papers
are also motivated by applications to communications networks. Nikoletseas et al. [11] focus on
the connectivity properties of the faulty graph, and undertake a study somewhat similar to ours.
Goerdt [7, Theorem 2] proves that for small constant edge deletion probability, there is a linear-
sized component of the faulty graph. However, it is not an expander. Goerdt and Molloy [8]
extend this analysis to give a threshold on the fault probability for the existence of a linear-sized
k-core whenever 3 ≤ k < d . (The k-core of a graph is the unique maximal subgraph in which
each vertex has degree at least k, see for example [4, p. 150].) The k-core is with high probability
an expander, but only contains some proportion of the vertices. These results are considering
much higher deletion probabilities than we do in the present paper, because they tolerate a very
large number of disconnected vertices: linear in n.

The paper of Alon et al. [1] considers edge percolation on expander graphs, which includes
random regular graphs of degree at least 3. (Though they consider graphs of high girth, this is a
minor detail.) They determine the threshold at which a giant component exists. They also give
a result [1, Proposition 5.1] on the expansion of the giant component when the edge deletion
probability tends to 0. This involves (1/ log n) expansion however, not constant rate expansion.
For random regular graphs, Pittel [12] gave a more detailed analysis and determined the order of
the transition window of appearance of a giant component in a random regular graph under edge
percolation.

1.3. Application to a peer-to-peer network

The vertex deletion process which we study in this paper is motivated by an application to
a peer-to-peer network proposed by Bourassa and Holt [5,9]. This network, called the Swan
network, is based on random regular graphs. Under normal operating conditions, the network
is given by a d-regular graph, where d ≥ 4 is an even constant (in practice d = 4). Bourassa
and Holt claimed that their networks quickly acquire some desirable characteristics of uniformly
distributed random regular graphs, such as high connectivity and logarithmic diameter. (Note that
random d-regular graphs are a.a.s. expander graphs for d ≥ 3 [3], and as such they are connected
and have logarithmic diameter. Specifically, it is well known and easy to see that if a graph G is
a γ -expander then G has diameter which is bounded above by log1+γ (n/2).)

Cooper, Dyer and Greenhill [6] gave theoretical support to these claims by defining a
Markov chain to model the behaviour of the Swan networks. They showed that under certain
natural assumptions about arrival and departure rates, and with a slight alteration of the
mechanism of departure, the Markov chain converges rapidly to its stationary distribution, which
is uniform when conditioned on a fixed number of vertices. While random d-regular graphs are
a.a.s. connected for d ≥ 3 (indeed, d-connected), a Swan network in the absence of departures
is always connected.

In the context of peer-to-peer Swan networks, the random deletion of a vertex corresponds
to a client failing. Edges correspond to LAN or Internet connections and so are far more robust.
Individual clients fail due to lost power, shut down or log-off events, frozen applications, and
similar phenomena. Hence our exclusive consideration of vertex deletions, rather than edge
deletions.

Swan networks are self-administering. In particular, they are self-healing after the loss of some
vertices, completing a d-regular graph among the remaining vertices. For Swan networks, there
are two processes to handle lost neighbours: an inexpensive process that uses messages internal
to the graph, and a more expensive process that contacts vertices using messages external to the
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graph. As long as the graph remains connected, the repairs can safely use the internal repair
mechanism. Hence for this application it is desirable that the majority of clients in the network
remain in a connected component.

Theorem 1 models this situation and shows that the large connected component is an expander,
which has three important implications for Swan networks. First, under certain constraints on the
probability of node failures, Swan networks tend to remain connected under the simultaneous
loss of several nodes. Second, deletions do not degrade the log-diameter of the Swan networks.
Finally, Theorem 1 implies that the current internal repair strategies could be modified, efficiently
involving more of the remaining nodes in the repair.

