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Abstract 

Andretta, A., Large cardinals and iteration trees of height w, Annals of Pure and Applied 

Logic 54 (1991) 1-15. 

In this paper we continue the line of work initiated in “Building iteration trees”. It is shown 

that the existence of a certain kind of iteration tree of height w is equivalent to the existence of 

a cardinal 6 that is Woodin with respect to functions in the next admissible. 

0. Introduction 

Iteration trees, first introduced in [4], have become a crucial tool in the 
development of inner models for large cardinals. In [l] all sorts of iteration trees 
are constructed, assuming the existence of a Woodin cardinal. Conversely, [5] 
shows that the existence of an alternating chain (a particular kind of iteration 
tree) with the supremum of the critical points in the well-founded parts of the 
branches yields a weak form of Woodin cardinal, what here will be called a 
Woodin-in-the next-admissible cardinal, a-Woodin for short. 

In this paper it is shown that the existence of an a-Woodin cardinal is enough 
to build iteration trees of height w, and thus, using the above mentioned result of 
[5], an equivalence is obtained. To achieve this, a construction quite different 
from the one in [l] is used, as most of the machinery (reflecting cardinals, blocks 
of indiscernibles) used in [l] is not available in the present set-up. To overcome 
this difficulty we use a ‘tree argument’ to show that the iteration tree has to exist. 
This technique, which is due to Steel, was first used in his construction of an 
alternating chain. 

The main result of this paper differs from the one in [l] in two respects. It uses 
an ostensibly weaker (in fact optimal) hypothesis, and the technique used here 
applies to tree orderings of height w only. In fact, Theorem 4.1 shows that one 
a-Woodin cardinal is not enough to construct iteration trees of height o + 2. 
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2 A. Andretta 

We have tried to make this paper self-contained but we could not perform 
miracles. In particular the reader is assumed to have some acquaintance with 
extenders and iteration trees as developed in [4], [5] or in [l]. No knowledge of 
inner models is required. This paper owes a lot to [4] and [S], as any reader 
familiar with these works will immediately recognize. Indeed the whole subject of 
iteration trees would not exist if it weren’t for those two papers. 

For standard set-theoretic facts the reader should consult [3] or [2] for the 
results on admissible sets. The notation is as in [3], with some exceptions. A 
subset b of o will be identified with its enumerating function, b = {b(O) < b(1) < 
. . . }. rank(x) denotes the rank of the set x, i.e., the least a: such that x E V,,,. A 
tree % (in the sense of Descriptive Set Theory) on a set X is a family of finite 
sequences from X (% c ‘“X), closed under subsequences (s E % as r n E a), 

and ordered by reverse inclusion (s < t~s 2 t). If s E % and % is well-founded, 
then %[s] = {t E ‘“X 1 s”t E %} is also a well-founded tree and its rank is the rank 
of s in 9% The rank of a well-founded tree % is denoted by 11 OUII. Also, if % is a 
tree on X x Y, then we will write its elements as (s, t), where s E ‘“X, t E <WY 

and In(s) = lb(t). A pre-well-ordering, pwo for short, is a transitive, non- 
reflexive, well-founded binary relation. If M is a model of set theory, wfp(M) 
denotes its well-founded part. 

1. Iteration trees 

Let us briefly recall the definitions we will be using throughout this paper. For a 
more complete treatment of what follows the reader is referred to [4], [5] or [l]. 

Suppose we are given: 
(1) a tree ordering Ton w, such that 0 is the T-least element and IZ Tm implies 

II < m; also IZ* denotes the T-immediate predecessor of II + 1; 
(2) models M,, and embeddings ~dn,~: M,--t M,, for n Tm, and such that if 

t?l T k then &,k O Jr,,,, = 3d,,,k; 
(3) extenders E, E M, and ordinals pn such that the sequence (p, ) n E co) is 

increasing and 

M, k “E, is an extender of strength 2 pn + 1” 

and x,.,,+~ = i, : M,,.+ Ult(M,*, En) = M,,+l; 
(4) n* = the least m =G n such that the critical point of E, s pm. 

In this case y = (T, ((En, pa) ( n E o) ) is an iteration tree of height w over the 
model MO. We will only be concerned with the case MO = V. The ordinal w is 
called the height (or length) of 5. Iteration trees of transfinite height are studied 
in [5] and [l] and will be briefly discussed in Section 4. Sometimes the notion of a 
finite iteration tree will be used. Such trees are defined just as above except for 
the fact that the tree ordering T is defined on some n < o. 
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A few elementary facts about iteration trees that will be used in the sequel are 

listed here. 

