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Abstract

An interval doublingis a constructive operation which applies on a posetP and an intervalI of P

and constructs a new “bigger” posetP ′ = P [I ] by replacing inP the intervalI with its direct product
with the two-element lattice. The main contribution of this paper is to prove that finiteCoxeter lattices
arebounded, i.e., that they can be constructed starting with the two-element lattice by a finite
of interval doublings.

The boundedness of finite Coxeter lattices strengthens their algebraic property ofsemidistributiv-
ity. It also brings to light a relation between the interval doubling construction and thereflectionsof
Coxeter groups.

Our approach to the question is somewhat indirect. We first define a new classHH of lattices
and prove that every lattice ofHH is bounded. We then show that Coxeter lattices are inHH and
the theorem follows. Another result says that, given a Coxeter latticeLW and a parabolic subgrou
WH of the finite Coxeter groupW , we can constructLW starting fromWH by a series of interva
doublings. For instance the lattice, associated withAn, of all the permutations onn + 1 elements is
obtained fromAn−1 by a series of interval doublings. The same holds for the lattices associated w
the other infinite families of Coxeter groupsBn, Dn andI2(n).
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1. Introduction

In 1984, Björner proved that the weak order defined on a finite Coxeter group is a l
Since then, Björner and authors like Wachs [3,4] and Le Conte de Poly-Barbut [18,19
studied this family of groups and associatedlattices and proved a number of properti
among which the pseudocomplementation and the semidistributivity [18]. Here we
that finite Coxeter lattices are bounded, which allows a new and constructive underst
of these objects.

Section 2 presents the notions ofdoublingand ofcontractingoperations applied on
poset, notions which define the so-calledbounded lattices. In Section 3 we define a ne
class of lattices, denoted byHH. A lattice is inHH if it is finite, semidistributive and if
it satisfies some given additional properties. We then prove that all the lattices ofHH are
bounded, i.e., that they can be constructed starting from the two-element lattice by
series ofinterval doublings.

Section 4 gives the preliminary notions and results on finite Coxeter groups
associated lattices, which allow us to prove that all finite Coxeter lattices are inHH and,
therefore, that they are bounded. Given a Coxeter latticeLW and a parabolic subgrou
WH of the finite Coxeter groupW , it is possible to constructLW from WH by a series of
interval doublings.

Throughout the paper, all considered structures are assumed to befinite, even though
not explicitly mentioned.

All basic notions on graphs, posets and lattices are assumed to be known. W
recall that an elementj of a latticeL is join-irreducible (respectivelymeet-irreducible)
if it cannot be obtained as the join (respectively the meet) of elements ofL distinct
from j (respectively fromm). Equivalently, an elementj (respectivelym) of L is
a non-zero (respectively non-unit) join-irreducible (respectively meet-irreducible)
covers (respectively is covered by) a unique element inL, which is then denoted byj−
(respectivelym+). The set of non-zero join-irreducibles ofL is denoted byJL or simplyJ

and the set of its non-unit meet-irreducibles byML or simplyM.
A lattice L is semidistributiveif for all elementsx, y, z ∈ L, x ∧ y = x ∧ z implies

x ∧ y = x ∧ (y ∨ z), andx ∨ y = x ∨ z impliesx ∨ y = x ∨ (y ∧ z). In such a latticeL,
there exists a bijection between the setsJL of join-irreducibles ofL and the setML of
its meet-irreducibles (Geyer, 1994). This bijection associates toj ∈ JL (respectively to
m ∈ ML) the unique meet-irreduciblem (respectively unique join-irreduciblej ) such that
j � m, j− � m andj � m+. Note that in [21] and, more generally, in thetheory of concep
analysis, an ordered pair(j,m) satisfying these three conditions is said to belong to
double-arrow relation, which is denoted byj � m (in [6] the expression of this bijectio
is given in the case of the semidistributive Permutohedron, which is a particular Co
lattice).

Notation. In the following and for any semidistributive latticeL, mj ∈ ML will denote the
bijective image of the join-irreduciblej in the relation�, and duallyjm ∈ JL will denote
the bijective image of the meet-irreduciblem in �.
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For the definitions about lattices not recalled here, we refer the reader to the lite
especially to the books by Barbut and Monjardet [1], Birkhoff [2] or Davey and Prie
[10]. For more details on the arrow relation, see [21] and [15].

2. The doubling and the contracting constructions and the class of bounded lattices

The definition of a bounded lattice uses the notion ofinterval doubling, a simple
construction introduced by Day to give a simple solution to the word problem in
lattices [11]. This operation assigns to a posetP and an intervalI of P a new pose
P ′ = P [I ] by “doubling” in P the intervalI , i.e., by replacingI in P with its direct
product by the two-element lattice (Fig. 1). We recall that+ denotes the disjoint set unio

Definition 1 (The doubling construction).Let (P,�) be a poset andI ⊆ P an interval ofP .
We denote byB = ({0,1},�) the two-element lattice where 0< 1. The posetP ′ defined
on the set(P − I) + (I ×B) is denoted byP ′ = P [I ] and is given by the following order

x ′ �′ y ′ ⇔




x ′, y ′ ∈ P − I andx ′ � y ′, or

x ′ ∈ P − I, y ′ = yi ∈ I ×B andx ′ � y, or

x ′ = xi ∈ I × B, y ′ ∈ P − I andx � y ′, or

x ′ = xi ∈ I × B, y ′ = yj ∈ I ×B, x � y andi � j in B.

This construction has found a number of applications in the study of finite lattices, fre
lattices and varieties. It has also been extended to the doubling of aconvexset (a subsetC
of a setX is said to beconvexif for all x andy in C such thatx � y, [x, y] ⊆ C)—see
[14] and [15] for some developments on this subject. It is easy to check that the jo
the meet operations are preserved by the convex doubling operation. Thus ifP is a lattice,
the resultP ′ of the doubling ofC in P is also a lattice. In the paper, we will exclusive
considerintervaldoublings applied onlattices.

Notation. For a latticeL, an intervalI of L andL′ = L[I ], the elements of the direc
product intervalI ′ = I × B are partitioned in two isomorphic intervalsI0 = I × {0} and

Fig. 1. An interval doubling constructing the latticeL′ from the latticeL and the intervalI ⊆ L.
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I1 = I × {1}. An elementx of I will generate the two elementsx0 ∈ I0 andx1 ∈ I1 with
x0≺ x1 (where≺ denotes the cover relation associated to the order relation ofL).

Moreover every join-irreducible ofL as well as the least element ofI each induce
exactly one join-irreducible ofL′ (and dually for meet-irreducible elements and the grea
element ofI ). So the following lemma is a direct consequence of Definition 1.

