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S U M M A R Y

Objective: Trypanosoma cruzi is subdivided into six discrete typing units (DTUs), TcI–TcVI. The precise

identification of each can contribute to tracking wild DTUs that invade the domiciliary environment.

Methods: Twenty T. cruzi stocks isolated from 16 chagasic patients, two Panstrongylus lutzi, one Galea

spixii, and one Euphractus sexcinctus, from different localities in the State of Rio Grande do Norte, Brazil,

were characterized by genotyping the 30 region of the 24Sa rRNA gene, the mitochondrial cytochrome

oxidase subunit 2 gene, and the spliced leader intergenic region.

Results: TcIII was identified in 18.7% (3/16) of patients from different municipalities, as well as in P. lutzi,

G. spixii, and E. sexcinctus, indicating the connection between the sylvatic and domestic cycles in this

Brazilian semi-arid region. TcI and TcII were also detected, in 37.5% (6/16) and 43.8% (7/16) of patients,

respectively. These DTUs were associated with cardiac, digestive, and indeterminate clinical forms, while

TcIII was identified only in patients with the indeterminate form.

Conclusions: The occurrence of these DTUs reveals important phylogenetic diversity in T. cruzi isolates

from humans. TcIII is reported for the first time in northeastern Brazil. These findings appear to indicate

an overlap between the sylvatic and domestic transmission cycles of the parasite in this region.

� 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

Chagas disease is a sylvatic enzootic disease distributed widely
in Latin America. It is transmitted in nature between triatomines
and mammals and has become an anthropozoonosis due to
anthropic changes in the natural environment.1,2 Increasing
human occupation of the semi-arid environment has unleashed
triatomine dispersion, expanding the transmission cycle of the
parasite to human dwellings.3 The northeast of Brazil encompasses
extensive areas of territory with a semi-arid climate, constituted
by the Caatinga biome, and has a large quantity of low quality
housing in rural areas. These factors promote the colonization by
insects originating from the wild environment.3,4 This region is the
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center of dispersion and has high concentrations of Triatoma

brasiliensis and Triatoma pseudomaculata.3,5 Similarly, high rates of
natural infection by Trypanosoma cruzi in Panstrongylus lutzi may
play an important role,6 together with wild mammals found in this
region, which have been indicated as hosts in different areas.7–9

T. cruzi populations show a high degree of intraspecific
variability, as detected by biological, biochemical, immunological,
and genetic markers.10 Recently, consensus was reached among
researchers to rename isolates of T. cruzi by assigning them one of
six discrete typing units (DTUs; TcI–TcVI) based on different
genetic markers.11 Of note, DTUs II and III were formerly known as
TcIIb and TcIIc.12

Geographically, TcI is dispersed widely in the Americas,
maintains more affinity with marsupials than other mammals,13

and is found throughout the range of triatomine distribution, such
that this DTU is associated with sylvatic and domestic cycles. Recent
studies have confirmed the presence of the TcI genotypes in
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Argentina, Brazil, Bolivia, Chile, Colombia, Mexico, Panama, Para-
guay, French Guiana, Venezuela, and the USA.14,15 Human infection
with TcI in Brazil is commonly concentrated in the Amazon basin, in
the northern part of South America and Central America.16 In some
countries, like Colombia, TcI is associated with chagasic cardiomy-
opathy,17 while in others it shows low pathogenicity.18 This DTU has
been found from Argentina to the USA, while TcII–VI are distributed
from the Amazon basin to southern Argentina. However, it is
possible to find regions where all six DTUs are present, such as in
Colombia, where TcI is reported predominantly, together with low
proportions of DTUs II, III, IV, and VI.19–23 The wide genetic diversity
of TcI in the Americas has been established, as has the geographical
distribution of TcI genotypes throughout the Americas, confirming
that it is most prevalent in Colombia.24

TcII is predominant in the southern and central regions of South
America, but its true extent remains unclear. It has mostly been
isolated in domestic transmission cycles from vectors, primates,
and sporadically from other mammals.25,26 This DTU is found in
different clinical forms and can be associated with distinct
symptoms and varying degrees of pathological processes in all
the clinical forms of the disease.27

TcIII is mostly associated with the sylvatic cycle in Brazil, with
the terrestrial niche and Dasypus novemcinctus found over a vast
range from western Venezuela to the Argentine Chaco.28,29