Facts. (1) Zf n < m, then the models M,, and M,,, agree up to on + 1, i.e., 

V P,+~ n M, = VP”+,, n Mm. 

(2) If n, m + 1, k + 1 are consecutive elements on T, i.e., n = m* and 
m + 1= k*, then crit(E,) > pm, that is on any branch, there is no overlap 
between the p’s and the critical points of the n’s. 

(3) If b and c are infinite brunches of T, then sup{ P,, ) n E b} = sup{p, ) n E c}. 
(4) If .Y is a finite iteration tree of length n + 1, and E, is an extender in M,,, 

crit(E,) s pi, then Ult(Mi, E,) IS well-founded. Thus well-foundedness is never a 
problem in extending a finite iteration tree. 

It was shown in [5] that if 3 is an iteration tree of length o over V and T its 

tree ordering, then T must have an infinite branch. Hence from now on we will 

just consider tree orderings with such property. 

Let T be a tree ordering and b an infinite branch. It is natural to ask whether 

the direct limit M,, = lirnnch M, is well-founded. In the affirmative case the branch 

b is said to be well-founded, ill-founded otherwise. Does every iteration tree have 

a well-founded branch? Is such branch unique? The following two (still 

unproved!) conjectures settle the problems affirmatively. 

Conjectures [5]. 
CBH, The Cofinal Branch Hypothesis for Trees of Height o 

Every iteration tree 9 of height o over V has an infinite well-founded 

branch b. 
UBH, The Unique Branch Hypothesis for Trees of Height o 

Every iteration tree .Y of height o over V, has at most one infinite well- 

founded branch b. 

CBH, and UBH, are special cases of conjectures (see [5] or [l]) dealing with 

iteration trees on V of arbitrary countable length. Although neither UBH, nor 

CBH, has been settled at the time of the writing, there are several partial results 

due to Martin and Steel concerning them. One of these results is of interest to us 

here. First some notation. 

Definition. Let b be an infinite branch of the tree ordering T of an iteration tree 

Tofheightw. Set&,=sup{p,(nEb}. 

By Facts (1) and (2) above, 6, does not depend on the particular branch 

chosen, as 6, = sup{p, 1 n E CO}, and if b and c are infinite branches Mb n V,,,, = 

M, n vb,,; 
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Theorem 1.1 [5]. Let b, c be infinite branches of the iteration tree Sof height w. Zf 
6, E wfp(M,) n wfp(M,), then for any cx E wfp(it4,) fl wfp(M& (Y > 6, 

L,(V,_ rl M,) k “&,, is a Woodin cardinal”. 

Hence if UBH, fails, L(V,,” fl A&,) k “ZF + 6, is a Woodin cardinal”. (Choice 
can be added generically so to get a model of ZFC + “there is a Woodin 
cardinal”.) As the well-founded part of an admissible set is an admissible set, 
Theorem 1.1 suggests the following 

Definition. 6 is Woodin-in-the-next-admissible, a-Woodin for short, iff for every 
f E ‘6 n L,(V,) there is K < 6 such that f [zc] E K and there is an extender E E V,, 
crit(E) = K and such that 

where o is the least admissible ordinal over V,. 

So in particular Theorem 1.1 yields, 

Corollary 1.2. Let b, c be infinite branches of an iteration tree 5 of height w over 
V. Zf 6, E wfp(M,) fl wfp(M,), then 6, is an a-Woodin cardinal. 

In Section 3 of this paper we prove a converse to 1.2, namely, 

Theorem 1.3. Zf 6 is a-Woodin and T is a tree ordering on o with an infinite 
branch, then there are E,, p,, E V, such that ( T, ( (E,, pn) 1 n E w ) ) is an iteration 
tree and for every infinite branch b, 6, E wfp(M,). 

Hence 1.2 and 1.3 establish an equivalence between a large cardinal hypothesis 
and the existence of certain kinds of iteration trees. Something more can be said 
about well-founded branches. 

Definition [4]. An iteration tree Y of height w is continuously ill-founded off 6, b 
an infinite branch of T, if there are ordinals { ya 1 n E o \b} such that for 
n, m E w \b, n Tm implies rr,,,( y,,) 2 y,,, and if there is a k E b with n < k < m, 

then I, > ym. 