Lemma 1. LetL be a lattice,[a, b] = I ⊆ L an interval ofL andL′ = L[I ]. The following
holds:

(1) |L′| = |L| + |I |.
(2) J ′ = {j : j ∈ J ∩ (L − I)} + {j0: j ∈ J ∩ I } + {a1} and|J ′| = |J | + 1.
(3) M ′ = {m ∈ M: m ∈ L − I } + {m1: m ∈ M ∩ I } + {b0} and|M ′| = |M| + 1.
(4) a1� b0.
(5) For anyj ∈ J ′ with j �= a1 and anym ∈ M ′ with m �= b0, j �� b0 anda1 �� m.

So the doubling of the intervalI creates exactly one new join-irreducible (a1) and one
new meet-irreducible (b0) in the latticeL′. For instance in Fig. 1,|JL| = 5 with JL =
{B,C,D,F,H } and|ML| = 6 with ML = {B,E,G,H,U,K}. After the doubling of the
intervalI = [D,K], we obtain the latticeL′ = L[I ] with J ′ = {B,C,F,D0,H0} + {D1}
and withM ′ = {B,E,U,G1,H1,K1} + {K0}. At last,D1 andK0 satisfyD1 � K0 and
point (5) of Lemma 1 is also verified.

The result below is implicitly proved in [13].

Lemma 2. Semidistributivity is closed under interval doubling.

Definition 2 [12]. A lattice L is bounded1 if either L is the one-element lattice or
there exists a sequenceB = L1, . . . ,Li, . . . ,Lp−1,Lp = L of lattices and a sequenc
I1, . . . , Ii , . . . , Ip−1 such thatIi is an interval ofLi andLi+1 = Li [Ii], for everyi < p.

A lattice is bounded if it can be obtained starting from the two-element latticeB by
a finite sequence of interval doublings. Day and authors like Wille, Ganter and G
for instance, have provided a number of results on these lattices and on relative lattic
Figure 2 gives an example of the construction of a bounded lattice.

A proof of the following result is provided in [15].

Proposition 1. Any bounded lattice is semidistributive.

Since a bounded lattice is a lattice which can be constructed starting fromB by a finite
sequence of interval doublings, such a lattice is equivalently characterizable by the fact tha
it can be “discontructed” untilB by an iteration of the operation “opposite” of the interv

1 The original definition of a bounded lattice was introduced by McKenzie [20] in terms of abounded lattice
homomorphism. A few years later, Day proved that these lattices were characterized by means of the i
doubling as given in Definition 2.
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Fig. 2. A series of 3 interval doublings, starting with the two-element latticeB. All latticesL1 to L4 are bounded

doubling. We will call this operation aninterval contraction. We first need to define th
notion ofgluing conditions:

Definition 3. Let I be an interval of a latticeL, with I equal to the direct product of a
intervalI0 by B. We denote byI1 the intervalI − I0, isomorphic withI0. We say thatI
satisfies thegluing conditionsif the two following conditions are verified:

(1) ∀(y, x1, x0) ∈ (L − I1) × I1 × I0 (y < x1⇒ y � x0).
(2) ∀(z, x1, x0) ∈ (L − I0) × I1 × I0 (z > x0⇒ z � x1).

The following result directly derivesfrom the definition of an interval doubling.

Proposition 2. If L′ = L[I ] is the lattice obtained by the doubling of the intervalI in the
latticeL and if I ′ = I × B, thenI ′ satisfies the gluing conditions.

We now define the notion ofcontractible interval:

Definition 4. Let L be a lattice andI ⊆ L an interval ofL. We say thatI is contractible
(in L) if L can be obtained from a latticeL0 by the doubling of an intervalI0 ⊆ L0 (with
I = I0 ×B).

From now on, we shall always denote byI0 and I1 the two isomorphic interval
constituting the contractible intervalI (with the convention thatI0 is the “lower” interval
andI1 the “upper” one, and thatI is replaced byI0 in the contraction).

Definition 5. Let L be a lattice andI ⊆ L a contractible interval ofL. We callcontraction
of L (w.r.t. I ) the operation constructing the “smaller” latticeL0 by replacingI with I0
in L. The contraction of an interval is the converse operation of the interval doubling

We have seen in Lemma 2 that the interval doubling preserves the semidistribu
The interval contraction has obviously the same property.
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Fig. 3. The contraction of the contractible intervalI of a latticeL.

Lemma 3. Semidistributivity is closed under interval contraction.

3. The class HH of lattices

In this section, we define the classHH of lattices (HH stands forHat and anti-Hat)
and show that all lattices ofHH are bounded. In Section 4, we will then prove th
Cayley lattices associated with finite Coxeter groups are bounded by showing tha
are particular lattices ofHH.

We have to set the following definitions:

Definition 6. Let P be a poset andx, y, z ∈ P . We say that the triple(y, x, z) is a hat
(respectively ananti-hat) if y �= z, y ≺ x and z ≺ x (respectively ify �= z, x ≺ y and
x ≺P z). A hat is denoted by(y, x, z)∧ and an anti-hat by(y, x, z)∨.

Definition 7. Let L be a lattice andx, y ∈ L satisfyingx < y. The intervalI = [x, y]
is a 2-facetof L if it contains only two paths that intersect only inx andy (i.e., if the
diagram ofI is a polygon such that there exists two distinct upper coversx1 andx2 of x

with y = x1 ∨ x2). Such a 2-facet will be denoted byFx1,x,x2 and is clearly defined by th
anti-hat(x1, x, x2)∨.

It is clear that in any 2-facet[x, y] there exists two distinct lower coversy1 andy2 of y

such thatx = y1 ∧ y2, so a 2-facet can equivalently be defined by this property. It is
defined by a hat(y1, y, y2)

∧ and will be denoted byFy1,y,y2 (note thatx1 andy1 are not
necessarily distinct, as well asx2 andy2).

Definition 8. Let L be a lattice. Let(x, y) be an arc ofL such that there existsz ∈ L with
(x, y, z) a hat and with[x ∧ z, y] a 2-facet. We then denote by(x ′, x ∧ z, z′) the associated
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Fig. 4. An example of a 2-facetFx1,x,x2 = Fy1,y,y2.

anti-hat (withx ′ � x andz′ � z). A labellingT = {t1, t2, . . . , tp} of the arcs of the coverin
relation ofL is called a 2-facet labellingif it satisfies the following property:

If t labels(x, y) and if t ′ labels(z, y) thent labels(x ∧ z, z′) andt ′ labels(x ∧ z, x ′).

In these conditions, we note(x∧z, z′) ≺t (x, y) and(x ∧z, x ′) ≺t ′ (z, y). For anyt ∈ T ,
≺t is a binary relation defined on the arcs of the covering relation ofL and which is acyclic
We denote by�t its reflexo-transitive closure which is then an order.

Remark. For convenience reasons, we will always talk aboutlabelling of the arcsof a
latticeL rather than alabelling of the arcs of the covering relationof L.