2. The configuration model and some definitions

As is usual in this area, calculations are performed in the configuration model (or pairing
model), see for example [13] or [10, Chapter 9]. A configuration consists of n buckets with d
points each, and a perfect matching of the dn points chosen uniformly at random. The edges
of the perfect matching are called pairs. Assume that the buckets are labelled 1, . . . , n and that
within each bucket the points are labelled 1, . . . , d . Denote this probability space by Pn,d . Given
a configuration P ∈ Pn,d we obtain a pseudograph G(P) by shrinking each bucket down to
a vertex. This pseudograph may have loops and/or multiple edges, but the probability that it is
simple (with no loops or multiple edges) is bounded below by a positive constant. Moreover,
conditioned on G(P) being simple, it is uniformly distributed.

Similarly if d = (d1, . . . , dn) is the degree sequence of a graph, then Pn,d denotes the
configuration model where the j th bucket contains d j points, and a perfect matching of the
2m =

∑n
j=1 d j points is chosen uniformly at random. Here we assume that the buckets are

labelled 1, . . . , n and that the points in the j th bucket are labelled 1, . . . , d j .
We can now define the bucket deletion process for configurations. For the remainder of

the paper, assume that (1) holds for some positive constant η, for n sufficiently large. Given
P ∈ Pn,d , form a new configuration P̂ by independently deleting each bucket with probability
p. Specifically:

• choose a random subset R of buckets such that b ∈ R with probability p = n−α ,
independently for each bucket b,

• delete all buckets in R,
• delete every pair with an endpoint in a bucket in R, together with the other endpoint of the

pair if it lies outside R,
• relabel the surviving buckets with the labels 1, 2, . . ., preserving the relative ordering of the

buckets,
• relabel the points within each surviving bucket in the same way.

Note that the same distribution on P̂ will result if the set R of buckets to delete is chosen first,
and then P ∈ Pn,d is selected.

We now give some definitions which we will need. A connected component of a graph which
is a tree will be called an isolated tree, and a connected component of a graph which is a cycle
will be called an isolated cycle.

The 2-core of a graph G, denoted by cr(G), is obtained from G by the following process: let
G0 = G and for t ≥ 0, if G t contains a vertex v of degree 0 or 1 then let G t+1 = G t − v,
otherwise stop. The final graph is cr(G). From the 2-core cr(G) of G we obtain the kernel of G,
denoted by ker(G), by suppressing all vertices of degree 2. That is, if v is a vertex of degree 2 in
G ′ with neighbours {a, b} then delete v and replace these two edges by the edge {a, b}.
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Given a graph G, an edge of G is a cyclic edge if it belongs to a cycle, or to a path joining
two cycles. The cyclic edges are precisely those of the 2-core. The subgraph M of G induced by
the non-cyclic edges, called the mantle, is a union of some number of components. Each of these
components is a tree which is an induced subgraph of G. We define a bush to be a connected
induced subgraph of M , so that a maximal bush is exactly a component of M . If a bush B has a
vertex which is incident with at least one cyclic edge of G then this vertex is called the root of
B. Following from these definitions, a bush can have at most one root, and maximal bushes are
pairwise disjoint.

We will say that a configuration P has some property if the corresponding graph G(P) has
that property. This allows us to speak of paths and cycles in a configuration P , as well as
subconfigurations of P which are trees, bushes and so on. In particular we can define the 2-core
and kernel of a configuration.

We will need the following lemma which has a very straightforward proof and can be found
in [4, p. 54].

Lemma 1. Let k be a fixed positive integer and let d = (d1, . . . , dn) be a degree sequence
satisfying 0 ≤ di ≤ d for all i . Then the probability that a random element of Pn,d contains k
specified pairs is (1 + o(1))(2m)−k , where m = (d1 + · · · + dn)/2 is the number of pairs in the
configuration.

If an event is a.a.s. true for G(P) when P ∈ Pn,d , then it is also a.a.s. true conditional on the
event that G(P) is simple. This comes immediately from the fact that the probability that G(P)

is simple for P ∈ Pn,d is bounded below by a positive constant (see for example [4, p. 55]). This
is the way that many results about Gn,d have been proved using Pn,d .

