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Abstract. Girsanov’s theorem is a generalization of the Cameron—Martin formula for the deriva-
tive of a measure induced by a translatlon in Wiener space. It states that for y a nonanticipative
Brownian functmnal with [1p1? ds < = a.s. and dP= exp [¢ (p)] dP with E {1} = 1, where ¢(p)
=fodw — L =/ ¢I ds, the translated functions (Tw)(#) = w, — [, ¢ ds are a Wiener process under
P. The Gn'sanov functionals exp [¢ ()] have been used in stochastic control theory to define
measures corresponding to solutions of stochastic DEs with only measurable control laws en-
tering the right-hand sides. The present aim is to show that these same concepts h:.ve direct prac-
tical application to final value problems with bounded control. This is done here Ly an example,
the noisy integrator: Make E{xl }small, subject to dx, = Uy dt +dwy, lul< 1, x, observed. For
each control law there is a definite cost v(1 —¢, x) of starting at x, 7 and using that law till 7 = 1,
expressible as an integral with respect to (a suitable) 3 By restricting attention to a dense set of
smooth laws, usirig It6’s lemma, Kac’s theorem, and the maximum princig le for parabolic equa-
tions, it is possible tn calculate sgn v, fo. a critical class of control laws, then to compare control
laws, *“solve” the Bellman—Hamilton—Jacobi equation, and thus justify selection of the obvious
bang-bang law as optimal.

stochastic control Feynman—Kac integrals
bang-bang principle ahsolute continuity
transformation of measures

1. Introduction

In many problems of optimal stochastic control anyone with a good
physical or engineering intuition can correctly guess an optimal controi
law, but cannot justify his guess mathematically except perhaps by labo-
rious machine calculations on examples, using say dynamic programming.
Our object is to show that the exponential functionals expressing the
derivatives of measures induced by translations in Wiener space provide
a neat setting in which such justifications can be given, without any com-
putations at all.

127


https://core.ac.uk/display/82430426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

128 V.E. Benes, Girsanov functionals and optimal bang-bang laws

The connection between these functionals and stochastiec control is
provided by a seminal theorem of Glrsanov [8)] which generalizes an
earlier formula of Cameron and Martin [4], It states that for ¢ a non-
anticipative Brownian functional with f 1 pi? ds < e a.8,, and
dB = exp [¢(0)] P with { (@)= @dw=1/]@|? ds, E 1 = 1, the translated
functions w, — f§ ¢ ds are a Wiener process under P,This result is used
in stochastic control theory as follows: it is assumed that the controlled
system is described by a differential-functional equation
dx, = f(t,x,u(t, x)) dt + dw,; here f represents the system and u Is a partic-
ular control law; botii f and & are nonanticipa ive with respect to (the
function) x, and 4 need only be measurable, A “solution” of the equa-
tion is provided hy the functions w, under P with (¢, w) =£(t, w, u (1, w)),
in the sense that there is a Wiener process W, such that

t
w, =_{f(s, w, u(s, w)ds+ W, .

No more is claimed for this solution than that it has the right distributions.
This idea has been exploited in stochastic control theory to give existence
proofs for optimal control laws [ 1], counterexamples [6], and Hamilton—
‘Jacobi conditions for optimality [5]. We show that it is also useful for
justifying some natural guesses as to the identity of optimal control laws
in final value problems with bounded control; indeed we solve a class of
problems of this type, using only inequalities and the maximum prin-
ciple.!

In order to simplify preseniation and to expound the methods at their
barest, we limit principal attention to an example: the noisy controlled
integrator depicted in Fig. 1; natural extensions to othar cases are dis-
cussed in a final section; their full extent is not yet known. In our ex-
ample f(s, x, u) = u and the equation to be solved is dx,=u(¢,x,)dt +dw,.
The feedback loop contains the control law, which depends only on the
current value x, and is restricted to a value between — 1 and + 1. The con-
trol problem is to pick a law u : [0,1] X R - [—1, 1] so as to make the
expected output x; of the integrator at time 1 small. Now it is “physi-
cally obvious” that the solution to this problem is to push X, in the nega-
tive direction if it is positive, and in the positive direction if it is negative.
That is, anyone’s obvious guess is that the best u (s, x) should be the
bang-bang law —sgn x. The interesting mathematical problem is to show
that this guess is indeed right.