Although rare in domestic transmission cycles, TcIII occurs at a
relatively high frequency in the sylvatic environment and is
associated almost exclusively with terrestrial transmission cycles
and fossorial mammalian genera, including the Cingulata (arma-
dillos) and terrestrial marsupials.30–33 So far, few vector species
have been incriminated in the sylvatic transmission of TcIII.
Panstrongylus geniculatus and Triatoma rubrovaria, both mainly
sylvatic vectors, are often, although not exclusively, associated
with terrestrial ecotopes.34 Although infrequent, the occurrence of
TcIII in domestic transmission cycles implies its role as an agent of
human disease.28 Recent data have shown sporadic acute cases in
humans within the Amazon basin.29 In the study area, TcIII was
identified in T. brasiliensis from the peri-domicile and P. lutzi

captured in the wild environment. TcIII wild populations have
always shown a high level of homozygosity, which is inconsistent
with clonal propagation, although it is unclear whether this is
explained by intra-lineage recombination or gene conversion.34

TcIII is also occasionally isolated from domestic dogs30,31 and other
uncommon reservoirs and vectors.6,7 This DTU therefore repre-
sents an important focus for study28, as human populations are
expanding into previously undisturbed cycles of natural transmis-
sion and secondary vector species are re-emerging from the
sylvatic environment following the eradication of major domestic
species.35,36

The diversity of natural T. cruzi populations involving TcI, TcII,
and TcIII circulating among sylvatic and peri-domiciliary trans-
mission cycles has been demonstrated in the west mesoregion of
the State of Rio Grande do Norte.6 Human infection with TcI and
TcII was reported at the same time that TcI, TcII, and TcIII were
isolated from T. brasiliensis and P. lutzi.6,7,32 The presence of TcIII in
triatomine vectors such as T. brasiliensis has prompted the search
for these DTUs in humans to be extended, with the aim of
understanding how the peri-domestic and domestic environments
are connected to the wild in the semi-arid region.

2. Methods

2.1. Study area

The State of Rio Grande do Norte (RN) is located in northeastern
Brazil between 48490530 0S and 68580570 0S, and 358580030 0W and
388360120 0W. It has a population of over three million inhabitants.
The predominant biome is Brazilian savanna (Caatinga), described
as a ‘white forest’ due to the lack of water, which means the plants
are leafless over the dry months. This biome presents a large
number of mammals, birds, reptiles, and shrubby plants, and
undergoes long periods of drought over the years. A variety of
triatomine endemic species have been reported over the last few
decades, including T. brasiliensis, T. pseudomaculata, Panstrongylus

megistus, Rhodnius nasutus, and P. lutzi, all found in the semi-arid
region of the state.4,5,32

2.2. Origin of T. cruzi

A total of 266 chagasic patients were identified. These patients
had positive ELISA (Chagatest recombinant ELISA v. 3.0 kit),
positive hemagglutination inhibition (HAI) (Chagatest hemagglu-
tination inhibition, screening A-V kit; Wiener Lab, Rosário,
Argentina), and/or positive indirect immunofluorescence (IIF) test
results. The HAI has a sensitivity of 100% and specificity of 98.7%
according to the manufacturer37. The IIF, with a titer of 1:40
considered the cut-off point for this method, was performed using
epimastigotes of T. cruzi Y (DTU II)11 strain as antigen, maintained
in acellular culture and fixed with 20% formaldehyde. After the
exclusion of heart diseases (ischemic, valvular, and hypertensive),
all patients aged 23 to 88 years were enrolled in the study. The
same clinical–epidemiological protocol was applied throughout
the physical examination, taking into account the patient’s habits
and concomitant diseases, including the presence of signs and
symptoms general or specific to the cardiovascular and gastroin-
testinal systems. These patients were examined clinically and
submitted to complementary tests, including an electrocardio-
gram, chest X-ray, and contrast radiography of the esophagus and
colon. They were classified according to the clinical form of the
disease as cardiac, digestive, or indeterminate, as recommended by
the Brazilian Consensus on Chagas Disease.38 The algorithm
developed for patient classification is summarized in Figure 1.

This study was approved by the Research Ethics Committee of
the State University of Rio Grande do Norte (COEP/UERN No.
027.2011) in Mossoró, Rio Grande do Norte, Brazil, and informed
consent was obtained from the participants. The origin of T. cruzi

and the patient’s epidemiological and clinical characteristics are
presented in Table 1.

