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Photosystem 2 prep~ations with very high rates of oxygen evolution from the ~ermoph~ic 
cyanobacterium Fhormidium laminosum have been studied by EPR spectrometry. In the presence of 
DCMU the g = 1.82 signal of the iron-quinone electron acceptor (Q) can be observed. It is proposed that 
DCMU is necessary to disrupt a magnetic interaction, between the semiquinone forms of Q and the 
secondary acceptor B, which otherwise prevents detection of the Q-Fe signal. A doublet EPR signal arising 
from magnetic interaction between Q-Fe and the reduced intermediary electron acceptor pheophytin (I-), 
and a spin-polarized triplet signal assumed to arise from the back reaction between I- and P680+ can also 

be seen. Preliminary redox titrations of Q reduction have been carried out, indicating Em = 0 mV. 

Phormidium laminosum Photosystem 2 Electron acceptor 
Triplet 

Iron-q&none Pheophytin 

1. INTRODUCTION 

Electron transfer in the photosystem 2 reaction 
centre involves the photooxidation of the reaction 
centre chlorophyll P680 and transfer of the elec- 
tron through a pheoph~in interme~~y acceptor 
(I) to a complex containing a primary acceptor (Q) 
and secondary acceptor(B). The electron acceptors 
of photosystem 2 seem to be similar to those in 
purple bacteria. 

the chemical and photochemical reduction of Q 
could be observed. The EPR signal of reduced Q 
showed g-value (g = 1.82), lineshape and 
microwave power saturation characteristics of a 
semiquinone-iron complex similar to that seen in 
the purple bacteria [3]. 

The primary electron acceptor (Q) of 
photosystem 2 was thought to be a form of plasto- 
quinone in a special environment from the results 
of extraction experiments and absorption 
measurements. Recently Q has been identified 
directly as an iron-quinone complex by EPR spec- 
trometry in PS2 preparations from a mutant of 
Chla~ydo~o~~ reinhar~tii lacking photosystem 
1 [l] and in chloroplasts of a photosystem l-less 
mutant of barley, zb63 [2]. In these mutant systems 

Oxidation-reduction potential titrations of the 
iron-quinone signal in detergent preparations of 
C. reinhardtii PS2 [4] indicated a pH-independent 
redox potential (in the range pH 5-7), of Em = -10 
mV, similar to that of the higher potential acceptor 
QH observed in fluorescence titrations. 

Abbreviations: PS2, photosystem 2; DCMU, 3-(3 ’ ,4’- 
dicbiorophenyl)-1 , 1-dimethylurea; EPR, electron para- 
magnetic resonance; LDAO, Iau~ldimethyI~~e ox- 
ide; HEPES, ~Z-hydrox~ethylpiper~ne-~‘-2~th- 
anestdphonic acid 

The reduced pheophytin intermediary acceptor 
can also be detected by EPR. In purple bacterial 
reaction centres, magnetic interaction between I- 
and the Q-Fe state of the quinone acceptor results 
in splitting of the pheoph~in signal at very low 
temperatures 141. A simihu splitting of the 
pheophytin radical signal has been observed in 
preparations from the C. reinhardtii mutant [2] 
and wild-type higher plants [5,6]. Although the in- 
teraction between I” and Q-Fe has been detected 
in preparations from wild-type organisms, it has 
proved extremely difficult to detect the signal from 
Q-Fe itself. 
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We have now used a highly enriched photo- 
system 2 preparation from the cyanobacterium 
Phormidium laminosum [7] to investigate the 
iron-quinone in a wild-type organism. We have 
found that the EPR signal can normally be 
detected only if the secondary acceptor B is dis- 
placed by high concentrations of the inhibitor 
DCMU. An interaction between the semiquinone 
-iron complex (Q-Fe) and reduced pheophytin is 
observed apparently as in purple bacteria [g] but 
the reaction centre triplet [9] can only be observed 
under more reducing conditions. 