We mean here the maximum principle for parabolic operators, not the maximum principle of
Pontrjagin used in control theory.
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INTEGRATOR
dw
ult,xg)dt %y OBSERVED
CONTROL LAW
ult,) jul s 1

Fig. 1. Linear control of noisy integrator; dx, = u(t, x,) d¢ + dW.

2. Formulation

Let k£ (x) be a positive even function, increasing in x > 0, that mea-
sures the cost of having the integrator assume the value x at the final
time 1. Let the class s{ of admissible control laws consist of all func-
tionsu:[0,1] X R = [—1, 1] such that u is jointly measurable. Con-
sider the problem of choosing a control law & € # so as to minimize
Ju] =E{k(x;)}subject to dx, =u(t, x,) dt + dw,. The question at once
arises, in what sense is the equation intended to hold? For the ordinary
theory of It6 stochastic differential equations is not applicable here be-
cause ¥ is not known to be Lip. However, the problem can be formulated
adequately and then solved provided we accept soluticns, or rather solu-
tion measures, obtained from Girsanov’s theorem as in the introdnhction.

To proceed, we define foreachu € o , x € Rand s € [0, 1] a “solu-
tion’’ starting at x at time s and using control law «. Let w be a Wiener
process. To solve x; = x, dx,=u(t,x,) dt + dW,, take the functions

X, =x+tw,_ g, t2s520,

under the measure
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dP= exp [§X(T, w)] dP, T.u@,*)=u(@x+-),

t t
= exp [- [u@w,x+w ddw —1 [ w2, x+w__)dv|dP.
L.s[ |/ hendt\ v - ‘s] v—o J
We remark that both the solution functions and the measure depend on
(s, x), as they should. Accordin to Girsanov’s result, the process

t
Wt=wt_’s—fu(v,x+w )dv
s

v—°

is a Wiener process under P,and dx, = u(t, x;)dt + dW, in the sense that

t
xt=x+fu(v, x)dv+W,.
8

3. Representation of the cost

The cost (function) in Markovian stochastic control problems is the
expected cost as a function of starting place ané starting time, for a
particular control law. It is convenient to use the notation g(-, ) syste-
matically for the “turned-around” control law g(1 —v, x) = u(v, x),

0 v< 1. Bysettingr=1,7=1-—5 = *“time to go”’, and changing vari-
ables a bit, we can write the cost function for the control law u as

v(r, x) = E{k(x,) 1 x,_, =x}

k(x+w_)exp [fg(rmv,x-l-wv)dwv- 1 fgz(rmv,x+wv)dv]‘
0 0

=E

/

= E,{k(x+ w,)exp[E](r, T, g)]

y T8, )=g,x+"),

:Fhis is an explicit representation; the eventual cost, starting from s = 0,
is thgn J[u] = u{l1, x). Our method will be to compare v’s corresponding
to different control laws, and so prove that u(t, x) = —sgnx achieves

inf J[v) .

ve A
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4. Preliminary results

Kac [9] has given what amounts to a PDE for expectations of the form
r ]
(1, x)=E {c(x +w_)exp [f Vir—v,x+w) dv]j ,
0

namely: y(0, x) = c(x), ¥, =% vxx + 7V. This equation is valid under a
wide range of weak conditions [3]. For our purposes it will suffice to
prove it when ¢ € C2 is of exponential type and V € C2 is at most linear
in its second argument. Under these conditions v is C! in 7 and C2 in x.
This can be proved by first using the scaling w,, > 7!/2 w(v/7) in the ex-
pectation so that the E integration is only over a Wiener process defined
over [0, 1], and then using absolute convergence of differentiated inte-
grands to justify successive differentiations under E. Then we argue that

