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Abstract

An interval doublingis a constructive operation which applies on a pdsend an interval of P
and constructs a new “bigger” poset= P[I] by replacing inP the intervall with its direct product
with the two-element lattice. The main contribution of this paper is to prove that Goiteter lattices
areboundedi.e., that they can be constructed starting with the two-element lattice by a finite series
of interval doublings.

The boundedness of finite Coxeter latticagstithens their algebraic propertysgEmidistributiv-
ity. It also brings to light a relation between the interval doubling construction anefleetionsof
Coxeter groups.

Our approach to the question is somewhat indirect. We first define a new¢fdssf lattices
and prove that every lattice G{H is bounded. We then show that Coxeter lattices ar& and
the theorem follows. Another result says that, given a Coxeter lattjgeand a parabolic subgroup
Wy of the finite Coxeter groupV, we can construcE y starting fromWy by a series of interval
doublings. For instance thattice, associated with,;, of all the permutations on + 1 elements is
obtained fromA,,_1 by a series of interval doublings. Thensa holds for the lattices associated with
the other infinite families of Coxeter groups,, D, and I>(n).
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1. Introduction

In 1984, Bjtrner proved that the weak order defined on a finite Coxeter group is a lattice.
Since then, Bjorner and authors like Wachs [3,4] and Le Conte de Poly-Barbut[18,19] have
studied this family of groups and associatattices and proved a number of properties,
among which the pseudocomplementation and the semidistributivity [18]. Here we show
that finite Coxeter lattices are bounded, which allows a new and constructive understanding
of these objects.

Section 2 presents the notionsadublingand ofcontractingoperations applied on a
poset, notions which define the so-callealinded latticesln Section 3 we define a new
class of lattices, denoted ByH. A lattice is inHH if it is finite, semidistributive and if
it satisfies some given additional properties. We then prove that all the lattiGés(aire
bounded, i.e., that they can be constructed starting from the two-element lattice by a finite
series ofinterval doublings

Section 4 gives the preliminary notions and results on finite Coxeter groups and
associated lattices, which allow us to prove that all finite Coxeter lattices &t@irmnd,
therefore, that they are bounded. Given a Coxeter laftigeand a parabolic subgroup
Wy of the finite Coxeter group, it is possible to construdty from Wy by a series of
interval doublings.

Throughout the paper, all considered structures are assumedfitatbeeven though
not explicitly mentioned.

All basic notions on graphs, posets and lattices are assumed to be known. We just
recall that an element of a lattice L is join-irreducible (respectivelymeet-irreduciblg
if it cannot be obtained as the join (respectively the meet) of elements distinct
from j (respectively fromm). Equivalently, an elemenj (respectivelym) of L is
a non-zero (respectively non-unit) join-irreducible (respectively meet-irreducible) if it
covers (respectively is coved by) a unique element ih, which is then denoted by~
(respectivelyn™). The set of non-zero join-irreducibles bfis denoted by/;, or simply J
and the set of its non-unit meet-irreduciblesMy or simply M.

A lattice L is semidistributiveif for all elementsx, y,z € L, x A y = x A z implies
xAy=xA(yvz),andxVvy=xVzimpliesx vy=uxV (yAz).Insuch a latticd.,
there exists a bijection between the sétsof join-irreducibles ofL and the setM; of
its meet-irreducibles (Geyer, 1994). This bijection associatesda/; (respectively to
m € Mp) the unique meet-irreducible (respectively unique join-irreduciblg such that
j€m,j~ <mandj <m".Note thatin [21] and, more generally, in ttreory of concept
analysis an ordered paitj, m) satisfying these three conditions is said to belong to the
double-arrow relationwhich is denoted by ¢ m (in [6] the expression of this bijection
is given in the case of the semidistributive Permutohedron, which is a particular Coxeter
lattice).

Notation. In the following and for any semidistributive lattidg m ; € M;, will denote the
bijective image of the join-irreduciblg in the relationg, and duallyj,, € J; will denote
the bijective image of the meet-irreducibiein 3.
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For the definitions about lattices not recalled here, we refer the reader to the literature,
especially to the books by Barbut and Monjardet [1], Birkhoff [2] or Davey and Priestley
[10]. For more details on the arrow relation, see [21] and [15].

2. Thedoubling and the contracting constructions and the class of bounded lattices

The definition of a bounded lattice uses the notionirdérval doubling a simple
construction introduced by Day to give a simple solution to the word problem in free
lattices [11]. This operation assigns to a pogetand an intervall of P a new poset
P’ = P[I] by “doubling” in P the intervall, i.e., by replacingl in P with its direct
product by the two-element lattice (Fig. 1). We recall thadenotes the disjoint set union.

Definition 1 (The doubling constructignLet (P, <) be a posetanfiC P an interval ofP.
We denote by3 = ({0, 1}, <) the two-element lattice where© 1. The posef’ defined
onthe se{P — I) + (I x B) is denoted by’ = P[I] and is given by the following order:

x',y'e P—Tandx' <y, or

, x'eP—1, y =yiel xBandx’

y, or
<y &

y/, or

x'=xielxB,y=yjelxB, x<yandi <jinB.

VAN

x'=xiel xB, yyeP—1Iandx

This construction has found a number of apations in the study of finite lattices, free
lattices and varieties. It has also been extended to the doublingafvexset (a subsef
of a setX is said to beconvexif for all x andy in C such thatx < y, [x, y] € C)—see
[14] and [15] for some developments on this subject. It is easy to check that the join and
the meet operations are preserved by the convex doubling operation. Thisaflattice,
the resultP’ of the doubling ofC in P is also a lattice. In the paper, we will exclusively
considerinterval doublings applied ofattices

Notation. For a latticeL, an intervall of L and L’ = L[], the elements of the direct
product intervall’ = I x B are partitioned in two isomorphic intervals = I x {0} and

; ' the interval I . o
R — 00—

The lattice L The lattice L’ = L[I]

Fig. 1. An interval doubling constructing the lattiéé from the latticeZ and the interval C L.
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Iy = I x {1}. An elementx of I will generate the two element® € Ip andx1 € I; with
x0 < x1 (where< denotes the cover relation associated to the order relatid. of

Moreover every join-irreducible of. as well as the least element dfeach induce
exactly one join-irreducible aof’ (and dually for meet-irreducible elements and the greatest
element off). So the following lemma is a direct consequence of Definition 1.