It is clear that for any infinite branch c # b, {q,(yn) 1 n E c} witness the 
ill-foundedness of M,. On the other hand Mb is well-founded. 
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Theorem 1.4 [4]. If 9 is an iteration tree of height o over V, continuously 
ill-founded off b, b an infinite branch of T, then Mb is well-founded. 

The proof of Theorem 1.3 can be modified to show 

Theorem 1.5. Let 6 be a-Woodin, T a tree ordering on w, b an infinite branch of 
T. Then there are E,, pI1 E V, such that (T, ((E,, pn) ( n E 0)) is continuously 
ill-founded off b and for every branch c of T, 6, E wfp(M,). 

2. Strength and admissibility 

Let us observe a few facts about the large cardinal hypothesis involved in the 
statements of 1.3 and 1.5. Woodin cardinals are a-Woodin, and an easy 
Skolem-hull argument shows that the converse is not true. Indeed the least 
a-Woodin cardinal has confinality o, while a full-fledged Woodin cardinal is 
inaccessible, and hence regular, and there is a closed unbounded set of smaller 
a-Woodins. On the other hand some facts about Woodin cardinals do relativize to 
the admissible case. The proof of Lemma 4.2 in [4] characterizing Woodin 
cardinals as being ‘strong’ with respect to any given A G V,, goes through 
verbatim here. 

Lemma 2.1. Let M I V# be an admissible set and suppose 6 is a Woodin cardinal 
in M. Then for A E V,,, II M, the set of K such that for every a < 6 there exists an 
extender E E V, with crit(E) = K, str(E) = 9 2 (Y and i&A) CI V, = A fl V,, is 
unbounded in 6. 

Definition (Martin). Let W c V, x V, be a pre-well-ordering (pwo) of V,, let 
K < 6 and let a E V,. The rank of a in W is denoted by lalw. 

If la/, = 0, then K is Ial,-strong if and only if for every (Y < 6 there exists an 
extender E E V, with critical point K and strength 2 a. 

Suppose now that la Iw > 0. K is lalw-strong if and only if for every b E V,, such 
that Ib(w < lalw and for every a, there exists an extender E E V, and ordinals 
17 > max((Y, K) and ?I > i? such that crit(E) = K, 6 > q = str(E), b E V, and 

Ult( V, E) k “2 is Jb liE(W)-StrOng” 

and &(W) 1 V, = W r Vq and for all Y> q, for all c E V,, if 1~1~ < lalw then 

V L “Y is l&-strong” e Ult(u, E) k “Y is lcliE(W)-strong”. 

Some remarks are in order here. If K is Ial,-strong and la’jw S lalw, then K is 

la’l,-strong. If W is a pre-well-ordering of V, and W E L,(V,), where (Y is the 
least admissible ordinal over V,, then W is said to be an admissible pwo. Also the 
above definition involves a pre-well-ordering, rather than a well-ordering, as for 
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any /3 < a there is an admissible pwo W s V, x V, of length /3, while, as L,(V,) 

does not necessarily satisfy choice, the same need not be true of well-orderings. 

Lemma 2.2. Let 6 be a-Woodin and p be the least admissible over V,. Let 

W E Lp(Vs) be a pwo. Then {(K, a) 1 K is [al,-strong} E L,(V,). 

Proof. Let F(a) = {K < 6 ) K is [al,-strong} for a E V,. It is enough to show that 
F E LB(&). Unraveling the definition of F we have 

K E F(a) e K > 6 and for all CY, b E V, with lblw < lalw there are an inacces- 
sible A, E E V,, crit(E) = K, str(E) = n <A < 6, and li- < A with 
max(K, a) <k < r~ and there are j, X, Z in V, such that 
Ult(V,, E) = X, j = iz, Z = j(W), Z 1 V, = W r V,, V, E X, X k i? 

E j(f)(b), where f = F r {x E V, 1 lxlw < lalw}, and for all Y < 77, 
for all c E V,, lclw < lalw implies (Y l f(c)eX k Y l j(f)(c)). 

A quick inspection shows that 

F(a) = {K < 6 1 ~4%~ a, K, F 1 {x E V, 1 lxlw < Iah>)> 

where q is a A, ‘PCvd)-formula, so by xi-Recursion on the well-founded relation W 

in LB(&), F E L,(V,). 