3. The details

Let P ∈ Pn,d and let R be the random set of buckets chosen for deletion. Write r = |R|. By
the well known sharp concentration of binomials, since α is bounded away from 0, a.a.s.

r ∼ n1−α (2)

provided n1−α
→ ∞. Until we come to the proof of Theorem 1 we will assume that the latter

condition holds, so that (2) holds. The other case is easily handled afterwards.
Let P̂ be the result of deleting the buckets in R from P (and performing the necessary

relabellings of buckets and points). Then P̂ has n − r buckets. Let d j denote the number of
points in the j th bucket of P̂ , and say that bucket j has degree d j . Thus 0 ≤ d j ≤ d. The degree
sequence of P̂ is (d1, . . . , dn−r ) and number of pairs in P̂ is (d1 + · · · + dn−r )/2. Let N j be the
number of buckets of P̂ with degree j , for 0 ≤ j ≤ d. The following result shows that we can
use Pn,d to model P̂ , conditional upon it having degree sequence d.

Lemma 2. The pairing P̂ is uniformly random conditioned on its degree sequence d =

(d1, . . . , dn−r ).

Proof. First notice that the set R determines an injection ϕ : [n − r ] → [n] which is the inverse
of the relabelling operation performed when P̂ is constructed. The probability of a particular P̂
with degree sequence d = (d1, . . . , dn−r ) is given by(n

r

) (n−r∏
j=1

(
d

d j

))
n−αr (1 − n−α)n−r Nd̂/|Pn,d |
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where

•
( n

r

)
is the number of order-preserving injections ϕ : [n − r ] → [n], giving the labels of the

buckets from P̂ in P ,
•

(
d
d j

)
is the number of order-preserving injections from [d j ] to [d], giving the labels of the

points from bucket j of P̂ in bucket ϕ( j) of P ,
• n−αr (1 − n−α)n−r is the probability that the buckets chosen for deletion are exactly the r

buckets of P which do not correspond to buckets of P̂ ,
• d̂ = (d̂1, . . . , d̂n) is the degree sequence given by

d̂i =

{
d if i 6∈ ϕ([n − r ]),

d − d j if i = ϕ( j),

• Nd̂ is the number of configurations with degree sequence d̂, giving the number of ways to
complete the configuration P .

Since the above expression depends only on d and not on the particular structure of P̂ , it
follows that P̂ is uniformly random conditioned on its degree sequence d. �

For 0 ≤ j ≤ d let

µ j =

(
d

j

)
n1−(d− j)α.

Lemma 3. Assume that r satisfies (2). Form P̂ from P ∈ Pn,d by deleting the buckets in R as
described in Section 2. Then, for 0 ≤ j ≤ d, we have EN j ∼ µ j and a.a.s.

N j ∼ µ j if µ j → ∞,

N j = O(log log n) if µ j = O(1),

N j = 0 if µ j = o(1).

(3)

In all cases, a.a.s. N j = o(µ`) for 0 ≤ j < ` ≤ d.

Proof. Fix j ∈ {0, . . . , d}. Choose a random configuration P ∈ Pn,d . The probability that a
given bucket b 6∈ R is incident with exactly d − j pairs which are incident with points in R is
asymptotically equal to(

d

j

) (
dr

d − j

)
(d − j)! (dn)−(d− j)

∼

(
d

j

)
n−(d− j)α

= µ j/n.

(The first factor chooses d − j points in b and the second factor chooses d − j points in R. There
are (d − j)! ways to match up these points using pairs, and the probability that a random element
of Pn,d contains these pairs is asymptotic to (dn)−(d− j), by Lemma 1.) Therefore by linearity of
expectation,

EN j ∼ µ j ,

proving the first statement.
Now suppose that µ j → ∞. Similar calculations for an ordered pair of buckets b, c 6∈ R show

that E[N j ]2 ∼ (EN j )
2. This establishes the sharp concentration of N j whenever µ j → ∞. The

other two statements in (3) follow from Markov’s inequality, as does the final statement of the
lemma. �
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Now fix a positive integer K such that

K >
2

(d − 2)η
,

where η is the constant from (1). Recall the definition of a bush given before the statement of
Lemma 1. Note that a bucket v of a bush B has the same degree in B as it does in P̂ unless v is
a root.