Lemmal. LetL be alattice[a,b]=1 C L aninterval ofL andL’ = L[I]. The following
holds

(1) IL') =L+ 1].

(2 J ={j: jeJN(L—-D}+{j0: jeJNI}+{al}and|J|=|J|+ 1.

QR M ={meM:meL—1}+{mlimeMnI}+{b0}and|M'| = M|+ 1.
(4) al? bO.

(5) Forany; € J' with j #aland anym € M’ withm # b0, j ¥ bOandal § m.

So the doubling of the intervdl creates exactly one new join-irreducibtelj and one
new meet-irreduciblebQ) in the latticeL’. For instance in Fig. 1,Jr| = 5 with Jp =
{B,C,D,F,H}and|My| =6 with My, ={B, E, G, H, U, K}. After the doubling of the
intervalI = [D, K1, we obtain the latticd.” = L[I] with J' = {B, C, F, DO, HO} + {D1}
andwithM' ={B, E,U,G1, H1, K1} + {K0}. At last, D1 andK 0 satisfyD1 $ K0 and
point (5) of Lemma 1 is also verified.

The result below is implicitly proved in [13].

Lemma 2. Semidistributivity is closed under interval doubling.

Definition 2 [12]. A lattice L is bounded if either L is the one-element lattice or if
there exists a sequende= L,,...,L;,...,L,_1,L, = L of lattices and a sequence
Ii,.... I, ..., I,_1 such thatl; is an interval ofL; andL; 1 = L;[I;], for everyi < p.

A lattice is bounded if it can be obtained starting from the two-element lagitgy
a finite sequence of interval doublings. Day and authors like Wille, Ganter and Geyer
for instance, have provided a number of Heson these lattices and on relative lattices.
Figure 2 gives an example of the construction of a bounded lattice.

A proof of the following result is provided in [15].

Proposition 1. Any bounded lattice isesnidistributive.

Since a boundedftice is a lattice which can be constructed starting firoy a finite
sequence of interval doublings, such a latticegigiealently charactézable by the fact that
it can be “discontructed” untiB by an iteration of the operation “opposite” of the interval

1 The original definition of a bounded lattice was introduced by McKenzie [20] in term$ofiaded lattice
homomorphismA few years later, Day proved that these lattices were characterized by means of the interval
doubling as given in Definition 2.
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L1=I1 L2=L1[I1] L3=L2[12] L4=L3[13]

Fig. 2. A series of 3 interval doublings, starting with the two-element latficall lattices L1 to L4 are bounded.

doubling. We will call this operation aimterval contraction We first need to define the
notion ofgluing conditions

Definition 3. Let I be an interval of a latticé., with I equal to the direct product of an
interval Ip by B. We denote byi; the intervall — Ip, isomorphic with/y. We say that/
satisfies th@gluing conditionsf the two following conditions are verified:

(D) Vv, x1,x0) e (L— 1) xI1 x Ip (y <x1=y <x0).
(2) V(z,x1,x0)e (L —Ip) x I1 x Ip (z > x0=z > x1).

The following result directly derivesom the definition of an interval doubling.

Proposition 2. If L’ = L[I] is the lattice obtained by the doubling of the intervah the
lattice L and if I’ = I x B, then!’ satisfies the gluing conditions.

We now define the notion afontractible interval

Definition 4. Let L be a lattice and C L an interval ofL. We say that/ is contractible
(in L) if L can be obtained from a lattidey by the doubling of an intervaly C Lo (with
I =1y x B).

From now on, we shall always denote By and /1 the two isomorphic intervals
constituting the contractible interval(with the convention thafy is the “lower” interval
and /1 the “upper” one, and thatis replaced by in the contraction).

Definition 5. Let L be a lattice and C L a contractible interval of.. We callcontraction
of L (w.rt. I) the operation constructing the “smaller” lattiég by replacingl with I
in L. The contraction of an interval is the converse operation of the interval doubling.

We have seen in Lemma 2 that the interval doubling preserves the semidistributivity.
The interval contraction has obviously the same property.
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The contraction of I = Io

A contractible interval I of L Lo = the contraction of L by I

Fig. 3. The contraction of the contractible intervabf a lattice L.

Lemma 3. Semidistributivity is closed under interval contraction.

3. Theclass H'H of lattices

In this section, we define the clagsH of lattices ({H stands forHat and antiHat)
and show that all lattices of{H are bounded. In Section 4, we will then prove that
Cayley lattices associated with finite Coxeter groups are bounded by showing that they
are particular lattices df{’H.

We have to set the following definitions:

Definition 6. Let P be a poset and, y,z € P. We say that the tripl€y, x, z) is a hat
(respectively aranti-hal) if y #z, y < x andz < x (respectively ify #z, x <y and
x <p z). Ahatis denoted byy, x, z)* and an anti-hat byy, x, z).

Definition 7. Let L be a lattice and, y € L satisfyingx < y. The intervall = [x, y]
is a 2facetof L if it contains only two paths that intersect only inandy (i.e., if the
diagram of! is a polygon such that there exists two distinct upper covemndx, of x
with y = x1 V x2). Such a 2-facet will be denoted I#y, . ., and is clearly defined by the
anti-hat(x1, x, x2)..

Itis clear that in any 2-facdt, y] there exists two distinct lower coveps andy; of y
such thatt = y1 A y2, so a 2-facet can equivalently be defined by this property. It is then
defined by a haty1, y, y2)* and will be denoted by">1-Y-2 (note thatr; andy; are not
necessarily distinct, as well as andyy).

Definition 8. Let L be a lattice. Letx, y) be an arc ofL such that there existse L with
(x,vy,z) ahat and witx A z, y] a 2-facet. We then denote lgy’, x A z, ') the associated
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y=x1Vx2

yl
y2

x2
x1

x=ylAy2

Fig. 4. An example of a 2-facefy; x x, = F¥1YY2,

anti-hat (withx” < x andz’ < z). AlabellingT = {11, 12, .. ., 1,} of the arcs of the covering
relation of L is called a 2facet labellingif it satisfies the following property:

If ¢ labels(x, y) and if ' labels(z, y) thenz labels(x A z, z') andt’ labels(x A z, x7).
In these conditions, we note Az, z') <; (x, y) and(x Az, x") <y (z,y). Foranyr € T,

<, isabinary relation defined on the arcs of the covering relatidnarid which is acyclic.
We denote by, its reflexo-transitive closure which is then an order.