Lemma 2.3. Let 6 be a-Woodin and let W be an admissible pwo of V,. Then for 

any a E V, the set {K < 6 ) K is Ial,-strong} is unbounded in 6. 

Proof. By induction on the ordinal [al,. 

The case when lalw = 0 follows at once from 2.1 so we may assume )al, >O 

and that for all b E V,, lblw < Ial,, the set of Ibl,-strong cardinals is unbounded 
in 6. Then 2.2 implies that A = {(A, b) 1 A is Ibl,-strong and lblw < lalw} E 

LB(Vb) where p is as in 2.2. By 2.1 there are unboundedly many K < 6 such that 
for any a < 6 there exists an extender E E V, such that crit(E) = K, str(E) = r~ 2 
(Y and iE(A) fl V, =A fl V,. We claim that any such K is Ial,-strong. 

Given any lblw < Ial, and aY< 6, choose K > max(cw, K) to be Ibl,-strong. 
Such a FC exists by our inductive hypothesis. Let E E V, be an extender with 
critical point K and strength q > K. Then for Y < ?I and lclw < [al,, c E V,, 

Vk“v is ICI,-strong” @ (Y, c) EA fl V, 

e (v,c)~&(A)nV, 

G Ult(V, E) k “Y is IclihCW)-strong”. 

Thus K is lalw-strong and this is what we had to prove. 0 

The next result is the analogue of the One Step Lemma in [4] (see also 3.4 and 
3.5 in [l]) for cardinals strong in a pwo W. 



Large cardinals and iteration trees 7 

Lemma 2.4. Assume M and N are admissible sets, W E M a pwo of Vy, Z E N a 
pwo of V:, M t7 V,,, = N n V,,, and W 1 V, = Z 1 V,. Suppose K is [al,-strong 
in M, lb 1 w < lalw and LX < 6. Suppose also that for all Y < K, for all c E V, with 

I&V < Ial, 

M F “Y is ICI,-strong” e N L “Y is Ic(,-strong”. 

Then there are E, K and n, crit(E) = K, str(E) = q > max(i?, (u), b E V, such that, 
if &’ = Ult(N, E) is well-founded and 2 = i;(Z), then 

N k “K is (b I,-strong” 

andforallv<K, forallcEV,, lclw<lblw 

M F “Y is ICI,-strong” G N b “v is Jc(i-strong”. 

Proof. Let rT_, n, E as in the definition of K being strong with respect to W, and 

assume N is well-founded. Then &J fl V[;,,, = Ult(M, E) II V,;(,,, and .?? r V;gCK) = 
ig(Z 1 V,) = $(W 1 V,) so Z 1 V, = i;(W) r V,. Let A = {(Y, c) ) Y < K and c E 

V, n M and (Y is (c(,-strong)“}. By 2.2, A EM so i;(A) n ViglcK, = iE(A) n Vi/ibCK). 
Thusforv<Z<i,(K)andceV,,, lclw<lblw, 

M k “Y is Iclw-strong” e (Y, c) E A n V, 

G (v,c)~iE(A)flV~ 

e (v,c)~ig(A)nV, 

e N F “v is Jclz-strong” 

and this is what we had to prove. •i 

3. The construction 

We are now ready to prove Theorem 1.3, namely that every tree ordering T on 

w with an infinite branch can be realized as an iteration tree on V such that 

6, E wfp(M,) f or any branch c. For technical reasons that will be clear in the 

proof of 1.5, we also require that the critical points of the embeddings departing 

from the chosen branch b to be smaller than the critical points of the embeddings 

on b. Let us make this into a definition. 

Definition. Let T be a tree ordering on o, b an infinite branch of T. For 8 c w, 

Y=(T Il+@ ((E,,P,JInEo), (a,1 n E b n 8 ) ) is a b-regular iteration tree 
iff, whenever m, j < 8, m = j* then 

(1) if m 4 b or j + 1 E b, then crit(Ej) = pm; 

(2) if m E b and j + 1 $ b, then crit(Ej) = a, < pm and Vk < m (rank(E,) < om); 

(3) if j + 1 = k* for some k < 8, then there exists an inaccesible cardinal A, 

rank(Ej) < A < crit(n,+,,,+,). 
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Lemma 3.1. If .T is b-regular, then for every infinite branch c of T, S, E wfp(M,). 