Definition 9. For any 2-facet labellingT of a latticeL, a functionr from T to N is a
2-facet rank functionof L if it satisfies the following properties on every 2-facetFx1,x,x2

Fig. 5. An example of a 2-facet labelling on a lattice.
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Fig. 6.r(t1), r(t6) < r(t2), r(t5) < r(t3), r(t4); r(t ′1), r(t ′3) < r(t ′2) (k1 = 6 andk2 = 3).

of L (with t1, t2, . . . , tk1 the labels of the edges of one of the shortest paths fromx up to
y = x1 ∨ x2 andt ′1 = tk1, t

′
2, . . . , t

′
k2

= t1 the labels of the edges of the other shortest p
from x up toy): for k ∈ {k1, k2},

r(t1), r(tk) < r(t2), r(tk−1) < · · · < r(t(k+1)/2−1), r(t(k+1)/2+1) < r(t(k+1)/2) if k is odd,

r(t1), r(tk) < r(t2), r(tk−1) < · · · < r(tk/2−1), r(tk/2+2) < r(tk/2), r(tk/2+1) if k is even.

Definition 10. A latticeL is in the classHH if L is finite, semidistributive and if it satisfie
the following three conditions:

(1) To every hat(y, x, z)∧ of L is associated a unique anti-hat(y ′, y ∧ z, z′)∨ of L such
that[y ∧ z, x] is a 2-facet (withy ′ � y andz′ � z).

(2) To every anti-hat(y, x, z)∨ of L is associated a unique hat(y ′, y ∨ z, z′)∧ of L such
that[x, y ∨ z] is a 2-facet (withy � y ′ andz � z′).

(3) There exists a 2-facet labellingT onL and a 2-facet rank functionr onT .

Theorem 1. Let m be meet-irreducible inL ∈ HH. If (m,m+) is labelled byt , the set
Em = {(x, y): (x, y) �t (m,m+)} is not empty and has a least element(u, v). Moreover,
v is a join-irreducible,v− = u andv � m.

Proof. Let (u, v) be a minimal element ofEm. If v is not join-irreducible there existsz in
L with z ≺L v andz �= u. The triple (u,v, z) is then a hat and has an associated anti
(u′, u ∧ z, z′)∨ with u′ � u andz′ � z, and such that(u ∧ z, z′) is labelled byt . Therefore
(u ∧ z, z′) ≺t (u, v) and(u, v) is not minimal inEm, a contradiction. Now sincev is join-
irreducible,u = v− and sov− �L m, v �L m+ andv �L m, which impliesv � m. At
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last, sinceL is semidistributive,v is the unique join-irreducible satisfyingv � m and so
(u, v) = (v−, v) is the unique minimal element ofEm. �

This theorem naturally leads to an algorithm defined on a latticeL ∈ HH and which
computes, for a given meet-irreduciblem of L, the unique join-irreduciblej satisfying
j � m. This algorithm starts with an arc(m,m+) and constructs, when it exists, a 2-fac
whose hat has the form(m,m+, z)∧ for somez ∈ L. We then iterate the process with t
arc opposite from(m,m+) in the 2-facet. The algorithm stops when the considered
(x, y) does not belong to a hat. Then by construction,y is a join-irreducible satisfying
y � m and, by semidistributivity ofL, y = jm and does not depend on the choice of
2-facets at each step of the algorithm.

This algorithm is directly generalizable into an algorithm which takes an arc(x, y) of
the covering relation ofL which is labelled byt and computes the unique ordered p
(j,mj) such that(j−, j) ≺t (x, y) ≺t (mj ,m

+
j ).

The existence of a 2-facet rank function on the lattices ofHH implies the following
lemma (take any 2-facet labellingT of L and any labelt ∈ T with maximum rank):

Lemma 4. LetL ∈ HH andT a 2-facet labelling ofL. There exists a labelt ∈ T such that
for any hat(y, x, z)∧ whose arc(y, x) or (z, x) is labelled byt , Fy,x,z is a diamond.

N.B.: The case where a label with maximum rank labels an edge which does not b
to any hat or anti-hat clearly allows the contraction of this edge, seen as a contr
interval. In the following we omit this trivial case.

For anyL ∈ HH and any 2-facet labellingT of L, we denote byFt the set of all the
2-facets ofL whose hat and anti-hat have one edge labelled byt ∈ T . By Theorem 1,

Fig. 7. The algorithm.



80 N. Caspard et al. / Advances in Applied Mathematics 33 (2004) 71–94

,

c

f

s,

s are

ts an

is
⋃
Ft is a non-empty union of intervals, each with the form[j−,m+

j ] (for somej ∈ JL and
mj ∈ ML with j � mj ).

Lemma 5. Let L ∈ HH, j ∈ JL, mj its bijective meet-irreducible andt the label of the
arcs(j−, j) and(mj ,m

+
j ). If the2-facets generated by our algorithm applied on(mj ,m

+
j )

(i.e., those in[j−,m+
j ] having one edge labelled byt) are all isomorphic with diamonds

the intervalIj,mj = [j−,m+
j ] is contractible.

Proof. To prove thatIj,mj is contractible, we have to show thatIj,mj = [j−,mj ] ×B and
that the gluing conditions hold on it.

To prove thatIj,mj = [j−,mj ] × B, we start by showing that the labelt induces an
order isomorphism between the intervals[j−,mj ] and [j,m+

j ]. Consider a pathx0 ≺
x1 ≺ · · · ≺ xi ≺ · · · ≺ xp from x0 = j− to xp = mj . All elementsxi clearly belong to
the interval[j−,mj ]. If we notex ′

0 = j , the triple(x1, x0, x
′
0) is an anti-hat with the ar

(x0, x
′
0) labelled byt and, therefore,Fx ′

0,x0,x1
is a diamond and the arc(x1, x

′
1)—with

x ′
1 = x ′

0 ∨ x1—is labelled byt .
For any 1� i � p, let us denote byx ′

i the join ofxi andx ′
i−1. Everyx ′

i is an element o
the interval[j,m+

j ] and, by the argument given above, all arcs(xi, x
′
i ) are labelled byt . So

the labelt “associates” to everyxi of [j−,mj ] the elementx ′
i of [j,m+

j ]. Dually, it is clear

that t “associates” to every elementx ′
i of [j,m+

j ] the elementxi of [j−,mj ]. The label

t thus describes a bijection between the elements of the intervals[j−,mj ] and [j,m+
j ],

which is moreover an order isomorphism. Indeedxi ≺ xi+1 in [j−,mj ] is equivalent to
x ′
i ≺ x ′

i+1 in [j,m+
j ] since every tuple(xi, xi+1, x

′
i , x

′
i+1) forms a diamond by hypothesi

with xi ≺ x ′
i andxi+1 ≺ x ′

i+1. To prove thatIj,mj = [j−,mj ] × B, we still have to show
that the only edges existing between an element of[j−,mj ] and an element of[j,m+

j ]
are exactly those labelled byt , that go from an elementx to its bijective imagex ′. Since
the proof of that point uses the gluing conditions we first prove that these condition
satisfied onIj,mj .