Remark. For convenience reasons, we will always talk ababelling of the arcsof a
lattice L rather than alabelling of the arcs of the covering relatiaf L.

Definition 9. For any 2-facet labelling” of a lattice L, a functionr from 7 to N is a
2-facet rank functiorof L if it satisfies the following properties on every 2-fadgt  »,

Fig. 5. An example of a 2-facet labelling on a lattice.
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Fig. 6.7(t1), r(te) <r(t2), r(ts) < r(13), r(14); r(ty), r(t3) < r(ty) (k1 = 6 andkp = 3).

of L (with 1,12, ..., 1, the labels of the edges of one of the shortest paths framp to
y=x1Vxzandt] =1, 1, ..., 4, =t the labels of the edges of the other shortest path
from x up toy): for k € {k1, k2},

r(ty), r(te) <r(t2),r(ti—1) < - <r(tgs1/2-1), F et /2+0) <rtesy,2) if kis odd

r(ty), r(ty) <r(t2), r(tk—1) < --- <r(tgj2—1),r(tej242) <r(txs2), r(txj2+1) if kis even

Definition 10. A lattice L is in the class{H if L is finite, semidistributive and if it satisfies
the following three conditions:

(1) To every haty, x, z)" of L is associated a unique anti-h@at, y A z, z’)v of L such
that[y A z, x] is a 2-facet (withy’ < y andz’ < z).

(2) To every anti-haty, x, z), of L is associated a unique hat, y v z, z/)" of L such
that[x, y v z] is a 2-facet (withy < y" andz < 7).

(3) There exists a 2-facet labellifgon L and a 2-facet rank functionon T'.

Theorem 1. Letm be meet-irreducible il € HH. If (m,m™) is labelled by, the set
En={(x,y): (x,y) < (m,mT)} is not empty and has a least elemémntv). Moreover,
v is ajoin-irreducibley™ =u andv $ m.

Proof. Let (u, v) be a minimal element of,,,. If v is not join-irreducible there existsin

L with z <; v andz # u. The triple ¢, v, z) is then a hat and has an associated anti-hat
(', u A z,7")y with u’ <u andz’ < z, and such thatu A z, Z’) is labelled byr. Therefore

(u A z,7) <¢ (u,v) and(u, v) is not minimal inE,,, a contradiction. Now since is join-
irreducible,u = v~ and sov™ <, m, v <g mt andv £ m, which impliesv ¢ m. At
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last, sinceL is semidistributivep is the unique join-irreducible satisfying$ m and so
(u, v) = (v, v) is the unique minimal element &,,. O

This theorem naturally leads to an algorithm defined on a laftieceH+ and which
computes, for a given meet-irreducible of L, the unique join-irreduciblg satisfying
j ¢ m. This algorithm starts with an are:, m™) and constructs, when it exists, a 2-facet
whose hat has the forim, m™, )" for somez € L. We then iterate the process with the
arc opposite from(m, m™) in the 2-facet. The algorithm stops when the considered arc
(x, y) does not belong to a hat. Then by constructiers a join-irreducible satisfying
y ¢ m and, by semidistributivity of., y = j,, and does not depend on the choice of the
2-facets at each step of the algorithm.

This algorithm is directly generalizable into an algorithm which takes argarg) of
the covering relation of. which is labelled by and computes the unique ordered pair
(j,mj) suchthai(j~, j) < (x, y) <¢ (m;, m7).

The existence of a 2-facet rank function on the lattice${@{ implies the following
lemma (take any 2-facet labellirfg of L and any labet € T with maximum rank):

Lemmad. LetL € HH andT a2-facetlabelling ofL. There exists a labele T such that
for any hat(y, x, z)" whose ard(y, x) or (z, x) is labelled byr, F¥-*:% is a diamond.

N.B.: The case where a label with maximum rank labels an edge which does not belong
to any hat or anti-hat clearly allows the contraction of this edge, seen as a contractible
interval. In the following we omit this trivial case.

For anyL € HH and any 2-facet labellin@ of L, we denote byF; the set of all the
2-facets of L whose hat and anti-hat have one edge labelled &yr'. By Theorem 1,

Fig. 7. The algorithm.



80 N. Caspard et al. / Advances in Applied Mathematics 33 (2004) 71-94

| F: is a non-empty union of intervals, each with the fqrjm, m;“] (forsomej € J;, and
m;j € My with j $m;). '

Lemma5. Let L € HH, j € Jr, m; its bijective meet-irreducible andthe label of the
arcs(j—, jand(m;, m +) If the 2-facets generated by our algorithm applied@a;, m +)
(i.e., those in;j—, +] havmg one edge labelled by are all isomorphic with dlamonds
the intervall; ,, = [j~, ;r] is contractible.

Proof. To prove that/; ,,; is contractible, we have to show thit,; = [, m;] x B and
that the gluing condmons hold on it.

To prove that/;, m; =i~ mj]x B, we start by showing that the labelinduces an
order isomorphism between the interv@ifs , m;] and [/, m]] Consider a patho <
X1 <---<x; <---<xp fromxg=j~ to x, =m;. All elementsx; clearly belong to
the interval[j*, mj]. If we notex; = j, the triple (x1, xo, xg) is an anti-hat with the arc
(x0, xp) labelled by and, thereforeFxé is a diamond and the aro, x7)—with
x} = xg Vv x1—is labelled byr.

Forany 1<i < p, let us denote by the join ofx; andx;_;. Everyx; is an element of
the interval j, m;.r] and, by the argument given above, all atcs x;) are labelled by. So
the label “associates” to every; of [j~, m ] the element; of [, m; 1. Dually, it is clear
thats “associates” to every elemenf of [, mj] the element; of [] ,m;]. The label
t thus describes a bijection between the elements of the intgryvalsz ;1 and[, m'}']
which is moreover an order isomorphism. Indegdk x; 1 in [j~, m;] is equivalent to
x; < xjqin[j, m;“] since every tupléx;, x; 11, x;, x; ;) forms a diamond by hypothesis,
W|th xi < x] andx; 1 < x’ 1 To prove thatl; ,,; = [j~,m;] x B, we still have to show
that the onIy edges eX|st|ng between an elemeritjof ;] and an element ofj, m+]
are exactly those labelled bythat go from an element to its bijective imagex’. Slnce
the proof of that point uses the gluing conditions we first prove that these conditions are
satisfied o, .