Proof. The critical points on each branch are strictly increasing (see Fact (2) after 

the definition of iteration tree) and converge to 6,. Thus 6, E A&. The third 

clause in the definition above ensures that each one of those o many inaccessibles 

is not moved by any embedding on c. Hence n,,J&) = 6, E wfp(M,). Cl 

The next result shows how to construct finite b-regular iteration trees. For the 

sake of readability we will sometimes write S(K, a, W) for “K is (alw-strong”. 

Proposition 3.2. Let 6 be a-Woodin and let a be the least admissible over V,. 
Suppose (T rn+l, ((Ek,pk)Ik<n), (u,Ikennb))~V, is a b-regular 
iteration tree of length II + 1, where T is a tree ordering on w and b an infinite 
branch. Suppose also that W E L,(Q,) is a pwo of V, and that we are given ordinal 
g < 6, a natural number m s 1 and some p, q E V, , with 1 p 1 w 2 jq ( w + m such that 

M,, k Vk <n (S(P,, P, W,) and S(G P, W, for k E b) 

and for every k C n, Y < pk, r E VP, with lrlw < Iplw, 

M, !=S(y, r, K) @ Mk kS(y, r, W,) 

and 

where W, = x&W). Then there are Ei, pi, oj E V6 for n s i < n + m such that 
(T rn+m+l, ((Ek,pk))k<n+m), (oklkebnn+m)) is b-regular, pn> 
E and 

M ,,+,,, k Vk <n + m (S(P~, q, K+,) and S(ok, q, K+,) for k E b) 

andforevery kSn+m, v<pk, Tel/p, with lrlw<Iplw, 

M n+mkS(~, r, W,+,) e Mk !=S(y, r, K) 

and 

Proof. By induction on m, and the case m = 1 is where the heart of the matter 

lies. Thus suppose m = 1. Recall that n* is the immediate T-predecessor of n + 1. 

There are two possibilities. 

Case 1: n* =n. Let A < 6 be the least inaccessible larger than 

max(sup{rank(Ek) 1 k <n}, 5, rank(q)). If n E b pick two ordinals pn > a,, > A 
such that, in M,, p,, and a,, are 141 ,“-strong. If instead n $ b, pick just one ordinal 

p,, >A, (qlWn-strong in M,. This is possible by 2.4. By the definition of 
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Iql,“-strong, there is an extender E, E V, II M, with crit(E,,) = pI1 if IZ + 1 E b, 
crit(E,) = a, otherwise, and strength on + 1 such that, letting M,,, = 
Ult(M,,, E,), for all v G pn, for all r E VP* f~ M,, Irlw, < Iqlwn, 

M,+, LS(v, r, K+J Q M, bS(v, rr W,), 

w,+l r VP_+, = w, 1 VP,> 

and so, in particular, 

M,+i kVk <n + 1 (s(pk, q, W,+J and s(ak, q, K) if k E b). 

Case 2: n* <n. Let A< 6 be as in Case 1. By 3.1 applied to M = M,, and 
N = M,., K = pnf and get E, E V, fl M,, choose E, E V, fl M, with crit(E,) = a,. 
if n* E b and it + 1 $ b; crit(E,,) = pn* otherwise. Let pn + 1 = str(E,) > A be 

I41 wn+,-strong in M,,, . If n E 6, pick also an ordinal a,, Iqlwn+,-strong and such 
that P,, > a, > A. Moreover make sure that for all k G n + 1, v G pn, r E VP, n Mkr 

I&v, < klw, 

Mn,, ks(J’, r, WE+,) e M/c bs(V, r, wk), 

wn+l 1 v,, = wk 1 v,,~ 

and so, in particular, 

M,,,, LVk <n + 1 [S(&, r, W,,,) and S(ok, r, W,,,) if k E b]. 

This completes the proof in the case when m = 1. 
Assume now the result is true for some m s 1 and let us prove it for m + 1. Let 

p’ E V, be such that Iplwn 2 Ip’lwm + m > lqlwn. By inductive hypothesis, our tree 
can be extended up to length IZ + m + 1 using the parameters p and p ’ and then 
arguing as in the case m = 1 with p’ and q we get the full result. q 

We can now prove Theorem 1.3. We will actually prove something stronger. 

Theorem 1.3. Suppose 6 is an a-Woodin cardinal, T a tree ordering on w, b an 
infinite branch of T. Then there are E,,, p,,, a, E V, such that 9 = 

(7’) ((En, PA 1 n E w>, (aI n E b ) ) is a b-regular iteration tree on V and 
6, E wfp(M,) for every branch c. 