Lemma 4. Let d = (d1, d2, . . . , dn−r ) be a degree sequence such that 0 ≤ di ≤ d for all i , r

satisfies (2), and N j satisfies (3) for 0 ≤ j ≤ d. Let P̂ ∈ Pn,d. Then a.a.s. P̂ has no bushes with
more than K buckets (including isolated trees).

Proof. First observe that every tree on k ≥ 2 buckets has at least k/2 + 1 buckets of degree 1 or
2. (This can be proved using induction.) Suppose that P̂ contains a bush B with at least K + 1
buckets. Then P̂ contains a bush with exactly k + 1 buckets, for some k satisfying K ≤ k ≤ 2K .
To see this, suppose that B is a bush in P̂ with at least 2K + 2 buckets. If B has a root then let
b be the root bucket of B, otherwise let b be any bucket of B. Then at least one neighbour of b,
say b′, is the root of a (smaller) bush B ′ in P̂ with more than K buckets. By induction on B ′, the
result follows.

So now let B be a bush in P̂ with k + 1 vertices, where K ≤ k ≤ 2K , and let S be the set
of buckets in B. Ignoring the root bucket if present (which may have higher degree in P̂ than it
does in B), it follows that there are at least k/2 buckets in S with degree 1 or 2 in P̂ . Moreover
there are k pairs in P̂ between points in buckets of S.

Now we prove that a.a.s. there are no such sets S of buckets in a random element of Pn,d.
There are N1 + N2 buckets in P̂ of degree 1 or 2, and by (3), a.a.s.

N1 + N2 =

{
O(µ2) if µ2 → ∞ or µ2 = o(1),
O(log log n) if µ2 = O(1).

Here if µ2 → ∞ and µ1 = O(1) then we use the fact that a.a.s. N1 = o(µ2) (which follows
from the last statement of Lemma 3), rather than the arbitrary upper bound of O(log log n) from
(3). Hence there are a.a.s. at most

O(1) nk/2+1 g(n)k/2

ways to choose the buckets belonging to the set S, where

g(n) =

{
µ2 = n1−(d−2)α if µ2 → ∞ or µ2 = o(1),
log log n if µ2 = O(1).

(4)

There are O(1) ways to choose locations for the k pairs between points of S, and the probability
that a random element of Pn,d contains these pairs is O(n−k), by Lemma 1. Therefore the
expected number of such sets S in P̂ is a.a.s.

O(1) nk/2+1 g(n)k/2 n−k .

This is clearly o(1) if g(n) = log log n, and otherwise

O(1) nk/2+1 g(n)k/2 n−k
= O(n1−(d−2)αk/2)

= O(n1−(d−2)ηK/2)

= o(1)
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by choice of K . Hence by Markov’s inequality in either case there are a.a.s. no such sets S, for
K ≤ k ≤ 2K . The lemma follows. �

To create the 2-core cr(P̂) of P̂ , start with P̂ and delete all buckets of degree 0. Then while
any buckets of degree 1 remain, delete one at each time step until none remain. Finally, relabel the
remaining buckets and the points within the remaining buckets, respecting the relative ordering.
This process is equivalent to deleting all isolated trees and “pruning” all maximal bushes of P̂
(where pruning involves deleting all buckets of the maximal bush except the root, and deleting all
pairs incident with any non-root bucket of the bush), followed by relabelling. Denote the number
of buckets in cr(P̂) by t and let d′

= (d ′

1, . . . , d ′
t ) be the degree sequence of cr(P̂). This defines

N ′

j , the number of buckets in cr(P̂) with degree j , for 2 ≤ j ≤ d (since cr(P̂) has no buckets of
degree 0 or 1).

Lemma 5. Let d = (d1, . . . , dr ) be as in Lemma 4. Let P̂ ∈ Pn,d. Then the 2-core cr(P̂) of P̂
has the following properties:

(i) a.a.s. t ∼ n − r and N ′

j ∼ N j for 2 ≤ j ≤ d,

(ii) cr(P̂) is uniformly random conditioned on its degree sequence,
(iii) a.a.s. cr(P̂) has no paths of length at least K + 1 where all internal vertices have degree 2,
(iv) a.a.s. cr(P̂) has no isolated cycles.