Let x’ be an element o[j,m;.r] and x its bijective image in[j~,m ;] (SOx < x’).
Assume that the gluing conditions do not hold, i.e., for instance that there exists an
elementz of L — [, m+] such that <; x” andz £, x. There existgg andy’ satisfying

z<z0<y <x' with zo ¢ [j,m[] andy’ € [j,m}]. The triple(zo, y', y) is a hat whose
arc(y, y') isr-labelled byr. Therefore the mtervdb A zo, ¥']is a diamond (by hypothesis
on ) with the arc(zg A vy, zo) labelled byzr, which implies that the ar¢zo A y, zo) € F;.
Since(y, y’) is an arc that belongs to a 2-facet included jm, m;“], so doegy A zo, 20)
and, thereforegg € [, m]] a contradiction. '

We prove that/; ,,; is isomorphic to the direct produpﬁ m;jlxB.Letxe[j™, mj]
andx’ its image in[/, m]] Assume there existg’ € [/, m; 1 with y' # x” andx < y'.

By the gluing conditions, we have’ < y’. Now x < x’ < y’ implies thatx £ y/, a
contradiction.

»X0,X1
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Assume now that there exist$ € [j,m ] such thaty’ < x. Sincey’ € [j,m ] there
existsy € [j~,mj] such thaty < y’, soy < y" < x with x,y € [ 7, m;]. This implies
¥y €[j~,m;], acontradiction. O

Theorem 2. The class{H of lattices is closed for the contraction of a contractible interval
w.r.t. a label whose-facet rank function is maximal.

Proof. Since the interval contraction preserves semidistributivity, we check that condi-
tions (1) and (3) of Definition 10 are alsogserved (condition (2) is dual from condi-
tion (1)).

Let L € HH, I acontractible interval of. andL” the lattice obtained by the contraction
of I = Ip+ I1 in L. We prove that any haty, x, z)"* of L” has been generated by a hat
of L, so the interval contraction iK' does not generate any hat. Five cases may occur:

(1) x,y,z ¢ Ip: then(y, x, z)" was already a hat df.

(2) x,y,z € Io: then(y, x,z)" is the result of the contraction of the hat®, xo, z0)"
in Ip and (y1, x1,z1)” in I1. Sincex’ =y Az € I, (y/,x',7Z')y is the result of the
contraction of(yg, xg, z5)" and(yy, x3,z7)".

(3) x € Ip andy, z ¢ Ip: theny andz were elements of andx has been generated by the
contraction ofxg € Iy andx1 € I1. Sincex’ ¢ Ip, (¥, x’, z’)v was already an anti-hat
of L.

(4) x,y € Ip andz ¢ Ip: thenz was an element of andx andy have been generated by
the contraction ok andx; for x andyg andy; for y.

(5) x,y ¢ Ip andz € Ip: thenx andy were elements of andz has been generated by the
contraction ofzg andzs.

Note. The casex ¢ Ip andy, z € Ip does not exist sinck is an interval.

Thus the origin of every hat of” is well defined. The determination of the anti-hat
associated with a hat df” follows the same argumenrasd is left to the reader.

Finally the interval contraction does not generate any new hat or anti-hat and
conditions (1) and (2) hold. The existence of a 2-facet labelling and of a 2-facet rank
function is trivially closed under interval caaction when the 2-facet rank function of the
concerned label is maximal, so condition (3) also holds.

We get the announced result:

Corollary 1. Every lattice ofHH is bounded.

We end this section with an additional property of these lattices given in Proposition 3.

Definition 11. Let L € HH and <4 the binary relation defined ofy;, x Mp)? by:

(J'smjr) <g (Gomy)
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Fig. 8. A bounded lattice that does not belong-a1.

if the fact that the intervdlj —, m;“] is contractible implies thdtj'—, m;S] has already been
contracted. '

The binary relation< is well defined (indeed by the construction of any interval
[j—,m;.r] described in our algorithm, it is easy to point out the payr’sm’j) that have
to be “contracted” before; it suffices to ase the non diamond generated 2-facets and
to compute the pairgj’, m’,,) whose contraction transforthese 2-facets into diamonds).
Since the lattices o+ are bounded, there necessarilystx a linear extension ok,
that corresponds with the order of contraction of all the pgirs: ;) of the lattice (chosen
among all possible orders of contractions of these pairs). This impliesthabntains no
cycle and so its reflexo-transitive closure is an order relatioVgnx M;)2.

Consider now the associated lattifeof all ideals of the poset(J; x M1)?, <4). By
a well-known Birkhoff’s result,7 is distributive and, by definition ok4, the elements
of 7 are all the contracted latgs that can be reached fratndown to 5. Moreover all
the series of interval doublings that lead fr@hto L are exactly given by all the maximal
paths of7". Hence the proposition below.

Proposition 3. Let L be a lattice ofHH. The set of all the lattices that can be obtained
from L by a series of interval contractions is a distributive lattice when ordered by the
following natural order relation L < L’ if L can be obtained froni’ by a series of interval
contractions.

Note at last that the lattice of Fig. 8 proves ti#k{ is strictly contained in the class of
bounded lattices.

4. On Coxeter lattices

4.1. Preliminaries

In this part of the section, we prove that the class of Coxeter lattices is includét(in
which directly implies that Coxeter lattices are bounded. To do so, we recall and propose
some definitions and results on these lattices. For more details, the standard references for
Coxeter groups are the books by Bourbaki [5] and by Humphreys [17].
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Definition 12. A group W is aCoxeter groupf W has a set of generatofsc W, subject
only to relations of the form

(SS/)m(s,s’) —

wherem (s, s) = 1 for anys in S (all generators have order 2), amds, s") = m(s’,s) > 2
fors s’ in S. The pair{W, S} is called aCoxeter system

Ithas been shownin [14] that the class of bounded lattices is closed under direct product.
Therefore to prove that Coxeter lattices are bounded, we will only deal with the case of
irreducible finite Coxeter groups (i.e., those which can not be decomposed as the direct
product of two Coxeter groups).