Y(r+6,x)=E {C(AC+WT+5 ~_w5+w6)

l

7+8
X exp [f Vir+b—vx+w, —wg+w.)dn
6

§
+ [ Vr+s-v, x+wu)dv]}
0

= E{y(r, x + wy)}+ 8v(r, x) V(1,x) + 0(8)

=y(1, x) + E{v, (1, x) w;} + 4 E{,, (1. ) w3} + 8yV +0()

and Kac’s formula follows.
The cost function can be related to Kac’s integral with

V(s x) =~ G, — (g, +8),

c(x) = k(x) exp [G(0, x)],
where

%
G(s, x) =f g(s, z)dz.
0
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A similar idea was used by L.A. Shepp and the author [2]. By 1t6’s dif-
ferential formula, forg € st N C3,

T x+wu a
G(0, x+w_) — G(, x) =f f 5 8 —v,2)dz dv
0 0

+fg('r v, x+w,)dw_ + 3} fgz dv .

f—
x+w

It follows that with V as above

v(7, x) = exp [— G(7, x)]
XE {k(x+wf) exp [G(0,x+w )] exp [ f Vr—ux+w) dv] } .
0

By Kac’s formula, the expectation above satisfies
¢(0,x) = k(x) exp [G(0,x)]), ¢, = 3¥x, t Vio. From this we see incidentally
‘that v(0, x) = k(x), v, = Jv,, +gv,; this is precisely the equation satisfied
by E{k(xy) 1x,_, =x} when X, is given by the stochastic DE

=g(1—t, x,)dt + dw,, x,_, = x, and g is smooth, say with bounded
first partials.

Lemma 4.1. If k(x) = O(explklxi]) and g € A N C with sup (Iggl +1g, 1) < =
then .

v(t, x) = OC(exp [(k+2)IxI1])
uniformly forr € [0,11].

Proof. 1G(s, x)| £ I x1, 50 {(r, T,.g) < 2lx1+ |w,| + const.

Lemma 4.2. With k € C2 and of exponential type, and g € A N C? with
sup (Ig| + 1g,1) < oo, the gradient v, has the form
)l

x+w

E(r, x) = E{k'(x+wT) exp [5'5(7. 4R f g,

Proof. Set
n(r, x) = &(7, x) exp [G(7, x)]
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n has the form of Kac’s integral with c(x) = k'(x) exp [G(0, x)] and
V(s, x) = — G, + §(g, — g2), so it satisfies
n(0, x) = k'(x) exp [G(0, x)] ,

T =%nxx - n[G., —‘%gx +%g2] .
Hence £ satisfies
£(0, x) =k'(x)

T =%Exx+g£x+£gx .

This is precisely the equation satisfied by v, if v satisfies v(0, x) = k(x),
v, = 3V, *+8v,. (Just differentiate.) Thus v, = £, because an argument
similar to Lemma 4.1 shows that £ is of exponential type, and the uni-
queness theorem for parabolic operators applies.

The value of this representation will be that the sign of k' becomes
relevant to that of v,.

Lemma 4.3. J{u] is continuous in the L, topology of 4 .

Proof. Fix x and put A, = exp [§§(Tyuy)] —exp[§§(Ty u,)] for
Uy, uy €4 . From k(x) = O(exp [kIx1]) and Schwarz’s inequality, we
find

VJlu,] —Jlu, 11 S E{k(x +w1)IA1I}S NE{xk(xwl)SNlAll}
+const E{X .., 5 -1j0g eXPIKLe+W 1T 1A FSNE{IA, 17}

+2 const - sup {EV2{ g2¥) E‘/z{exp[2xlx+wll} Xlxx+xw,|>logN}}}'
ue ’