Proof. Recall our notational convention: a subset b of o is identified with its 
enumerating function, b = {b(O) < b(1) < - - * }. Consider the tree (in the sense of 
Descriptive Set Theory) of attempts to construct 9 defined as follows: 

(s, t) E 92 e lb(s) = lb(t) = n, s,t E V,, and for k <It, s(k) = ob(k+I), 

t(k) = ((4, pi) 1 b(k) ci<b(k+l)), such that 

(T /@)+I, ((Ek,Pk)Ik<b(fl)), (“b(k+ljIk<n)) 

is a b-regular iteration tree. 
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As usual, we set (s, t) G (s’, t’) iff s 2s’ and t 2 t’. Any infinite branch of % 

yields a b-regular iteration tree as desired and vice versa, so it is enough to show 

that % is ill-founded. Suppose, towards a contradiction, that this is not the case, 

i.e., suppose from now on that % is well-founded. 

As (Q, s) E L,(V,), where a is the least admissible ordinal over V,, there is 

r E L,(V,), r: %!l+ {Y < 8 1 Y = U Y} and such that (s, t) < (s’, t’) implies 

r(s, t) < r(s’, t’). 

Let W E L&V,) be a pre-well-ordering of V, of length 0 + w. The map r will 

now be used together with 2.4 to define an infinite descending sequence in o%, 

(0, 0) = (so, to) > (s17 h) > (s*, t2) ’ . . . ) with lh(s,) = IZ, together with sets p,, E 
V, such that 

(I)n Mb(n) k h < b(n)[%& Pn, Wb(n)) and SC%, Pn, Wb(n)) if m E b], 

and for m < b(n), y G pb(n), 4 E Wp,,nj 

(21, Mb(n) ksty, 4, Wb(n)) e Mm ks(y~ 4, wm)> 

(3), wb(n) 1 v,,p, = wm 1 v,_r 

(4)n for n * l? nO,b(n)(r(Sn-l~ h-d> = hh%,., 

where W, = J-c~~,,(W). 
Choose po, p1 E V, with lpolw = 8+w, Ipllw=8 and so=t,,=O. By Lemma 

3.2 with p,, =p, p1 = q, n = 0 and m = b(1) we get a b-regular tree (T 1 (b(1) + 

I), tl, sl> satisfying (l)~, (2),, (3)1 and (4),. Suppose now s,t,, and p,, have been 

defined so that (l)n, (2),, (3), and (4), hold. Pick pnfl E V, such that 

IP~+~I~,,,,, = ~~.+)(r(~,, t,J). Then (4), and 6 rn) < r(s,-1, 6-i) imply 

lP&w > IPn+Ilw,(“,. By Lemma 3.2 again, using p,, =p, pn+l =q and 5 = 

rank(p,+,) there are s~+~ and tn+l that extend the iteration tree up to length 

b(n + 1) + 1. It is immediate to show that (l)n+l, (2),+1, (3),+1 hold. For (4),+, 

note that 

%,b(n+l)(d~~j h)) = nb(n).b(n+l)(~nO,b(n)(r(Sn, &>I) 

where the last equality holds because every extender in tn+l (and hence the 

embedding nb(n),b(n+l) ) have critical points larger than 5 = rank(p,+,). 

This completes the definition of the infinite descending sequence ((s,, t,) 1 n E 

w ), witnessing that (a, 6) was ill-founded, after all. This is what we had to 

prove. 0 

Theorem 1.3 does not tell us anything about the well-foundedness of the 

various branches of the iteration tree Y. On the other hand the construction of 9 

revolves around the branch b, so it would be natural to expect 3 to be 

continuously ill-founded off b. Note also that we did not make any use of the 

ordinals a,‘~. So far, if anything, they were only a burden. Their presence is 

vindicated, though, in the proof of the next result, Theorem 1.5, where they are 

instrumental in showing continuity of ill-foundedness. Recall the statement of 
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Theorem 1.5. Let 6 be a-Woodin and let T be a tree ordering on CO, b an infinite 
branch of T. Then there are p,,, E, E V,, such that F = (T, ((E,, p,,) 1 n E CO) ) is 
an iteration tree on V, continuously ill-founded off b and 6, E wfp(M,), for any 
infinite branch c. Hence Mh is well-founded, while all the other MC’s are 
ill-founded. 