2. MATERIALS AND METHODS 

Oxygen-evolving photosystem 2-enriched frac- 
tions were prepared from the thermophilic 
cyanobacterium P. faminosum using the detergent 
LDAO by an adaptation of the method in [lo] and 
stored at 77 K in (pH 7.5) HEPES-NaOH buffer 
containing 10 mM MgCl2 and 25% glycerol until 
used. Oxygen evolution measurements were made 
at room temperature with a standard Rank oxygen 
electrode (Rank, Bottisham) in the presence of 
25% glycerol and 10 mM Mg2+, and with 
dimethylbenzoquinone and potassium ferricyanide 
as electron acceptors. Chlorophyll a concentration 
was measured as in [ll]; EPR measurements were 
performed as in [12]. Difference spectra were ob- 
tained and baseline corrections and smoothing of 
spectra were carried out using a Tektronix 4051 
microcomputer. The field and g-scales shown in 
the figures are approximate. Illumination at 200 K 
was carried out in a dry ice-ethanol bath using a 
1000 W projector as light source. The same projec- 
tor was used for illumination at room temperature, 
and at low temperature inside the EPR spec- 
trometer cavity. Redox potential titrations were 
carried out essentially as in [ 131 as described in [ 141 
except that 500 pM DCMU was included in the 
titration mixture. 

3. RESULTS AND DISCUSSION 

Typical PS2 preparations from P. laminosum 
showed oxygen evolution activity in the range 
1000-2000 pmol 02. mg chl-’ . h-r. P680 chloro- 
phyll ratios of 1:70 are typical (measured by absor- 
bance change at 820 mn [R.C. Ford, unpublished]) 
and manganese content is at most 4 Mn/P680. 
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Despite reports of Ca2+-dependence of the oxygen- 
evolving activity in other cyanobacteria [ 151, no ef- 
fect of low concentrations of Ca2’ has been 
observed in this system. 

It has proved extremely difficult to observe the 
signal of the reduced iron-quinone acceptor at 
g = 1.82 in P. laminosum. The C. reinhardtii 
preparation in which it was first seen lacks the 
secondary quinone acceptor B [ 161. It has been 
suggested [17] that the herbicide DCMU which in- 
hibits ferricyanide-dependent oxygen evolution 
acts by displacing B from its binding site near Q. 
Thus, if the Q-Fe signal were being masked by a 
magnetic interaction between Q and B similar to 
the one which occurs in purple bacteria, the addi- 
tion of DCMU to the preparation might remove 
this interaction and enable the Q-Fe signal to be 
detected. Fig. 1 shows the EPR signal of Q-Fe ob- 
tained by the addition of 500 pM DCMU to a P. 
Iaminosum PS2 preparation. The signal requires 
very low temperature and high microwave power 
for resolution [7]; it can be photoinduced by freez- 
ing under room temperature illumination (A) or by 
illumination at 200 K or by chemical reduction 
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Fig. 1. EPR spectra of the iron-quinone electron accep- 
tor Q-Fe in Phormidium laminosum PS2 preparations: 
(A) sample frozen under continuous illumination; (B) 
sample frozen in the dark 10 min after the addition of 
-2% (w/v) sodium dithionite at pH 7.5. Both samples 
contained SOOpM DCMU and - 1 mg chl/ml. EPR con- 
ditions: microwave power, 25 mW; temp., 4 K; modula- 

tion amplitude, 1 mT; frequency, 9.1 GHz. 
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with sodium dithionite (B). High concentrations of 
dithionite are required in order to overcome the ef- 
fects of the detergent LDAO which is present and 
which acts as an oxidising agent. Unlike C. 
reinhardtii, where about 30% of the Q-Fe signal 
can be induced by low temperature (5 K) illumina- 
tion, in P. laminosum very little signal can normal- 
ly be photoinduced at 5 K. This difference in low 
temperature donation is being investigated. 