We recall that theight (respectivelyeft) Cayley graprassociated with a groujy and a
setS of generators oW is the graph whose vertices are the elemen# @nd where there
is an edge fromw to w’ if there existss € § such thatw’ = ws (respectivelyw’ = sw).
Several partial order relations can be defined on Coxeter groups. Among thernghthe
(respectivelyteft) weak ordeiis the transitive closure of the right (respectively left) Cayley
graph directed with respect to the increasing length, so starting from the neutral etkement
The right and the left weak orders are trivially isomorphic, so and unless explicitly said
otherwise, we will always use thigght weak order throughout the paper. When no possible
confusion may arise, we will simply denote it by,

Any Coxeter group has a remarkable subset of elements which are callefldistions
of the group (this denomination is due to the strong properties of these objects in the
geometrical interpretation of Coxeter groups).

Definition 13. The elements of the s&fty = {r € W: ds € §,3w € W such thatr =
wsw™1} are called thereflectionsof the Coxeter group¥. These elements are the
conjugates of the generatorsWfand thus have order 2.

There exists two useful labellings of the edges of the Cayley graph of a Coxeter group.
The first one labels each edge with a generator: the gdge’} with w’ = ws is labelled
with s and we talk aboug-labelling. The other interesting labelling uses reflections: the
edge{w, w'} with w’ = ws is labelled with the reflection= wsw1. Soifw = Siq iy -+ - Siy
is a reduced expression of the edgdw, w'} is labelled byt = s;, i, . .. 8i, $8i, - . . SipSi; =
wsw~1 and we then talk aboutlabelling. We will show that the set of all the reflections
of a Coxeter grougV constitute a 2-facet labelling (Proposition 7) and that the length
function ¢ applied on the-labelling of the edges of the Cayley graphWfis a 2-facet
rank function (Theorem 5).

The result below is easily shown by a simple computation of the expression of the
reflections, 12, ..., f,—1, t, by the generators, s2, ..., s,—1, S.

Lemma6. Letw = s152...5, € W with W a Coxeter group. Let, 1o, . . ., t be the reflec-
tions labelling the arcde, s1), (s1,5152), ..., (5152...8-—-1, 5152 ...5-—18,) respectively.
The following holds



84 N. Caspard et al. / Advances in Applied Mathematics 33 (2004) 71-94

(1) w=s182...5 =trtr—1...0211.
(2) Foreveryi <r,s; =tit2...titi—1...t211.

The following proposition directly derives from a result by [5].

Proposition 4. Let W be a Coxeter groupp € W and consider in the Cayley graph &f
oriented by the right weak order, a shortest path betweand w. The reflections € T

that label the arcs of this path are all distinct and do not depend on the path but only on
the elementv. We shall denote the set of these reflectiong by

Remark. A classical corollary of this result is that any two elementandw’ of W satisfy
w < w' ifand only if T, € T,,,. Moreover the set,, can equivalently be defined as the set
of all the reflections such that(rw) < ¢(w).

Corollary 2. If wo denotes the unique element of maximal length in a Coxeter gioup
thenT,, is equal to the seT of all reflections ofW. The number of the reflections of a
Coxeter group is then equal to the lengthuaf.

Theorem 3 (Bjorner).The weak order defined on a finite Coxeter group is a lattice, which
moreover is self-dual.

This result generalizes a Guilbaud and Rosenstiehl’s result for the permutations lattice
[16].

From now on, any lattice defined on a finite Coxeter gréiifpy the right weak order
will simply be called aCoxeter latticeand will be denoted by .

We recall that thdeft (respectivelyright) translationof w € W by w’ € W is the
elementw’w (respectivelyww’) of W. The notion of translation of an element can
naturally be extended to the notion of translation of a et W as follows: the left
translation ofX by an element’ € W is equal to the setw’x: x € X}.

Now if we define a functior/ on W2 by d(w, w’) = £(w~1w’), thend is a distance
relation on the elements d¥. Indeedd(w, w) = £(e) = 0 and the symmetry and the
triangle inequality conditions are known to be satisfied.

Proposition 5. The distance defined orW?2 by d(w, w’) = £(w~1w’) is invariant for the
left translation by any element of the group.

Proof. Let d(w,w’) be the distance between and w’ in W and considern € W.
d(aw,aw’) = L(w la taw) = t(wlw) =dw,w). O

The following assertions are classical and their proof is given in [3,4] and [5].
Lemma 7.

(1) The left translation on a Coxeter group preserves the distance ang kaeelling.
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(2) Any interval[w, w'] with w < w’ is order isomorphic with the intervale, w™1w’]
obtained as the left translation ¢#, w’] by w1,

(3) Two edges labelled by the same reflecti@me transformed by left translation hy in
two edges labelled with the same reflectioa: wrw =1 (the left translation permutes
the reflections of the groQp

Proposition 4 and Lemma 7 together lead to the following property:

Lemma 8. A chain between two elements of the Cayley graph of a Coxeter gvoigoa
shortest chain between these two elements if and only if the reflections labelling its edges
are all distinct.

We recall the definition of @arabolic subgroup

Definition 14. For a Coxeter systeffiv, S} and any subsdi of S, the parabolic subgroup
Wy is the subgroup oW generated by the elements Gt

The groupWy is also a Coxeter group, which is always an interval for the right weak
order. Moreover ifH = {s1, s2} (i.e., if |H| = 2), the Cayley graph oWy is a polygon
with 2m(s1, s2) elements and as many edges.

4.2. Coxeter lattices are bounded
One of the authors has proved the following important result:
Theorem 4 (LCPB). All (finite) Coxeter lattices are semidistributive.

Let Ly be a Coxeter lattice andvs1, w, ws2) an anti-hat ofLy (with s1, s2 € S). Let
Max= ws1 V wsz and consider the intervdl = [w, Max]. By Lemma 7.7 is isomorphic
with the intervalw =17 = [wlw, w™IMax] = [e, w—IMax] = [e, s1 V s2], which is the
parabolic subgroup o generated by1 andsz. So the intervall is a 2n(s1, s2)-sided
polygonal graph and, since the left translation preserveg-hbelling, the edges of are
alternatively labelled by; andss,.