2.3. Isolation and culture of T. cruzi

Parasite isolation from humans was performed by hemocul-
ture39 and from triatomine bugs and sylvatic mammals by
xenoculture methods.40 Hemoculture was performed for all
chagasic patients and T. cruzi was isolated from 20 of them (20/
266, 7.5%). In order to minimize parasite selection, T. cruzi was
maintained in culture for a short period with three or four
successive passages in LIT (Liver Infusion Tryptose) medium. Only
16 patients returned for the clinical examinations. Four additional
isolates were obtained from the sylvatic environment, one from
Galea spixii Wagler 1831, one from Euphractus sexcinctus Linnaeus
1758, and two from P. lutzi, and these were included in the study.
Cultures of T. cruzi epimastigotes at 106/ml were washed three
times in Krebs–Ringer–Tris pH 7.3, centrifuged at 2000 � g for
15 min at 4 8C, and were then stored at �20 8C until DNA extraction
and genetic characterization. Genomic DNA from the cultured
parasite was obtained by phenol–chloroform method and was
used as the template for PCR assays.41

2.4. Genetic characterization of T. cruzi DTUs

The protocol used for genotyping was that proposed by
D’Ávila et al.,42 using a three-step assay (Figure 2). Polymorphism



Figure 1. Flowchart for patient classification, as recommended by the Brazilian Consensus on Chagas Disease.38
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analysis of the mitochondrial cytochrome oxidase subunit 2
(COII) gene was performed with Tcmit-10 (50-CCATATATTGTTG-
CATTATT-30) and Tcmit-21 (50-TTGTAATAGGAGTCATGTTT-30)
primers designed to amplify a fragment of 375 base pairs (bp)
from T. cruzi maxicircle DNA.42,43 On the basis of the restriction
map of COII sequences, the AluI restriction endonuclease was
chosen for use in restriction fragment length polymorphism
Table 1
Geographical origin, hosts, and genetic typing by three markers of Trypanosoma cruzi s

T. cruzi stocks Host Clinical form Age, years Sex 

1150 Human Indeterminate 44 Male 

1816 Human Indeterminate 45 Female 

2137 Human Cardiac 32 Female 

2549 Human Indeterminate 27 Female 

3188 Human Digestive 62 Male 

CBS 202 Human Cardiac 88 Male 

240 Human Cardiac 29 Male 

1317 Human Indeterminate 58 Male 

2934 Human Indeterminate 44 Male 

3973a Human Cardiac 72 Male 

RN26 Human Digestive 56 Male 

RN79 Human Cardiac 43 Female 

SM73 Human Cardiac 64 Female 

105 Human Indeterminate 39 Female 

CBS195 Human Indeterminate 40 Female 

SM76 Human Indeterminate 67 Female 

Gs3 G. spixii - Adult Male 

Es18 E. sexcinctus - Adult Male 

Pl0213 P. lutzi - Adult Male 

Pl0812 P. lutzi - Adult Female 

Col1.7G2*46 Human - - - 

JG*47 Human - - - 

RN19*6 Human - - - 

AM64*29 Human - - - 

3253*e Human - - - 

CL-Brener*48 T. infestans - - - 

bp, base pairs; Gs3, Galea spixii; Es18, Euphractus sexcinctus; Pl082 and Pl0213, Panst
a Souto and Zingales.44

b Freitas et al.43; D’Àvila et al.42

c Burgos et al.45

d DSR, Dix Sept Rosado; S. Melo, Severiano Melo; SNN, Serra Negra do Norte.
e 3253, Lages-Silva et al. unpublished data.
* T. cruzi strains and clones used as controls.
(RFLP) analysis of the mitochondrial COII gene. This marker is
able to distinguish haplotype A (TcI) and haplotype C (TcII) from
other DTUs with haplotype B (TcIII–VI). Amplification of the D7
domain of the 24Sa rRNA gene was achieved by PCR with primers
D71 (50-AAGGTGCGTCGACAGTGTGG-30) and D72 (50-TTTTCA-
GAATGGCCGAACAGT-30), following previously described proto-
cols.44
tocks from patients with different clinical forms, vectors, and reservoirs

24Sa rDNAa (bp) COIIb

(haplotype/bp)

SL-IRc

(bp)

DTU Municipalityd

110 A/30, 81, 264 150 TcI Caicó

110 A/30, 81, 264 150 TcI Caicó

110 A/30, 81, 264 150 TcI S. Melo

110 A/30, 81, 264 150 TcI Apodi

110 A/30, 81, 264 150 TcI Assu

110 A/30, 81, 264 150 TcI Caraúbas

125 C/81, 212 150 TcII Caicó

125 C/81, 212 150 TcII DSR

125 C/81, 212 150 TcII Caicó

125 C/81, 212 150 TcII Acari

125 C/81, 212 150 TcII SNN

125 C/81, 212 150 TcII SNN

125 C/81, 212 150 TcII S. Melo

110 B/81, 294 200 TcIII Caicó

110 B/81, 294 200 TcIII Caraúbas

110 B/81, 294 200 TcIII S. Melo

110 B/81, 294 200 TcIII Caraúbas

110 B/81, 294 200 TcIII Caraúbas

110 B/81, 294 200 TcIII SNN

110 B/81, 294 200 TcIII SNN

110 A/30, 81, 264 150 TcI

125 C/81, 212 150 TcII

110 B/81, 294 200 TcIII

117/119 B/81, 294 200 TcIV

110 + 125 B/81, 294 150 TcV

125 B/81, 294 150 TcVI

rongylus lutzi.