Proof. As in the proof of 1.3 we will construct a .Y that is actually b-regular. Let 

(a, c) be as in the proof of 1.3. If (s, t) and (s’, t’) are elements of %, we say 

that (s, t) Cl (s’, t’) iff there is n < min(lh(s), Ih(s’)) such that 

(s rn, t rn)=(s’ In, t’ rn) and s(n)<s’(n). 

Similarly for (F, G) and (F’, G’) branches of %, 

(F, G) a (F’, G’) e 3n ((F, G) r n = (F’, G’) 1 n and F(n) <F’(n)). 

So a b-regular iteration tree (T, ((E,, pn) 1 n E w), (o,, 1 n E b)) given by (F, G) 

is 4 than (T, ((EL, p,!J 1 n E w), (ui 1 n E b)) given by (F’, G’) if for some 

mEb, fori<m, jebnm 

Ei = El, pi = PI, a,=~; and a,,,<&,. 

Claim 1. There exists a a-minimal branch (F, G) of (4~. 

Proof of Claim 1. Suppose (F, G) 1 n has been defined so that %[(F, G) 1 n] is 

ill-founded. Choose t = ( (Ei, pi) 1 b(n) <i<b(n+l))EV* and a<6 so that 

‘W(F rn)-(a>, (G In)“fl is ill-founded and o is least such. Set F(n) = u and 

G(n) = t. 
This defines a a-minimal (F, G) as desired and proves Claim 1. 0 

Fix, from now on, a a-minimal branch (F, G) of 52 as of Claim 1. 

Our goal is to show that the iteration tree given by (F, G) is continuously 

ill-founded off b. Hence ordinals y”, for n E w \ 6, must be defined so that if n T m 

then JL,,(YJ 2 Y,,, and if there is n <b(k) < m, then the inequality is strict. The 

yn’s will be ranks of certain well-founded trees defined in terms of 011 and the 

embeddings z,,,. 

Definition. For n E o \ b let 

fi = the largest i such that b(i) < n, 
0 = the largest i such that b(i) Tn. 

See Fig. 1. 

Thus n s ii. Notice that it is enough to define the yn’s for those n E w \b such 

that n < fi: for the remaining n E w \ b set 

yn = sup{y, + 11 (m - l)* = n}. 

So assume from now on that n E w \ b and n < ii. 
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b 

Fig. 1. 

Proof of Claim 2. In order to simplify the notation a bit, let m = b(E) and 

u = a,. By the second clause in the definition of b-regularity, (F, G) r ti E V, and 

as n,,, does not move a, JC~,~ (F, G) 1 ii E V, II M,,,. As crit(n,,,) = pm > o, 

JGO,#‘, ‘3 r fi = ~d,,b(~o,,(~, G) Ifi) = GZ,,,(& G) r ii. 
Hence (F, G) 1 ii E Mm fl V, = M, fl V,, as the two models agree 

This proves Claim 2. 0 

Claim 3. n&F, G) 10 + 1 4 n,,,(F, G) 1 n + 1. 

up to pm > (7. 

Proof of Claim 3. As n s 3, Claim 2 and b-regularity imply that 

~~Tdg,rn(K G) 1 n = JC~,~(F, G) 1 g E V,, where m = b(n) and O= a,,,. Using the fact 

that crit(x,+) = pm > u = F(m) = crit(n,,J, it follows at once that 

n&F(m)) = JL,~o~~,,#(~)) = ~7d,,n(WN) >F(m) 

and 

%,b(F(m)) = %%b ~ah(fYm)) = F(m) 

hence xO,b(F, G) 1 n + 1 a nO,n(F, G) 10 + 1 as required, proving Claim 3. 0 

As (F, G) 1 n + 1 is a-minimal among the pairs (s, t) such that %[(s, t)] is 

ill-founded, the same is true of n&F, G) r 0 + 1 and Ed&%) in M,. Hence in 

M,z, ~“,n(~)[nO,b(F, G) r U + 11 IS well-founded. By Claim 1 and n + 1 s ii, 

M,, 1 n,,+(%)[n”,b(F, G) 1 n + l] is well-founded. 

Definition. For IZ E o \ b such that 0 < ii, let 
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We must now check that the y,,‘s work. Pick 1, n E o \ b, 1 T n and J < i. This 
implies that 0 < fi too, as 0 =J and f < ii. 