Proposition 6. Every intervalZ of Ly with the formZ = [w, ws1 V ws2] wheres1, s2 € S
and where(ws1, w, ws2)y IS an anti-hat ofLy is a 2-facet of Ly . Moreover a2-facet of
Ly is always the left translation of a parabolic subgroupg®igenerated by two generators
(the converse is almost truthe left translation of a parabolic subgroup @& generated
by two generators by an elememntof the group is always @-facet Fyy, x xs,, DUt where
X # w in genera).

If we call k-facetany interval with the formiw, ws1 vV wsa V- - - vV wsy ] (where thaws;’s
are all upper covers ab) then ak-facet is always &eft cosetof W;, s,....s, Whichis order
isomorphic withWy, , .. s, . This isomorphism preserves tpdabelling.
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Fig. 9. Two “opposite” edges of a 2-facet are labelled by the same reflection.

The following result is particularly important since it implies that thiabelling of the
edges of a Coxeter lattice is a 2-facet labelling.

Proposition 7. Two “opposité edges of &-facet of a Coxeter lattice are labelled by the
same reflection.

Proof. Let Fy;.. s be the 2-facet generated ks, w, ws’)y, Max its maximum
element and assume thats, s') = p. This implies thatF, ,, . has 2 edges. Let us
denote bye, ez, ..., e, the edges of one of the two paths Bf; ., s going up from
w to Max, ande,y1,ep42, ..., ez, the edges of the other path going down frofax
to w. Letr; be the reflection labelling the edge of Fy ., ws. Consider now the edge
e(i+p) mod 2 (i.€., the opposite edge ef in F, ,, .,s) which is labelled by the reflection
ti+p) mod 2» = t. Without loss of generality, assume that

ti=w ss's...s's wL
—————

2i—1 generators

So
/ ! ool -1
r=w §s's...s5885s w .
R
2i—1+42p generators
Therefore
tit=w ss's...s's wlw ss's...s'ss’s wl=wss's...s’swl=wew l=e¢
— —_— —
2i—1 generators 2i—1+42p generators 2p generators

andy;, =¢. O
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Corollary 3. For every Coxeter groufV, ther-labelling on the edges dfy is a 2-facet
labelling.

We recall the definition and a characterization ¢éfa quotientof a Coxeter system.

Definition 15. For everyH C S, theleft quotientw of the Coxeter groupV is the set
WH ={weW: £(sw) > £(w) for anys € H}.

Theright quotientof a Coxeter group associated with a subdetf S is defined dually.
We will deal only withleft quotients and will simply call themuotients

Proposition 8. For everyH € S, w e W if and only if for anys € H, s # win Ly .

The following result is a consequence of the properties of the length function in Coxeter
groups.

Corollary 4. If F is ak-facet of a Coxeter grou, generated byH C S, the following
conditions are equivalent

(1) w=minF.
2) wltewt,

Lets; andsz be two distinct generators of the Coxeter grovipThe parabolic subgroup
Wisy.5,1 @nd the quotient 1:52} will simply be written Wy, 5, and W*1+2 respectively.
The proof of the following result can be found in [17].

Proposition 9. Let {W, S} be a Coxeter system ardy its associated lattice. For every
w € W and all sy, s € S, there exists a unique ordered pdir, v) € W, 5, x W*1*2 such
thatw = uv. Moreoveré(w) = £(u) + £(v).

Proposition 10 (Bjorner).For a finite Coxeter systefi, S} and every subsei € S, W#
is an interval.

Propositions 9 and 10 together imply the corollary below.

Corollary 5. The set of all: W12 with u € W;, 5, constitute a partition of the elements
of W into order isomorphic intervals and every se*1-2 with u € Wy, 5, will then be
called aclassof the partition. Given two classedV*1*2 andvW*1-52 (with u, v € Wy, s,)
the isomorphism associatesie € u W*-*2 the elementx € vW*1-*2, This isomorphism
preserves thg-labelling.

Lemma 9. ConsiderH c S,u € Wy, w=uv e uW ands € S.

(1) The three following conditions are equivalent
(@) ws ¢uwh,
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(b) vs ¢ WH,
(c) s’ € H,vs =s'v.
(2) The arcs(w, ws) and (u, us’) are labelled by the same reflection.

Proof. (1) (a) and (b) are trivially equivalent and the equivalence between (b) and (c) is
proved in Bourbaki [5]. (2) Sincesv™! =s', we findr =uvsv ut=us'u=t=¢. O

Lemma 9 induces the corollary below:

Corollary 6. Letu € Wy, 4,. The classtW*1-52 has exactly two “adjacent” classes, that is
to say classe€ such that there exist € uW*52 andw’ € C satisfyingw’ = ws for some
s € §. These two adjacent classes arg W*1-*2 and uso W51:52,

Every shortest path between two elementsu W*1-52 andw” € u” W*1-52 (withu, u” €
W;,.s») SUCCessively goes once and only once through the class8s™*2, usqso W* 92,
us1s2s1 W52 | us1s2s1...s; W52 (with s1s2s1. . .s; a shortest path from to u”).

N e’

u”

Theorem 5 (LCPB). For every Coxeter latticd y, the length functiort is a 2-facet rank
function when defined on threlabelling of the edges af .

Proof. Let Fus,,w,ws, D€ & 2-facet. We nota, ..., 4, ..., t, the reflections labelling the
edges of one of the two paths going framup tows1 Vv ws2 (so the edges of the second
path fromw up towss Vv wsy arer-labelled byr,, ..., #, ..., 11 in this order). We give the

proofin the case whene (s1, s2) is odd. The even case would be treated similarly.

If m(s1,s2) =¢q =2p + 1 we only have to show thdi;) < ¢(tj+1), E(t[H) for every
i < p. The other requested inequalitiee &hen immediate by Proposition 7.

The distance between two elements is preserved by left translation (Proposition 5) so
for everyi < g, £(t;) =d(e, t;) is equal tod (w1, w1z).