Proof. By Lemma 4, a.a.s. all bushes and isolated trees in P̂ have at most K buckets (including
the root). Hence the total number of buckets of P̂ contained in bushes is a.a.s. O(µ1) unless
limn→∞ µ1 = O(1) and µ1 6= o(1), in which case an upper bound is given by O(log log n).
Note also that by Lemma 3, a.a.s.

N1 = o(µd) and µd ∼ n − r.

It follows that cr(P̂) has t buckets where a.a.s.

t = n − r − o(n − r) ∼ n − r.

By Lemma 3 again it follows that a.a.s. N ′

j ∼ N j for 2 ≤ j ≤ d. This proves (i).
The proof of (ii) is similar to the argument given in the proof of Lemma 3 and for similar

statements in papers on cores of random graphs, so we do not include it here.
Let m = (d ′

1 + · · · + d ′
t )/2 be the number of pairs in cr(P̂). By (ii) we know that, conditioned

on having degree sequence d′, cr(P̂) has the distribution of Pn,d′ . For the remainder of the proof,
assume that t ∼ n − r and that d′

= (d ′

1, . . . , d ′
t ) is a degree sequence such that 2 ≤ d ′

i ≤ d for
1 ≤ i ≤ t and (3) holds with N ′

j in place of N j on the right hand side, for 2 ≤ j ≤ d. Using
Lemma 1, the expected number of paths in Pn,d′ of length K + 1 with K internal buckets of
degree 2 is at most

O(1) t2
(

N ′

2

K

)
K ! (2m)−(K+1)

= O(n)

(
N ′

2

n

)K

.

Since (3) holds by assumption, this expression is

O(n1−K ) g(n)K

where g(n) is defined in (4). Using calculations as in Lemma 4, this bound is o(1). Hence by (i)
and (ii), applying Markov’s inequality establishes (iii).
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To prove (iv), let k be an integer satisfying 2 ≤ k ≤ K +1. Then using Lemma 1, the expected
number of isolated k-cycles in Pn,d′ is at most

O(1)

(
N ′

2

k

)
(k − 1)! (2m)−k

= O(1)

(
N ′

2

m

)k

.

Therefore the expected number of isolated cycles in Pn,d′ of length at most K + 1 is at most

O(1)

K+1∑
k=2

(
N ′

2

m

)k

= O(1)

(
N ′

2

m

)2 1
1 − N ′

2/m
.

Since (3) implies that N ′

2 = o(m), we see that the expected number of isolated cycles of length
at most K + 1 in Pn,d′ is o(1). By (i), (ii) and Markov’s inequality, there are a.a.s. no such cycles
in cr(P̂). Finally, any cycle of length K + 2 or more contains a path of length K + 1 where all
vertices have degree 2. Hence by (iii) there are a.a.s. no cycles of length K + 2 or more in cr(P̂).
This completes the proof. �

Following the calculations in this proof, we can now see why the result of Theorem 1 is best
possible, in the sense outlined in the introduction. Suppose that p = n−ε where ε > 0 may be
arbitrarily small. Choose a positive integer k ≥ 2 such that ε(d − 2)k < 1. (By choosing small
enough ε we may choose k to be arbitrarily large.) With this deletion probability we have

µ2 >

(
d

2

)
n1−1/k

→ ∞,

so the expected number of paths in cr(P̂) with length at least k and with at least k − 1 internal
vertices of degree 2 is at least

Ω(1)
(t − k)2

2m

(
N ′

2 − k

2m

)k−1

≥ Ω(n)

(
d − 1

2 n1/k

)k−1

= Ω(n1/k)

which tends to infinity. Standard variance calculations show that the number of such paths is
sharply concentrated, so there is a.a.s. at least one such path in cr(P̂). This implies that the
expansion constant of cr(P̂) is at most 2/(k − 1). Conditioning on the event that G(P) is simple,
we have the same conclusion (see the end of Section 2). Hence when p = n−ε where ε = o(1),
we may take k → ∞, there is no fixed positive expansion rate β, and the conclusion of Theorem 1
does not hold.