Preliminary oxidation-reduction titrations in- 
dicate a midpoint potential for the reduction of Q 
at pH 6-7.5 around 0 mV, similar to the values of 
-10 mV obtained for Q in C. reinhardtii and 30 
mV for the fluorescence titration of Qu in P. 
laminosum [ 18 1. The presence of LDAO makes the 
titration difficult, and values obtained for Em 
range from + 50 to -50 mV in 4 expt. 

Fig. 2. shows a doublet signal attributed to the 
reduced pheophytin acceptor I- interacting with 
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Fig. 2. EPR spectra of the doublet signal resulting from 
the interaction between reduced pheophytin and 
semiquinone-iron acceptors in PS2 preparation from 
Phormidium laminosum; - 1 mg chl/ml; (A) sample 
poised at - - 200 mV with sodium dithionite and frozen 
in the dark, (B) after illumination at 200 K for 20 min. 
(C) Difference spectrum (B)-(A); EPR conditions: 
microwave power, 50 mW; temp. 6 K; modulation 

Fig. 3. EPR spectrum of the PS2 reaction centre triplet 
in a Phormidium laminosum PS2 preparation reduced 
with -2% sodium dithionite (pH 10) and frozen in the 
dark. The spectrum shown is a continuously illuminated 
minus dark difference spectrum at 4 K; - 1 mg chl/ml. 
The reversible light-induced signal at g = 1.92 is pro- 
bably due to a heating effect on the g = 1.92 
iron-sulphur signal. EPR conditions: microwave power, 
20 ,uW; temp. 4 K; modulation amplitude, 1.0 mT; 

amplitude, 0.5 mT; frequency, 9.1 GHz. frequency, 9.1 GHz. 

Q-Fe, after 200 K illumination of dithionite- 
reduced PS2 from P. laminosum. Before (and 
after) illumination at 200 K the g = 1.82 signal of 
Q-Fe can be seen if DCMU is present. A small 
signal showing this interaction can be induced by 
prolonged illumination at 6 K but the full signal is 
developed only after 20 min illumination at 200 K. 
The doublet is centred at g = 2.003 and is 7.0-7.5 
mT wide. EPR conditions required to observe this 
split radical signal are high microwave power and 
low temperature (below 8 K) [5]. At higher 
temperatures and/or lower power the singlet spec- 
trum of I- is seen. Redox titrations indicate that 
the interaction signal can only be induced by 200 K 
illumination at potentials around that of QFe 
reduction and at more negative potentials, but the 
results are not clear since the appearance of the in- 
teraction does not exactly parallel that of the Q-Fe 
signal. 

As in bacterial reaction centres [8], PS2 
preparatons from higher plants [19] and C. 
reinhardtii [4], a spin-polarized reaction centre 
triplet signal can be observed in these preparations. 
Fig. 3 shows the triplet signal in a P. laminosum 
PS2 sample reduced with excess dithionite at pH 10 
and illuminated at 4 K. In P. laminosum, like C. 
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~e~~~~~~~~j [4], little or no triplet can be seen at 
potentials where Q alone is reduced; it appears that 
an earlier acceptor must also be reduced, Accor- 
ding to ll8] the P, ~~~~~~~#~ preparation lacks 
QL, the acceptor observed at around - 270 mV in 
fluorescence titrations of higher plant PS2 
pre~ratio~s, so the nature of this acceptor is as 
yet unknown. 

An iron-sulphur protein with an EPR signaI at 
g = 2.05 and g = I.92 and Em7.(2= -270 mV [20], 
co-purifies with P. famin-asum PS2 and can be 
photored~~~d at room t~m~rature. This r~dn~ion 
is only partially inhibits by high concentrations 
(I 500 /rM) of DCMU. No photoreduction is seen 
in frozen sampIes at 15 K or 200 IL There is so far 
no direct evidence that this protein is a functional 
acceptor in PS2 electron transport in P. 
i~~i~~~#~, although work is continue to further 
characterize the acceptor side of PSII in this 
system. 
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