Let x ′ be an element of[j,m+
j ] and x its bijective image in[j−,mj ] (so x ≺ x ′).

Assume that the gluing conditions do not hold, i.e., for instance that there exis
elementz of L − [j,m+

j ] such thatz �L x ′ andz �L x. There existsz0 andy ′ satisfying

z � z0 ≺ y ′ < x ′ with z0 /∈ [j,m+
j ] andy ′ ∈ [j,m+

j ]. The triple(z0, y
′, y) is a hat whose

arc(y, y ′) is r-labelled byt . Therefore the interval[y ∧ z0, y
′] is a diamond (by hypothes

on t) with the arc(z0 ∧ y, z0) labelled byt , which implies that the arc(z0 ∧ y, z0) ∈ Ft .
Since(y, y ′) is an arc that belongs to a 2-facet included in[j−,m+

j ], so does(y ∧ z0, z0)

and, therefore,z0 ∈ [j,m+
j ], a contradiction.

We prove thatIj,mj is isomorphic to the direct product[j−,mj ] ×B. Let x ∈ [j−,mj ]
andx ′ its image in[j,m+

j ]. Assume there existsy ′ ∈ [j,m+
j ] with y ′ �= x ′ andx ≺ y ′.

By the gluing conditions, we havex ′ < y ′. Now x ≺ x ′ ≺ y ′ implies thatx ⊀ y ′, a
contradiction.
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Assume now that there existsy ′ ∈ [j,m+
j ] such thaty ′ ≺ x. Sincey ′ ∈ [j,m+

j ] there
existsy ∈ [j−,mj ] such thaty ≺ y ′, so y ≺ y ′ ≺ x with x, y ∈ [j−,mj ]. This implies
y ′ ∈ [j−,mj ], a contradiction. �
Theorem 2. The classHH of lattices is closed for the contraction of a contractible inter
w.r.t. a label whose2-facet rank function is maximal.

Proof. Since the interval contraction preserves semidistributivity, we check that c
tions (1) and (3) of Definition 10 are also preserved (condition (2) is dual from cond
tion (1)).

LetL ∈ HH, I a contractible interval ofL andL′′ the lattice obtained by the contractio
of I = I0 + I1 in L. We prove that any hat(y, x, z)∧ of L′′ has been generated by a h
of L, so the interval contraction inHH does not generate any hat. Five cases may occ

(1) x, y, z /∈ I0: then(y, x, z)∧ was already a hat ofL.
(2) x, y, z ∈ I0: then (y, x, z)∧ is the result of the contraction of the hats(y0, x0, z0)

∧
in I0 and (y1, x1, z1)

∧ in I1. Sincex ′ = y ∧ z ∈ I0, (y ′, x ′, z′)∨ is the result of the
contraction of(y ′

0, x
′
0, z

′
0)

∨ and(y ′
1, x

′
1, z

′
1)

∨.
(3) x ∈ I0 andy, z /∈ I0: theny andz were elements ofL andx has been generated by t

contraction ofx0 ∈ I0 andx1 ∈ I1. Sincex ′ /∈ I0, (y ′, x ′, z′)∨ was already an anti-ha
of L.

(4) x, y ∈ I0 andz /∈ I0: thenz was an element ofL andx andy have been generated b
the contraction ofx0 andx1 for x andy0 andy1 for y.

(5) x, y /∈ I0 andz ∈ I0: thenx andy were elements ofL andz has been generated by t
contraction ofz0 andz1.

Note. The casex /∈ I0 andy, z ∈ I0 does not exist sinceI0 is an interval.

Thus the origin of every hat ofL′′ is well defined. The determination of the anti-h
associated with a hat ofL′′ follows the same argumentsand is left to the reader.

Finally the interval contraction does not generate any new hat or anti-ha
conditions (1) and (2) hold. The existence of a 2-facet labelling and of a 2-facet
function is trivially closed under interval contraction when the 2-facet rank function of th
concerned label is maximal, so condition (3) also holds.�

We get the announced result:

Corollary 1. Every lattice ofHH is bounded.

We end this section with an additional property of these lattices given in Proposit

Definition 11. Let L ∈HH and<� the binary relation defined on(JL × ML)2 by:

(
j ′,mj ′

)
<� (j,mj)
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Fig. 8. A bounded lattice that does not belong toHH.

if the fact that the interval[j−,m+
j ] is contractible implies that[j ′−,m+

j ′ ] has already bee
contracted.

The binary relation<� is well defined (indeed by the construction of any inter
[j−,m+

j ] described in our algorithm, it is easy to point out the pairs(j ′,m′
j ) that have

to be “contracted” before; it suffices to observe the non diamond generated 2-facets
to compute the pairs(j ′,m′

j ′) whose contraction transformthese 2-facets into diamonds
Since the lattices ofHH are bounded, there necessarily exists a linear extension of<�
that corresponds with the order of contraction of all the pairs(j,mj) of the lattice (chosen
among all possible orders of contractions of these pairs). This implies that<� contains no
cycle and so its reflexo-transitive closure is an order relation on(JL × ML)2.

Consider now the associated latticeT of all ideals of the poset((JL × ML)2,<�). By
a well-known Birkhoff’s result,T is distributive and, by definition of<�, the elements
of T are all the contracted lattices that can be reached fromL down toB. Moreover all
the series of interval doublings that lead fromB to L are exactly given by all the maxima
paths ofT . Hence the proposition below.

Proposition 3. Let L be a lattice ofHH. The set of all the lattices that can be obtain
from L by a series of interval contractions is a distributive lattice when ordered by
following natural order relation: L < L′ if L can be obtained fromL′ by a series of interva
contractions.

Note at last that the lattice of Fig. 8 proves thatHH is strictly contained in the class o
bounded lattices.

4. On Coxeter lattices

4.1. Preliminaries

In this part of the section, we prove that the class of Coxeter lattices is included inHH,
which directly implies that Coxeter lattices are bounded. To do so, we recall and pr
some definitions and results on these lattices. For more details, the standard refere
Coxeter groups are the books by Bourbaki [5] and by Humphreys [17].
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Definition 12. A groupW is aCoxeter groupif W has a set of generatorsS ⊂ W , subject
only to relations of the form

(
ss′)m(s,s ′) = e

wherem(s, s) = 1 for anys in S (all generators have order 2), andm(s, s′) = m(s′, s) � 2
for s �= s′ in S. The pair{W,S} is called aCoxeter system.

It has been shown in [14] that the class of bounded lattices is closed under direct p
Therefore to prove that Coxeter lattices are bounded, we will only deal with the ca
irreducible finite Coxeter groups (i.e., those which can not be decomposed as the
product of two Coxeter groups).