Claim 4. JC,,~(JT,,~(F, G) r i) = J-c~,~(F, G) 1 i. 

Proof of Claim 4. Observe that, by Claim 2, JG~,~(F, G) 1 ie VabCij, and that 
crit(n/,,) 2 p, > a,(i), as b(i) < 1. The Claim follows at once. Cl 

We will be done by proving. 

Claim 5. (1) Zf there Ls IZO i such that I< b(i) < n, then n,,,(n) = yn. 
(2) Zf there is an i such that I< b(i) < n, then JC[,~(~]) > yn. 

Proof of Claim 5. By Claim 4, 

Now if case (1) holds, then i = ii, so 7dI,J yr) = y,,. 
If case (2) holds, then i < fi, so JGO,(F, G) r fi a n,,,(F, G) r i, hence 

yn = Il~co.n(~)[~%,@‘, G) r fill1 < Il~o,n(W[+.(~~ G) r illI = +z(n). 

This proves Claim 5 and also Theorem 1.5. Cl 

4. Epilogue 

It is tempting to ask whether the results of Section 3 can be extended into the 
transfinite. In order to formulate this precisely, we must recall what it means for 
an iteration tree to have length A > o. 

Start from a tree ordering T on A with 0 as least element, such that if a, T /3 
then cr < ~3 and if g is a T-limit, then 5 is a limit ordinal. (Hence if we are given a 
tree ordering T on w, one and only one of the branches of T will be extended in 
the transfinite.) We must also have ((E,, pm) 1 a + 1 < A) and transitive models 
(M, 1 a< A), MO = V, such that: 

(1) M, L E, is an extender with strength spa + 1 and the sequence ( pn 1 (Y + 

1 < A) is increasing. 
(2) If (Y is the T-immediate predecessor of /3 + 1, LY = /3*, then 

JLJ?+1. *Ma-, MB+1 = Ult(M,, E,) 

and (Y = the least Y such that crit(EB) =z py. 
(3) MS=lim(M,, 1 vTJ$) if Eis limit. 
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(4) The embeddings n,,p: M, - MB are defined for a TP, in the obvious way, 
so that they commute. 
(See [5] or [l] f or more on iteration trees of transfinite length.) 

Theorem 1.5 then shows every tree ordering on o + 1 can be realized as an 
iteration tree on V. Obviously one a-Woodin is enough to build certain iteration 
trees of transfinite length, e.g. if a< h limit then (Y T CY + n for every IZ. 
Conversely the next result will show that one a-Woodin is not enough, in general, 
to construct an iteration tree of length o + 2. 

Lemma 4.1. Suppose F is an iteration tree of height w + 2, such that 
(1) for some branch b of T cojinal in CD, b # {n E o 1 n T w }, 6, E wfp(M,); 
(2) w* = no< w, i.e., M,,, = Ult(M,,, E,). 

Then there is an a-Woodin cardinal 6 and a measurable K < 6 limit of a-Woodins. 

Proof. Theorem 1.1 and (1) yield immediately that 6, is a-Woodin in M,. As 
(VP,+JMw” = (Vp,+JM-, and pw 3 sup{p, ) n E o} = 6,, 6, is a-Woodin in M,+1 
too. Let K be the critical point of E, = crit(Jd,,,,o+,). Then 

n n,,w+~(K) 2 Po+l ‘PO 3 6,. 

Let A = {Y < K ( Y is a-Woodin}. A E M,, rl M, and M, k “K is measurable”. A 
standard reflection argument shows that A has order type K in M,, hence, 

M, 136 3~ < 6 (6 is a-Woodin and K is measurable and limit of a-Woodins). 

The Lemma follows immediately by elementarity of no,,. 0 

The argument in the above Lemma can be iterated to obtain lower bounds for 
the existence of longer iteration trees. For example, if T is a tree ordering on 
o + w such that 6, E Mb for every branch b confinal in o, and {n I3m ((CO + 
m)* = n} is unbounded in w, then there is an a-Woodin limit of a-Woodins. 

As far as upper bounds go, [l] shows that one Woodin cardinal 6 is enough to 
realize as an iteration tree any tree ordering T on any A < 6, provided T has a 
cofinal branch. Of course the gap between Woodin cardinals and their admissible 
siblings is a large one, but the techniques in this paper seem to be of little help in 
suggesting the right hypothesis on how to build an iteration tree of height say, 
w * 2. 
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