For practical applications such as the Swan networks, a constant but very small deletion
probability is the most natural assumption. For the range of n of interest in the applications,
the probability would be at most n−ε for some small positive constant ε that is not extremely
small. For values of the parameters determined in this way, we would expect the asymptotic
trends studied in this paper to be accurate.

Proof of Theorem 1. Fix a positive integer d ≥ 3 and a constant η > 0 such that (1) holds for n
sufficiently large. Let P ∈ Pn,d and form P̂ from P as described in Lemma 3.

We first treat the case that n1−α
→ ∞, so that (2) holds a.a.s., and we prove the conclusions

of the theorem for the multigraph G(P). Only at the end do we remove this assumption and
translate the result to G ∈ Gn,d . We have by Lemma 2, P̂ ∈ Pn,d where d is the degree sequence
after deletion. Let cr(P̂) be the 2-core of P̂ . Then a.a.s. the conclusion of Lemmas 3–5 all hold.

Condition on the event that all these conclusions hold, and let ker(P̂) be the kernel of P̂ . Then
ker(P̂) is obtained from cr(P̂) by suppressing the degree-2 buckets. That is, if b = {p1, p2} is a
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degree-2 bucket in cr(P̂) involved in pairs {p1, x}, {p2, y}, then delete b, remove these pairs and
add the pair {x, y}. Since cr(P̂) has no isolated cycles, ker(P̂) has exactly N ′

j buckets of degree
j for 3 ≤ j ≤ d (and no buckets of degree less than 3). For the reasons given in Lemma 5(ii),
we omit the arguments that show that ker(P̂) is uniformly random conditioned on its degree
sequence. Let H = G(ker(P̂)) be the multigraph obtained from ker(P̂) by shrinking buckets to
vertices and replacing pairs by edges.

We know that for some constant δ > 0 the multigraph H is a.a.s. a δ-expander. (This is well
known: for example, [2, Lemma 5.3] states that for some α > 0, the random multigraph arising
from the pairing model Pn,d with degree sequence satisfying 3 ≤ min di ≤ max di ≤ n0.02 is
a.a.s. an α-expander. A version of the expansion result is also mentioned in [7] without proof.)
The constant δ depends only on η. At this point we further condition on this asymptotically
almost sure expansion event holding.

Let G(P̂) be the multigraph corresponding to the pairing P̂ . We obtain G(P̂) from H by
performing the following steps:

• replace some edges by paths of length at most K ,
• glue on some maximal bushes of size at most K by identifying their roots with distinct

vertices,
• introduce some isolated trees of size at most K ,
• perform the appropriate relabellings of vertices.

Since we are conditioning on the event that the conclusions of Lemma 3 hold, G(P̂) consists
of O(N1) = o(n) vertices in isolated trees of size at most K , together with a large component
having n − O(N1) vertices. Let U be the large component, and let u = |U |. Note that
|H | = u − o(u). We now show that U is an expander.

Fix any subset S ⊆ V (U ) with |S| ≤ u/2. By an object we mean any maximal bush which
has been added to H , or path replacing an edge of H , or edge of H not replaced by a path, in
the process of creating U from H . An object includes the vertex or vertices of H where it is
attached. An object is partially occupied if it has some vertices in S and some not in S, and it is
fully occupied if all its vertices belong to S.

First suppose that there are at most ε|S|/K partially occupied objects, where ε > 0 is
a constant. Then at most ε|S| vertices of S are in partially occupied objects. For each fully
occupied object there are at most K − 1 vertices not in H and at least one vertex in H . Each
of these vertices is involved in at most d objects, so the number of vertices in V (H) ∩ S
is at least 1/(d(K − 1) + 1) > 1/d K times the number of vertices in fully occupied
objects. Since all vertices of S are in either partially or fully occupied objects, it now follows
that

|V (H) ∩ S| ≥
1 − ε

d K
|S|.