We recall that theright (respectivelyleft) Cayley graphassociated with a groupW and a
setS of generators ofW is the graph whose vertices are the elements ofW and where there
is an edge fromw to w′ if there existss ∈ S such thatw′ = ws (respectivelyw′ = sw).
Several partial order relations can be defined on Coxeter groups. Among them, thright
(respectivelyleft) weak orderis the transitive closure of the right (respectively left) Cay
graph directed with respect to the increasing length, so starting from the neutral eleme.
The right and the left weak orders are trivially isomorphic, so and unless explicitly
otherwise, we will always use theright weak order throughout the paper. When no poss
confusion may arise, we will simply denote it by<.

Any Coxeter group has a remarkable subset of elements which are called thereflections
of the group (this denomination is due to the strong properties of these objects
geometrical interpretation of Coxeter groups).

Definition 13. The elements of the setTW = {t ∈ W : ∃s ∈ S,∃w ∈ W such thatt =
wsw−1} are called thereflectionsof the Coxeter groupW . These elements are th
conjugates of the generators ofW and thus have order 2.

There exists two useful labellings of the edges of the Cayley graph of a Coxeter g
The first one labels each edge with a generator: the edge{w,w′} with w′ = ws is labelled
with s and we talk aboutg-labelling. The other interesting labelling uses reflections:
edge{w,w′} with w′ = ws is labelled with the reflectiont = wsw−1. So ifw = si1si2 . . . sir
is a reduced expression ofw, the edge{w,w′} is labelled byt = si1si2 . . . sir ssir . . . si2si1 =
wsw−1 and we then talk aboutr-labelling. We will show that the set of all the reflection
of a Coxeter groupW constitute a 2-facet labelling (Proposition 7) and that the len
function� applied on ther-labelling of the edges of the Cayley graph ofW is a 2-facet
rank function (Theorem 5).

The result below is easily shown by a simple computation of the expression o
reflectionst1, t2, . . . , tr−1, tr by the generatorss1, s2, . . . , sr−1, sr .

Lemma 6. Letw = s1s2 . . . sr ∈ W with W a Coxeter group. Lett1, t2, . . . , tr be the reflec-
tions labelling the arcs(e, s1), (s1, s1s2), . . . , (s1s2 . . . sr−1, s1s2 . . . sr−1sr ) respectively.
The following holds:
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(1) w = s1s2 . . . sr = tr tr−1 . . . t2t1.
(2) For everyi � r, si = t1t2 . . . ti ti−1 . . . t2t1.

The following proposition directly derives from a result by [5].

Proposition 4. Let W be a Coxeter group,w ∈ W and consider in the Cayley graph ofW

oriented by the right weak order, a shortest path betweene andw. The reflectionst ∈ T

that label the arcs of this path are all distinct and do not depend on the path but on
the elementw. We shall denote the set of these reflections byTw.

Remark. A classical corollary of this result is that any two elementsw andw′ of W satisfy
w � w′ if and only if Tw ⊆ Tw′ . Moreover the setTw can equivalently be defined as the
of all the reflectionst such that�(tw) < �(w).

Corollary 2. If w0 denotes the unique element of maximal length in a Coxeter grouW ,
thenTw0 is equal to the setTW of all reflections ofW . The number of the reflections of
Coxeter group is then equal to the length ofw0.

Theorem 3 (Björner).The weak order defined on a finite Coxeter group is a lattice, w
moreover is self-dual.

This result generalizes a Guilbaud and Rosenstiehl’s result for the permutations
[16].

From now on, any lattice defined on a finite Coxeter groupW by the right weak orde
will simply be called aCoxeter lattice, and will be denoted byLW .

We recall that theleft (respectivelyright) translation of w ∈ W by w′ ∈ W is the
elementw′w (respectivelyww′) of W . The notion of translation of an element c
naturally be extended to the notion of translation of a setX ⊆ W as follows: the left
translation ofX by an elementw′ ∈ W is equal to the set{w′x: x ∈ X}.

Now if we define a functiond on W2 by d(w,w′) = �(w−1w′), thend is a distance
relation on the elements ofW . Indeedd(w,w) = �(e) = 0 and the symmetry and th
triangle inequality conditions are known to be satisfied.

Proposition 5. The distanced defined onW2 byd(w,w′) = �(w−1w′) is invariant for the
left translation by any element of the group.

Proof. Let d(w,w′) be the distance betweenw and w′ in W and considera ∈ W .
d(aw,aw′) = �(w−1a−1aw′) = �(w−1w′) = d(w,w′). �

The following assertions are classical and their proof is given in [3,4] and [5].

Lemma 7.

(1) The left translation on a Coxeter group preserves the distance and theg-labelling.
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(2) Any interval[w,w′] with w � w′ is order isomorphic with the interval[e,w−1w′]
obtained as the left translation of[w,w′] byw−1.

(3) Two edges labelled by the same reflectiont are transformed by left translation byw in
two edges labelled with the same reflectiont ′ = wtw−1 (the left translation permute
the reflections of the group).

Proposition 4 and Lemma 7 together lead to the following property:

Lemma 8. A chain between two elements of the Cayley graph of a Coxeter groupW is a
shortest chain between these two elements if and only if the reflections labelling its
are all distinct.

We recall the definition of aparabolic subgroup.

Definition 14. For a Coxeter system{W,S} and any subsetH of S, the parabolic subgroup
WH is the subgroup ofW generated by the elements ofH .

The groupWH is also a Coxeter group, which is always an interval for the right w
order. Moreover ifH = {s1, s2} (i.e., if |H | = 2), the Cayley graph ofWH is a polygon
with 2m(s1, s2) elements and as many edges.

4.2. Coxeter lattices are bounded

One of the authors has proved the following important result:

Theorem 4 (LCPB).All ( finite) Coxeter lattices are semidistributive.

Let LW be a Coxeter lattice and(ws1,w,ws2)∨ an anti-hat ofLW (with s1, s2 ∈ S). Let
Max= ws1 ∨ ws2 and consider the intervalI = [w,Max]. By Lemma 7,I is isomorphic
with the intervalw−1I = [w−1w,w−1Max] = [e,w−1Max] = [e, s1 ∨ s2], which is the
parabolic subgroup ofW generated bys1 ands2. So the intervalI is a 2m(s1, s2)-sided
polygonal graph and, since the left translation preserves theg-labelling, the edges ofI are
alternatively labelled bys1 ands2.

Proposition 6. Every intervalI of LW with the formI = [w,ws1 ∨ ws2] wheres1, s2 ∈ S

and where(ws1,w,ws2)∨ is an anti-hat ofLW is a 2-facet ofLW . Moreover a2-facet of
LW is always the left translation of a parabolic subgroup ofW generated by two generato
(the converse is almost true: the left translation of a parabolic subgroup ofW generated
by two generators by an elementw of the group is always a2-facetFxs1,x,xs2, but where
x �= w in general).