Fig. 10. Corollary 6.
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Now for everyi < g,

uflti = wilw $182...81 wil = §152...52851 wil.
N — ———’
2i—1 generators 2i—1 generators

To prove that’(s;) < £(t;+1), £(¢]

i1 foreveryi < p, we first consider the element

X; = WS152...51852 w1
——

2i generators

and its converse element

xfl =W S25]...5251 w1
———

2i generators

that we define foi < p. We know that two converse elements of a Coxeter group have
the same length sé(x;) = E(xfl). Thus if we show that(s;) < £(x;) < £(t;+1) and
o) < é(xl._l) < £(t}, ) foreveryi < p, the result will directly follow.

Since

L(x;) =d(e, x;) = d(w_l, w_lxi) = d(w_l, §152 .. .5152 w_l),
—_—

2i generators

our aim is to prove that

d(ufl, $152...5251 ufl) < d(wil, $152...5152 ufl) < d(wil, $152...85251 ufl)
— — —

2i—1 generators 2i generators 2i+1 generators
(the inequalities

d(w_l, §2851 . ..5152 w_l) < d(w_l, §2851 .. .8251 w_l) < d(w_l, 52851 . ..85152 w_l)
S——r S— S—

2i—1 generators 2i generators 2i+1 generators

are obtained by duality).

Since w1 € W52 (by Corollary 4) thenw 1 = sqw™1 € s1Ws52, =1 =
s15281w L € 515051 WiL52 andw’ltp e wlw/' W2 with wlw’ = maxWs, s,.

By Proposition 9w =1t = u;v with u; € Wy, 5,, v € W2 ande(w=14) = £(u;) +£(v)
(note that?(v) does not depend ai).

We prove thatf(t;) < £(x;) for everyi < p. Indeedu; has a unique reduced
decomposition using; andsz, which starts either witly; or with so. In other words if
u; = s1s2...51, every shortest path fron=! to w=1 will go only through copies of
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W5t52 with the formsasz . .. s; W*L42 (indeed by Lemma 8, every path framm! to w1
going successively through

SoWSL2 goqq WEL52 go 5o WILS2
—_——
u;

will have at least two distinct arcs labelled by the same reflection, and will not be a shortest
path).
Now if C is a shortest path fromv~1 to w=1x;, C can be written

Iy /
C = I1s112s, .. .59 1241,

with s7 labelling the unique edge af going from W*1*2 to sy W*1-*2, s labelling the
unique edge ofC going from sy W*1-°2 to s15,W*1-%2, 55 labelling the unique edge of
C going from s1soW*1*2 t0 s1s5051 W¥152 | etc. FromC we deduce the path’ =
1151 Ipsyy . . Iz 155,112 Ipi 11 (Obtained fromC by removingss,) that goes fromw~—1 to
w~17; and which is shorter (of exactly one unit) than Every shortest path from—1 to
w1t will be shorter tharC’ so it will also be shorter than a shortest path fram! to
w™Lx;, which impliest(t;) < €(x;).

The same arguments applied enand 1 prove thaté(x;) < £(t;+1). We would
also prove that way that()) < £(x; ') < €(t/,;) and since(x;) = £(x; 1), we have the
theorem. O

By Theorem 4 together with Propositions 6 and 7, we deduce the announced result:
Theorem 6. Every Coxeter lattice is in the claggH and therefore is bounded.

4.3. The contraction of a given Coxeter lattice into the lattice of any of its parabolic
subgroups

We begin with a useful result:

Proposition 11. The following are satisfied for any parabolic subgroip; of a Coxeter
groupw.

(1) For every left translatioru W of W# (with u € Wy), the setT*"" of all the
reflections labelling an edge of the clas®” is equal to the set’"" of all the
reflections labelling an edge ¥ 7.

(2) The setTy of all the reflections o#¥ is partitioned in two classeshe classTy,, of

all the reflections labelling an edge 8fy and7"".

Proof. (1) If we notewy andw?’! the greatest elements 8fy andW*# respectively, then
wo = maxW is the greatest element afy W (indeed¢(wyw’) = ¢(wgy) + £(w'),
which is the greatest length for an elementW). Consider the elemenbyssi with
wys € Wy andwpyssy ¢ Wy. We have(wysst V wy) e wgWH = {x e W: wy < x},
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= H
Wo=WgW

Fig. 11. Proposition 11.

S0 MaxFy,, wys.wyss, DElONGS towy WH . Moreover the ar€wys, wy) and its opposite
arcinFy, wys,wyss, are labelled by the same reflectiarSince(wgss1 vV wg) € wy wH
there exists an arcr, y) of Fy, wys,wyssy» distinct from(wys, wy), that leads up from
wysWH to wy WH. This arc(x, y) and (wys, wy) are the only arcs oFy,; wys.wysst
that go fromwysW# to wy W (otherwise Fy, wys.wyss; Would not be a 2-facet).
Clearly (x, y) is the opposite arc ofwgs, wy) iN Fyy wys,wyss; SiNce otherwise there
would exist two distinct arcs with the samelabel on a shortest path frompys to
maXFwH,st,stsl-

Now (wgs, wy) and(x, y) have the same-labelr and the iteration of these arguments
on the anti-haty, x, xs"), with xs’ € wysWH andx < xs’ constructs another 2-facet with
the same properties. We prove that the last possible iteration of this operation constructs a
2-facet whose greatest elementig. If the last anti-hat that appears in this construction
is (w1, wa, w3)y With wy € wy WH andw,, wz € wys W, the opposite arc ofw;, wi)
in the generated 2-facét is (wysw’, wo). Indeed ifwy sw is not covered bywg there
exists a new anti-hatw’, w), w3), that generates a 2-facet following the same rules. In
every constructed 2-facet any pair of edges which belong to a copy/ofind that “face”
each other (i.e., that are isomorphic in the sense of Corollary 5) have thegskahbels.

In the whole progression of thesef@ets the corresponding paths frang s to wysw?
and fromwy to wyw’ have the same-labellings/ss. . .s;, with s;s5...s) = wf. Thus

if (x,y) denotes the opposite arc @by, w1) and if x = wysw? theny = wyw = wo.
The left translation ofwys, wol by (wys)™ = swy is the isomorphic—for the order
and theg-labelling—intervalle, sw’]. Since(wysw, we) exists, so doesw?, sw)
and it follows that the intervalwgs, wg] contains exactly the elements of the union of
[wgs, wgsw] and[wg, wrwo].