Let A be the set of vertices in V (H) \ S which have a neighbour in V (H) ∩ S. We claim that
there exists a constant γ > 0 such that |A| ≥ γ |V (H)∩S|. If |V (H)∩S| ≤ |H |/2 then the claim
follows immediately because H is a δ-expander. So we may assume that |V (H) ∩ S| > |H |/2.
Then |B| < |H |/2, where B = V (H) \ (S ∪ A), so the expansion of H implies that |A| ≥ δ|B|

and hence

|A| ≥
δ

1 + δ
|A ∪ B| =

δ

1 + δ
|V (H) \ S| ≥

δ(1/2 + o(1))

1 + δ
|H |
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as |H | ∼ u and |S| ≤ u/2. Thus, the claim holds with γ = δ/(3 + 3δ). The claim implies that
there are at least

γ |V (H) ∩ S| ≥
γ (1 − ε)

d K
|S|

partially occupied objects.
So we may suppose that for some ε > 0, there are more than ε|S|/K partially occupied

objects. Each partially occupied object contains an element of S with a neighbour in V (U ) \ S.
Since each vertex in U has degree at most d , each of these neighbours can be incident with at
most d partially occupied objects. Therefore S has at least ε|S|/d K neighbours outside S. It
follows from this that the large component U is a constant rate expander, under our assumptions.
The conclusion of part (a) of the theorem now follows for the initial random multigraph G(P) in
place of G ∈ Gn,d , under the assumption that n1−α

→ ∞.
For (b), we need to show further that a.a.s. the only isolated trees in P̂ are isolated vertices.

By Lemmas 1 and 3, the expected number of isolated trees with at least two leaves and k − 2
other vertices is

nk−2 n2(1−(d−1)α) O
(

n−(k−1)
)

= O(n1−2(d−1)α) = o(1).

Hence the isolated trees are a.a.s. isolated vertices, as required. Also, the number of isolated
vertices is N0 and if µ0 → ∞ then a.a.s.

N0 ∼ µ0 = n1−αd
= o(n1−d/(2d−2))

for the given bound on η. In the other cases we still have N0 = o(n(d−2)/(2d−2)) a.a.s., using
Lemma 3.

For (c), the conclusion of (b) still applies, but in addition, in this case EN1 = o(1). So there are
a.a.s. no isolated trees or bushes of any size, and the conclusion of (c) follows for the multigraph
G(P̂).

This completes the proof of the theorem except for two aspects. First, we transfer the
conclusions from the initial random multigraph G(P) to G ∈ Gn,d . This is done by conditioning
on the event that G(P) is simple. As explained at the end of Section 2, the truth of these
asymptotically almost sure results is not affected. In the conditional space, G(P̂) becomes Ĝ
as in the statement of Theorem 1.

Finally, we only need to dispense with the assumption that n1−α
→ ∞. Assume that

n1−α
= O(1). We may apply the version of (c) already proved, to conclude that the deletion

of vertices from G ∈ Gn,d with probability n−3/4 a.a.s. produces a β-expander G ′. If we then
reinstate each deleted vertex (and incident edges) independently with probability 1 − n3/4−α

(noting this is positive for n sufficiently large) then the result is the same as deleting each vertex
of the original graph with probability n−α , that is, it produces Ĝ. The vertices deleted from G to
produce G ′ are, by easy first moment considerations, a.a.s. of distance at least 3 from each other.
In this case, reinstating them cannot create any new components, and it is easy to see that after
reinstating them, the resulting graph Ĝ is a (β/2)-expander when β ≤ 2. The only nontrivial
case is when S ⊆ V (Ĝ) satisfies |S − W | < |S ∩ W |, where W is the set of reinstated vertices.
Here each vertex of S ∩ W has d neighbours outside W , giving d|S ∩ W | distinct neighbours of
S ∩ W outside W . At most |S − W | of these can lie in S, so S has at least

d |S ∩ W | − |S − W | ≥ (d − 1) |S ∩ W | ≥
d − 1

2
|S|

neighbours outside S in Ĝ. This gives β/2-expansion when β ≤ 2. �
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