If we call k-facetany interval with the form[w,ws1 ∨ws2∨· · ·∨wsk] (where thewsi ’s
are all upper covers ofw) then ak-facet is always aleft cosetof Ws1,s2,...,sk which is order
isomorphic withWs1,s2,...,sk . This isomorphism preserves theg-labelling.
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Fig. 9. Two “opposite” edges of a 2-facet are labelled by the same reflection.

The following result is particularly important since it implies that ther-labelling of the
edges of a Coxeter lattice is a 2-facet labelling.

Proposition 7. Two “opposite” edges of a2-facet of a Coxeter lattice are labelled by th
same reflection.

Proof. Let Fws,w,ws ′ be the 2-facet generated by(ws,w,ws′)∨, Max its maximum
element and assume thatm(s, s′) = p. This implies thatFws,w,ws ′ has 2p edges. Let us
denote bye1, e2, . . . , ep the edges of one of the two paths ofFws,w,ws ′ going up from
w to Max, and ep+1, ep+2, . . . , e2p the edges of the other path going down fromMax
to w. Let ti be the reflection labelling the edgeei of Fws,w,ws ′ . Consider now the edg
e(i+p) mod 2p (i.e., the opposite edge ofei in Fws,w,ws ′ ) which is labelled by the reflectio
t(i+p) mod 2p = t . Without loss of generality, assume that

ti = w ss′s . . . s′s︸ ︷︷ ︸
2i−1 generators

w−1.

So

t = w ss′s . . . s′ss′s︸ ︷︷ ︸
2i−1+2p generators

w−1.

Therefore

ti t = w ss′s . . . s′s︸ ︷︷ ︸
2i−1 generators

w−1w ss′s . . . s′ss′s︸ ︷︷ ︸
2i−1+2p generators

w−1 = w ss′s . . . s′s︸ ︷︷ ︸
2p generators

w−1 = wew−1 = e

andti = t . �
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Corollary 3. For every Coxeter groupW , ther-labelling on the edges ofLW is a 2-facet
labelling.

We recall the definition and a characterization of aleft quotientof a Coxeter system.

Definition 15. For everyH ⊂ S, the left quotientWH of the Coxeter groupW is the set
WH = {w ∈ W : �(sw) > �(w) for anys ∈ H }.

Theright quotientof a Coxeter group associated with a subsetH of S is defined dually.
We will deal only withleft quotients and will simply call themquotients.

Proposition 8. For everyH ⊆ S, w ∈ WH if and only if for anys ∈ H , s �< w in LW .

The following result is a consequence of the properties of the length function in Co
groups.

Corollary 4. If F is a k-facet of a Coxeter groupW , generated byH ⊆ S, the following
conditions are equivalent:

(1) w = minF .
(2) w−1 ∈ WH .

Let s1 ands2 be two distinct generators of the Coxeter groupW . The parabolic subgrou
W{s1,s2} and the quotientW {s1,s2} will simply be writtenWs1,s2 andWs1,s2 respectively.

The proof of the following result can be found in [17].

Proposition 9. Let {W,S} be a Coxeter system andLW its associated lattice. For ever
w ∈ W and all s1, s2 ∈ S, there exists a unique ordered pair(u, v) ∈ Ws1,s2 × Ws1,s2 such
thatw = uv. Moreover�(w) = �(u) + �(v).

Proposition 10 (Björner).For a finite Coxeter system{W,S} and every subsetH ⊆ S, WH

is an interval.

Propositions 9 and 10 together imply the corollary below.

Corollary 5. The set of alluWs1,s2 with u ∈ Ws1,s2 constitute a partition of the elemen
of W into order isomorphic intervals and every setuWs1,s2 with u ∈ Ws1,s2 will then be
called aclassof the partition. Given two classesuWs1,s2 andvWs1,s2 (with u,v ∈ Ws1,s2)
the isomorphism associates toux ∈ uWs1,s2 the elementvx ∈ vWs1,s2. This isomorphism
preserves theg-labelling.

Lemma 9. ConsiderH ⊂ S, u ∈ WH , w = uv ∈ uWH ands ∈ S.

(1) The three following conditions are equivalent:
(a) ws /∈ uWH ,
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(b) vs /∈ WH ,
(c) ∃s′ ∈ H,vs = s′v.

(2) The arcs(w,ws) and(u,us′) are labelled by the same reflection.

Proof. (1) (a) and (b) are trivially equivalent and the equivalence between (b) and
proved in Bourbaki [5]. (2) Sincevsv−1 = s′, we findt = uvsv−1u−1 = us′u−1 = t ′. �

Lemma 9 induces the corollary below:

Corollary 6. Letu ∈ Ws1,s2. The classuWs1,s2 has exactly two “adjacent” classes, that
to say classesC such that there existw ∈ uWs1,s2 andw′ ∈ C satisfyingw′ = ws for some
s ∈ S. These two adjacent classes areus1W

s1,s2 andus2W
s1,s2.

Every shortest path between two elementsw ∈ uWs1,s2 andw′′ ∈ u′′Ws1,s2 (with u,u′′ ∈
Ws1,s2) successively goes once and only once through the classesus1W

s1,s2, us1s2W
s1,s2,

us1s2s1W
s1,s2, . . . , us1s2s1 . . . si︸ ︷︷ ︸

u′′
Ws1,s2 (with s1s2s1 . . . si a shortest path fromu to u′′).

Theorem 5 (LCPB).For every Coxeter latticeLW , the length function� is a 2-facet rank
function when defined on ther-labelling of the edges ofLW .

Proof. Let Fws1,w,ws2 be a 2-facet. We notet1, . . . , ti , . . . , tp the reflections labelling th
edges of one of the two paths going fromw up tows1 ∨ ws2 (so the edges of the secon
path fromw up tows1 ∨ ws2 arer-labelled bytp, . . . , ti , . . . , t1 in this order). We give the
proof in the case wherem(s1, s2) is odd. The even case would be treated similarly.

If m(s1, s2) = q = 2p + 1 we only have to show that�(ti ) < �(ti+1), �(t
′
i+1) for every

i � p. The other requested inequalities are then immediate by Proposition 7.
The distance between two elements is preserved by left translation (Proposition

for everyi � q , �(ti ) = d(e, ti) is equal tod(w−1,w−1ti).

Fig. 10. Corollary 6.
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Now for everyi � q ,

w−1ti = w−1w s1s2 . . . s1︸ ︷︷ ︸
2i−1 generators

w−1 = s1s2 . . . s2s1︸ ︷︷ ︸
2i−1 generators

w−1.