The sup in the second term is finite by an argument of Girsanov [8]. The
second E in the second term goes to 0 as N - o, So it is enough to show
that E{| 4,12} > 0 as | u; — u, |l does the same. To this end note that by

the c,-inequality,

t t
A, = [explei(T,u)] T, (u,—u) dw, + [ T, u,A dw E{IA )
0 0

o t t
< 2E{‘({ expl2§5(T, 1) T, (u, -—u2)2 ds}+29f.E{lAs!2}ds.
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Also,
4 1
E{fo(ul——uz)2 ds}S U]+f) E{T,(u,—u,)?}ds
Q 0 n
T -2
S@m=2 | | expl-w2s1s7 2 T (uy —u,)" ds dw
0 =~
+(2an)~ 2 Nuy —u,l .
Since I T, u) — Tyl = luy —u,ll, we can pick first # so small and

awm Il s a: Il o qera n fer T V21 & £ (anifnrmly
then | Uy — u2H so small that EU 0 ‘x\“l_“Z’ IS € \unhumu, m .a, in

fact, although this is not needed). The desired result now follows from
Gronwall’s lemma, because

sup E { f exp14§0(u)] ds}

uesd

5. The sgn of the gradient

In this section we calculate sgnv, for control laws that are smooth in
t, x and odd in x. Knowing sgn v, makes it possible to use the maximum
principle to compare such control laws to others.

Lemma 5.1. If k€ C2 N even, and g€ sl N C3 N odd in x, then

vx|x=0 =0.

Proof. This follows from the even and odd properties of k and g, respec-
tively, along with the fact that —w is a Wiener process. We have, by 1t6’s
lemma,

= E{exp[fa(r, T.2)] { K'Ge--w)+ k(x+w) [g(O, x+w)—g(r, )

~f86. ey w1 o400, 0]
2=l+w '-x"‘w

{expli' (7, T,g)l {k (x+w)
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tk(x+w) fgz(s Z)|gepy LW, —g(T—v, x+w )] dv]}

Z"JH-W

= E{p(7, x, w)}.

Since g(s, x) = —g(s, - - x), g,(5,.x) = g,(s, z)l,__,» we find that

T

,
§ (r, T.8), fg('r—v, —x-w)dw, - 3 fgz('r—v,——x—-ws)ds
0 0

§(7'T

‘P(T, x’ W) = - ‘P(T; '—x’ - W) ’
and since —w has the same distribution as w,
E{*P(Ta X, W)} = - E{‘P(T, —X, - W)}= - E{‘P(T, — X, W)} )

E{p(7, 0, w)} = — E{p(7, 0, w)} = 0.

Lemma 5.2. Suppose that the assumptions of Lemma 5.1 are satisfied,
and that in addition k'(x) 2 0 inx 2 0. Then

sgnv, = sgnx.

Proof. We already know that v, = 0 at x = 0, from Lemma 5.1. For
x > 0, consider the stopping time s = inf v: w, = —x and the decompo-
sition, from Lemma 4.2,

E{xs exp[{o('r, T.g)+ f gzl: v div}

+W

)

x+w

X E{k (x+w +w, w)exp[{”('r T g)+fgu

b dv] K(x+w )l .

x4+w

+E {xm[exp tor, T,g)+ f g,

Since w, —w 1s a ““fresh” Brownian motion independent of o {w,, v < s},
and
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the conditional expectation above is independent of the first two factors
when 7 is given and can be replaced by v, (r—s, 0) = 0. The second term
is nonnegative because k'(x +w,) 2 0if 7 < 5. A similar argument, or one
based on odd symmetry, shows that v, SO0furx<0.

5. Comparison of control laws

To smooth con*rol laws from «f , which are defined only on [0, 1] X R,
we shall extend them to R2 by equating them to O when s ¢ [0, 1]. For
functions f: R2 - [—1, 1], we shall use the smoothings f - S, f defined
by

_ 1
NN =73 Cf f(y+v)dv,

where C = square of side 25 centered on the origin in R2. (S;)"f belongs

to o if f does, approaches fin L, as § - 0, and has boundr i nth partials.
We now show that given any control law f € of there is another law

u € gl , as good as f to within €, and within ¢ in norm of our natural

guess candidate o (s, x) = —sgn x.

Lemma6.l.feod .e>0= Jue A, lu—-cl<eand

Ju) <Jifl+e.