Consider at last an ar@, v) of Wy and the intervalu, vw®]. To prove that the arc
(uwf  vwt) exists, we translatg:, vw* ] on the left byu—1 and find[e, sw ] for some
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s € H. Since(w!, sw') exists, so doesuw’, vw). Finally the greatest elements of
the copies ofW# together form an interval isomorphic withz;, and this isomorphism
preserves the-labelling. Now letz = uw® and consider a reduced decompositior of
such that: is a prefix of this decomposition. L&l; denote the corresponding path and
C> be another shortest path franio z, admittingw’ as a prefix. The arcs afin C; are
labelled by some reflections @y, and the arcs of1 from u to z are labelled by some
reflections distinct from the previous ones (sifi¢eis a shortest path). We have seen that
the arcs ofC, from w? to z are labelled by the-labels ofu. It follows that the set of
r-labels of the arcs of’; from u to z is equal to the set of-labels of the arcs of' 2 from
e to w? . Finally the set of--labels of every copy of the quotiefit” is equal to the set
TW" of the reflections labelling an edge Bf’ .

(2) By point (1) together with the fact thaty = wyw!. O

We want to show that, for any Coxeter lattitg, and any parabolic subgrowy of W,
it is possible to “contract” all the double-arrows associated with all the reflections of the
quotientw | before contracting any double-arrow associated with the reflectiofig,of
More precisely, we will see that for every copy W, the contractions relative to the
reflections ofr " agglutinate all the elements of this copy on its least element, which is
the corresponding element &f;. Moreover the edges labelled by a reflectiorfaf, —
i.e., the edges joining two adjacent copiesiof —will be identified by contraction with
the corresponding edges Wiy .

Theorem 7. Let Ly be a Coxeter lattice an@y a parabolic subgroup oW. There exists
a series of interval contractions that lead fromy to the lattice Ly, of its parabolic
subgroupWy.

Proof. Lett be a reflection o V" whose length is maximal i"" . Let (v, x, z), be
an anti-hat whose ar@, y) is labelled byr and belongs to a copyW ! (with u € Wy) of
WH i.e., suchthat,y e uW". Two cases may occur:

(1) The arc(x, z) belongs tax W the whole anti-hat is in the intervalW . So the
maximum elemeny Vv z of the generated 2-facet, , . is also inuW# and F, ., is
contained intW# . Sincer has maximum length inW#, F, , . is a diamond (Theorem5).

(2) The arc(x, z) does not belong ta W : thenz belongs to the copysW# of wW#
for somes € H satisfying¢(us) = £(u) + 1. Sincey andz are least than or equal to
maxus W | so is their joiny v z. Now y v z € usW#: indeed if (x', y v z) denotes the
opposite edge ofx, z) in F , ., then we know thatx’, y v z) is labelled by the same
reflection ofTy,, as(x, z), which implies thatx’, y v z) goes fromuW# tousWH (T,
andT"" are disjoint). All the edges of the 2-facet, exceptforz) and(x’, y v z), are in
copies of W# and, since has maximum length iV F, x ; is a diamond.

In both cases the generated 2-facet is a diamond and the opposite €dgg)dé also
in a copy of W!. Therefore we can iterate the application of the above arguments on the
opposite edge ofx, y), which is also labelled by. It finally follows that the reflection
“constructs” only diamonds so we can start by contracting relatively to this reflection. The
lattice obtained after contraction is #H and, the presented arguments holding for any
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lattice of HH, we can repeat the operation on the remaining part of the copiés’af
When all interval contractions have been made relatively to the reflectiobig’afthe
remaining lattice is isomorphic witWy and the theorem follows. O

This result proves the existence, for instance, of a series of interval contractions leading
from the latticeL 4, associated witlt,, to L4, ,. The same holds within every of the three
other infinite families of finite Coxeter group&3,),>2, (Dn)n>4 and(l2(n)),>3 and for
the isolated finite Coxeter groug%, E7 and Eg on the one hand, anH3 and H4 on the
other hand. In terms of doublings, this gives:

Proposition 12. There exists a particular interval doubling series from a given Coxeter
lattice generated byt generators to the Coxeter lattice of the same family, generated by
n + 1 generators.

Moreover, sinced,, is a parabolic subgroup d@,1 and D11, these two lattices can
be obtained from,, by a series of interval doublings.

5. Concluding remarks

The geometrical aspect of Coxeter groups has not been treated here. Let us yet point
out that finite Coxeter groups arenotopesgi.e., polytopes witteoneg9]) in which every
zone corresponds to a reflection. The elerm@fthe group, that constitute the vertices of
the zonotope, are ordered as a latticartgtg from the neutral element).

The contraction relatively to a reflection of the lattice can be seen as the deletion of
the zone of the zonotope, associated to thecéfin, and the obtained zonotope is still a
lattice. Itis interesting to add that the main result of this paper finds expression in terms of
zonotope as follows:

Theorem 8. A zonotope, associated to a finite Coxaferup and oriented as a lattice from
the neutral element, is transformed by sucoessbntractions of the successive reflections
(w.r.t. their decreasing lengjhinto a family of zonotopes that are still lattices.

More precisely, to every Coxeter latticey is associated dines arrangemenbf
reflections, where every element & is represented by a-Biconvexsubset of this
arrangement. A reflection of a Coxeter latticeLy has maximal length if and only
if ¢ is never theend of a line (except from the lines with only two reflections) in the
lines arrangement associatedltey . So the contraction associated to such a reflection in
Lw corresponds to the deletion ofin the lines arrangement. Moreover the new lines
arrangement obtained by deletingorresponds to the contracted lattice. This process can
be iterated by deleting in the new lines arrangement a reflection which is never the end of
a line. The properties of these lines arrangements are studied in [8].

Also, in 1992, Geyer used some tools of concept analysis to prove that the &ttice
of binary bracketings on + 1 symbols—also calle@amari lattice—is bounded for every
n > 0. We can use the clagg’H to rediscover this result by proving that &I} belong
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to HH [7]. So the clas${H generalizes Coxeter lattices, Tamari lattices and distributive
lattices and we are therefore very interesie these lattices, defined by combinatorial
conditions and admitti strong properties. We have also produced a bounded lattice that
does not belong t@{H, which leads us to raise the qties of a characterization of all
bounded lattices not i H.
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