To prove that�(ti ) < �(ti+1), �(t
′
i+1) for everyi � p, we first consider the element

xi = w s1s2 . . . s1s2︸ ︷︷ ︸
2i generators

w−1

and its converse element

x−1
i = w s2s1 . . . s2s1︸ ︷︷ ︸

2i generators

w−1

that we define fori � p. We know that two converse elements of a Coxeter group
the same length so�(xi) = �(x−1

i ). Thus if we show that�(ti) < �(xi) < �(ti+1) and
�(t ′i ) < �(x−1

i ) < �(t ′i+1) for everyi � p, the result will directly follow.
Since

�(xi) = d(e, xi) = d
(
w−1,w−1xi

) = d
(
w−1, s1s2 . . . s1s2︸ ︷︷ ︸

2i generators

w−1),

our aim is to prove that

d
(
w−1, s1s2 . . . s2s1︸ ︷︷ ︸

2i−1 generators

w−1) < d
(
w−1, s1s2 . . . s1s2︸ ︷︷ ︸

2i generators

w−1) < d
(
w−1, s1s2 . . . s2s1︸ ︷︷ ︸

2i+1 generators

w−1)

(the inequalities

d
(
w−1, s2s1 . . . s1s2︸ ︷︷ ︸

2i−1 generators

w−1) < d
(
w−1, s2s1 . . . s2s1︸ ︷︷ ︸

2i generators

w−1) < d
(
w−1, s2s1 . . . s1s2︸ ︷︷ ︸

2i+1 generators

w−1)

are obtained by duality).
Since w−1 ∈ Ws1,s2 (by Corollary 4) thenw−1t1 = s1w

−1 ∈ s1W
s1,s2, w−1t2 =

s1s2s1w
−1 ∈ s1s2s1W

s1,s2, . . . andw−1tp ∈ w−1w′Ws1,s2 with w−1w′ = maxWs1,s2.
By Proposition 9,w−1ti = uiv with ui ∈ Ws1,s2, v ∈ Ws1,s2 and�(w−1ti) = �(ui)+�(v)

(note that�(v) does not depend oni).
We prove that�(ti) < �(xi) for every i � p. Indeed ui has a unique reduce

decomposition usings1 and s2, which starts either withs1 or with s2. In other words if
ui = s1s2 . . . s1, every shortest path fromw−1 to w−1ti will go only through copies o
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Ws1,s2 with the forms1s2 . . . sjW
s1,s2 (indeed by Lemma 8, every path fromw−1 to w−1ti

going successively through

s2W
s1s2, s2s1W

s1,s2, . . . , s2 . . . s2︸ ︷︷ ︸
ui

Ws1,s2

will have at least two distinct arcs labelled by the same reflection, and will not be a sh
path).

Now if C is a shortest path fromw−1 to w−1xi , C can be written

C = I1s
′
1I2s

′
2 . . . s′

2iI2i+1,

with s′
1 labelling the unique edge ofC going fromWs1,s2 to s1W

s1,s2, s′
2 labelling the

unique edge ofC going from s1W
s1,s2 to s1s2W

s1,s2, s′
3 labelling the unique edge o

C going from s1s2W
s1,s2 to s1s2s1W

s1,s2, . . . , etc. FromC we deduce the pathC′ =
I1s

′
1I2s

′
2 . . . I2i−1s

′
2i−1I2iI2i+1 (obtained fromC by removings′

2i ) that goes fromw−1 to
w−1ti and which is shorter (of exactly one unit) thanC. Every shortest path fromw−1 to
w−1ti will be shorter thanC′ so it will also be shorter than a shortest path fromw−1 to
w−1xi , which implies�(ti ) < �(xi).

The same arguments applied onxi and ti+1 prove that�(xi) < �(ti+1). We would
also prove that way that�(t ′i ) < �(x−1

i ) < �(t ′i+1) and since�(xi) = �(x−1
i ), we have the

theorem. �
By Theorem 4 together with Propositions 6 and 7, we deduce the announced res

Theorem 6. Every Coxeter lattice is in the classHH and therefore is bounded.

4.3. The contraction of a given Coxeter lattice into the lattice of any of its parabolic
subgroups

We begin with a useful result:

Proposition 11. The following are satisfied for any parabolic subgroupWH of a Coxeter
groupW .

(1) For every left translationuWH of WH (with u ∈ WH ), the setT uWH
of all the

reflections labelling an edge of the classuWH is equal to the setT WH
of all the

reflections labelling an edge ofWH .
(2) The setTW of all the reflections ofW is partitioned in two classes: the classTWH of

all the reflections labelling an edge ofWH andT WH
.

Proof. (1) If we notewH andwH the greatest elements ofWH andWH respectively, then
w0 = maxW is the greatest element ofwHWH (indeed�(wHwH ) = �(wH ) + �(wH ),
which is the greatest length for an element ofW ). Consider the elementwHss1 with
wHs ∈ WH andwHss1 /∈ WH . We have(wH ss1 ∨ wH) ∈ wH WH = {x ∈ W : wH � x},
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Fig. 11. Proposition 11.

so maxFwH ,wH s,wHss1 belongs towHWH . Moreover the arc(wH s,wH ) and its opposite
arc inFwH ,wH s,wH ss1 are labelled by the same reflectiont . Since(wH ss1 ∨wH) ∈ wHWH

there exists an arc(x, y) of FwH ,wH s,wHss1, distinct from(wH s,wH ), that leads up from
wHsWH to wHWH . This arc(x, y) and(wH s,wH ) are the only arcs ofFwH ,wH s,wH ss1

that go fromwH sWH to wH WH (otherwiseFwH ,wH s,wHss1 would not be a 2-facet)
Clearly (x, y) is the opposite arc of(wH s,wH ) in FwH ,wH s,wHss1 since otherwise ther
would exist two distinct arcs with the samer-label on a shortest path fromwHs to
maxFwH ,wH s,wH ss1.

Now (wH s,wH ) and(x, y) have the samer-labelt and the iteration of these argumen
on the anti-hat(y, x, xs′)∨ with xs′ ∈ wHsWH andx ≺ xs′ constructs another 2-facet wi
the same properties. We prove that the last possible iteration of this operation cons
2-facet whose greatest element isw0. If the last anti-hat that appears in this construct
is (w1,w2,w3)∨ with w1 ∈ wH WH andw2,w3 ∈ wHsWH , the opposite arc of(w2,w1)

in the generated 2-facetF is (wH swH ,w0). Indeed ifwH swH is not covered byw0 there
exists a new anti-hat(w′

1,w
′
2,w

′
3)∨ that generates a 2-facet following the same rules

every constructed 2-facet any pair of edges which belong to a copy ofWH and that “face”
each other (i.e., that are isomorphic in the sense of Corollary 5) have the sameg-labels.
In the whole progression of these 2-facets the corresponding paths fromwHs to wH swH

and fromwH to wH wH have the sameg-labellings′
1s

′
2 . . . s′

l , with s′
1s

′
2 . . . s′

l = wH . Thus
if (x, y) denotes the opposite arc of(w2,w1) and if x = wHswH theny = wH wH = w0.
The left translation of[wHs,w0] by (wH s)−1 = swH is the isomorphic—for the orde
and theg-labelling—interval[e, swH ]. Since(wH swH ,w0) exists, so does(wH , swH )

and it follows that the interval[wHs,w0] contains exactly the elements of the union
[wHs,wH swH ] and[wH,wHw0].