Proof. Choose & by Lemma 4.3 so that I(S;)4f— £l is so small that
TS 1 ST f1+1e.
Letnowu, h €5 be C4 functions such that (see Fig. 2),
h=u%(S, )*f,
u(s,z)=—sgnz, 12126,
u(s, 2)= —u(s, —2),
u(s,2)<0 forz>0,,

sup (lugl+ lu 1) < oo .
¥4
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3

Fig. 2. Section of functions A, u? and (Sa)4f at a fixed time.

It is clear that 8 can be further reduced, if necessary, <o that both

lu—ol<e,

Jlh] SJIS,) 1 +4e.
Note that# 2 u inz = 0 and & < u in z < 0. Define the parabolic oper-
ator L{g] by

X8 3 9
=1 . .
Lig] i3 8 X) 55— 52

so that with §(r, x) =J, . [u], n(7, x) = Jnx [h]),
Liu}¢=0, Lihln=0.
By Lemma 5.2, sgn , = sgnx, so that
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hsgnx 2 usgnx,
Llul =18, +uk, — &
=3¢, tusgnxlg i~ &

SyE  +hsgnlg |-k =LihlE.
Therefore
Lihim—§)=—L[n §< - L[ulE=0.

It follows from Lemma 4.1 that n — £ is of exponential type. The maxi-
mum principle for parabolic operators (see e.g. [9, p. 43]) then gives
n—§20,ie.,J, ,[h]12J, ,[ul It follows that

Jul STRi<J[f]+e.
Theorem 6.2. The control law u(s, x) = — sgn x achieves

inf fo [vl forany r,x<€[0,1] X R.
vesA '

Proof. Take ¢ > 0 and v €« . By Lemmas 4.3 and 6.1, there is a law
g € ol such that

Jigl $Jv] +1e,

| J[g] —JIull<1le

so that J{u] < J[v] +e. Since € is arbitrary, the theorem follows.

7. Extensions

If the drift term of the equation to be solved is f(z, x, u(t, x)) dt
rather than merely u(#, x) dt, we can still proce2d so long as the odd and
domination properties used above are valid. In provingv, | _ =0in

Lemma 5.1, only the evenness of k, and the oddness of u# in x were used.
Clearly, if
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f(tt X, u) = —f(t! —X, _u) 3 (7.])

then f(¢, x, u(¢, x)) will be odd in x if u(t, x) is, and the same arguments
can be used. To get the inequality needed for applying the maximum
principle, it is convenient to take f monotone in the control in the sense
that increasing the magnitude of control increases the drift in the return
direction, i.e.,

x20,usv=f(t,x,u)=f(t,x,v). (7.2)

With assumptions (7.1) and (7.2) on f it again follows that the best con-
trol law is —sgn x. Note that there is no assumption that f(¢, x, u) < 0
for x > 0; thus f may not even be pushing the right way; the important
thing is that it be more right for a larger control than for a smaller. (7.1)
and (7.2) are met, e.g., if f(¢, x, u) =a(t, x) + b(¢tyu with & > 0 and

a(t, x) = —a(t, —x).

Moreover, it is easily seen that the assumption (7.2) can be dropped
at the expense of losing the simple form —sgn x for an optimal law,-and
incurring other minor complications. One simply proves that if «; is odd
ir x and satisfies

£t x, u (8, X)) S, x, 1), %), x20,
> <

then u, is no worse than u,. Setting

U(t,x) ={u€ [—1,1]: u minimizes (¢, x, u)}, x20,

Ut x)={u € [-1,1}: u maximizes f(t, x,u)}, x=<0,

it follows that any u(+,+) € o with u(¢, x) € U(¢, x) is optimal. Note
that here U(¢, x) = — U(t. — x), so that U(¢, 0) = —U(z, 0) = 0, and the
definitions are consistent at x = 0.

Generalizations to integral criteria, to n dimensions, and to measures
other than Wiener’s are all possible. Since these are either quite straight-
forward, or else involve wholly new principles, they are not pursued
here.
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