Consider at last an arc(u, v) of WH and the interval[u,vwH ]. To prove that the ar
(uwH ,vwH ) exists, we translate[u,vwH ] on the left byu−1 and find[e, swH ] for some
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s ∈ H . Since(wH , swH ) exists, so does(uwH ,vwH ). Finally the greatest elements
the copies ofWH together form an interval isomorphic withWH , and this isomorphism
preserves ther-labelling. Now letz = uwH and consider a reduced decomposition oz

such thatu is a prefix of this decomposition. LetC1 denote the corresponding path a
C2 be another shortest path frome to z, admittingwH as a prefix. The arcs ofu in C1 are
labelled by some reflections ofTWH and the arcs ofC1 from u to z are labelled by som
reflections distinct from the previous ones (sinceC1 is a shortest path). We have seen t
the arcs ofC2 from wH to z are labelled by ther-labels ofu. It follows that the set o
r-labels of the arcs ofC1 from u to z is equal to the set ofr-labels of the arcs ofC2 from
e to wH . Finally the set ofr-labels of every copy of the quotientWH is equal to the se
T WH

of the reflections labelling an edge ofWH .
(2) By point (1) together with the fact thatw0 = wHwH . �
We want to show that, for any Coxeter latticeLW and any parabolic subgroupWH of W ,

it is possible to “contract” all the double-arrows associated with all the reflections o
quotientWH , before contracting any double-arrow associated with the reflections ofTWH .
More precisely, we will see that for every copy ofWH , the contractions relative to th
reflections ofT WH

agglutinate all the elements of this copy on its least element, whi
the corresponding element ofWH . Moreover the edges labelled by a reflection ofTWH —
i.e., the edges joining two adjacent copies ofWH —will be identified by contraction with
the corresponding edges ofWH .

Theorem 7. LetLW be a Coxeter lattice andWH a parabolic subgroup ofW . There exists
a series of interval contractions that lead fromLW to the latticeLWH of its parabolic
subgroupWH .

Proof. Let t be a reflection ofT WH
whose length is maximal inT WH

. Let (y, x, z)∨ be
an anti-hat whose arc(x, y) is labelled byt and belongs to a copyuWH (with u ∈ WH ) of
WH , i.e., such thatx, y ∈ uWH . Two cases may occur:

(1) The arc(x, z) belongs touWH : the whole anti-hat is in the intervaluWH . So the
maximum elementy ∨ z of the generated 2-facetFy,x,z is also inuWH and Fy,x,z is
contained inuWH . Sincet has maximum length inuWH , Fy,x,z is a diamond (Theorem 5

(2) The arc(x, z) does not belong touWH : thenz belongs to the copyusWH of WH

for somes ∈ H satisfying�(us) = �(u) + 1. Sincey and z are least than or equal t
maxusWH , so is their joiny ∨ z. Now y ∨ z ∈ usWH : indeed if(x ′, y ∨ z) denotes the
opposite edge of(x, z) in Fy,x,z, then we know that(x ′, y ∨ z) is labelled by the sam
reflection ofTWH as(x, z), which implies that(x ′, y ∨ z) goes fromuWH to usWH (TWH

andT WH
are disjoint). All the edges of the 2-facet, except for(x, z) and(x ′, y ∨ z), are in

copies ofWH and, sincet has maximum length inT WH
, Fy,x,z is a diamond.

In both cases the generated 2-facet is a diamond and the opposite edge of(x, y) is also
in a copy ofWH . Therefore we can iterate the application of the above arguments o
opposite edge of(x, y), which is also labelled byt . It finally follows that the reflectiont
“constructs” only diamonds so we can start by contracting relatively to this reflection
lattice obtained after contraction is inHH and, the presented arguments holding for
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lattice ofHH, we can repeat the operation on the remaining part of the copies ofWH .
When all interval contractions have been made relatively to the reflections ofWH , the
remaining lattice is isomorphic withWH and the theorem follows.�

This result proves the existence, for instance, of a series of interval contractions le
from the latticeLAn associated withAn to LAn−1. The same holds within every of the thr
other infinite families of finite Coxeter groups,(Bn)n�2, (Dn)n�4 and(I2(n))n�3 and for
the isolated finite Coxeter groupsE6, E7 andE8 on the one hand, andH3 andH4 on the
other hand. In terms of doublings, this gives:

Proposition 12. There exists a particular interval doubling series from a given Cox
lattice generated byn generators to the Coxeter lattice of the same family, generate
n + 1 generators.

Moreover, sinceAn is a parabolic subgroup ofBn+1 andDn+1, these two lattices ca
be obtained fromAn by a series of interval doublings.

5. Concluding remarks

The geometrical aspect of Coxeter groups has not been treated here. Let us ye
out that finite Coxeter groups arezonotopes(i.e., polytopes withzones[9]) in which every
zone corresponds to a reflection. The elements of the group, that constitute the vertices
the zonotope, are ordered as a lattice (starting from the neutral element).

The contraction relatively to a reflection of the lattice can be seen as the delet
the zone of the zonotope, associated to the reflection, and the obtained zonotope is stil
lattice. It is interesting to add that the main result of this paper finds expression in te
zonotope as follows:

Theorem 8. A zonotope, associated to a finite Coxetergroup and oriented as a lattice from
the neutral element, is transformed by successive contractions of the successive reflectio
(w.r.t. their decreasing length), into a family of zonotopes that are still lattices.

More precisely, to every Coxeter latticeLW is associated alines arrangementof
reflections, where every element ofW is represented by a 2-biconvexsubset of this
arrangement. A reflectiont of a Coxeter latticeLW has maximal length if and onl
if t is never theend of a line (except from the lines with only two reflections) in t
lines arrangement associated toLW . So the contraction associated to such a reflectio
LW corresponds to the deletion oft in the lines arrangement. Moreover the new lin
arrangement obtained by deletingt , corresponds to the contracted lattice. This process
be iterated by deleting in the new lines arrangement a reflection which is never the
a line. The properties of these lines arrangements are studied in [8].

Also, in 1992, Geyer used some tools of concept analysis to prove that the lattTn

of binary bracketings onn + 1 symbols—also calledTamari lattice—is bounded for every
n > 0. We can use the classHH to rediscover this result by proving that allTn belong
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to HH [7]. So the classHH generalizes Coxeter lattices, Tamari lattices and distribu
lattices and we are therefore very interested in these lattices, defined by combinator
conditions and admitting strong properties. We have also produced a bounded lattice
does not belong toHH, which leads us to raise the question of a characterization of a
bounded lattices not inHH.
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