Figure 2. Protocol for genotyping proposed by D’Ávila et al.42 using a three-step assay: polymorphism analysis of the mitochondrial cytochrome oxidase subunit 2 (COII) gene,

amplification of the D7 divergent domain of the 24Sa rRNA gene, and amplification of the spliced leader intergenic region (SL-IRac).
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The amplification of the spliced leader intergenic region
(SL-IRac) genes was achieved with primers TcIII forward
(50-CTCCCCAGTGTGGCCTGGG-30) and UTCC reverse (50-CGTAC-
CAATATAGTACAGAAACTG-30). The PCR strategy with the SL-IRac
gene was devised to distinguish populations belonging to T. cruzi III
(amplicons of 200 bp) from T. cruzi I, T. cruzi II, and hybrid strains,
which present fragments of approximately 150 to 157 bp.45 The
PCR products were analyzed by electrophoresis on 6.0% polyacryl-
amide gels and the DNA fragments were visualized by silver
staining.

3. Results

Genetic profiles of the T. cruzi human stocks showed genetic
diversity. Three human stocks amplified fragment 110 bp rDNA,
COII haplotype B, and SL-IRac 200 bp, corresponding to TcIII. TcI
was identified in six patients presenting 110 bp rDNA, COII
haplotype A, and SL-IRac 150 bp. Seven TcII stocks were obtained
from humans showing 125 bp rDNA, COII haplotype C, and SL-IRac
150 bp (Figure 3). All stocks obtained from P. lutzi, G. spixii, and E.

sexcinctus also showed profiles corresponding to TcIII (Table 1).
The mean age of the 16 patients was 50.6 years. Patient 2549

(age 27 years) was the youngest and patient CBS202 (age 88 years)
was the oldest. TcIII was identified in 18.7% (3/16) of human
stocks, all of them thus far presenting the indeterminate clinical
form. TcI was identified in 37.5% (6/16) of the human stocks: 50.0%
(3/6) of those with the indeterminate clinical form, 33.3% (2/6) of
those with the cardiac form, and 16.7% (1/6) of those with the
digestive form. TcII was isolated from 43.8% (7/16) of humans
stocks: 28.6% (2/7) of them with the indeterminate clinical form,
57.1% (4/7) with the cardiac form, and 14.3% (1/7) with the
digestive form.

The geographical distribution of DTUs throughout the semi-arid
area of Rio Grande do Norte showed a wide dispersion. TcIII was
identified in different municipalities more than 100 km apart. TcI
and TcII showed similar distribution, with no predominant area in
the state. In Caraúbas, humans and sylvatic mammals (G. spixii and

E. sexcinctus) were infected by TcIII. TcIII was also detected in P.

lutzi obtained from a sylvatic reserve in the municipality of Serra
Negra do Norte, indicating the presence of this DTU in sylvatic and
peri-domestic environments and coexisting with TcI and TcII in the
domestic cycle (Figure 4).
4. Discussion

This study identified DTU III in three chagasic patients of
different ages with no parentage or evidence of oral transmission
and living in municipalities approximately 100 km apart. TcIII is a
sylvatic DTU found in Brazil and adjacent countries, rarely
documented in human cases.7,11,28 The triatomine species
associated with TcIII are not well known, but may include
terrestrial Panstrongylus and Triatoma genera. Genetic diversity
and the spatial structure of populations within TcIII have been
reported, with comparisons of samples from Brazil, Colombia,
Venezuela, Bolivia, and Paraguay.28

A previous study has shown a high frequency of TcIII in T.

brasiliensis in the study area,6 thus this vector species presents
dual epidemiological behavior through its position in the sylvatic
cycle and as a potential link to introducing these populations into
the domiciliary cycle.32 The geographical distribution of TcI and
TcII in the same region indicates that TcIII is able to coexist with
other DTUs in environments that support an overlap between
sylvatic and peri-domestic transmission cycles of T. cruzi. The
Caatinga is a biome that favors such an overlap,32 where
triatomines infected with TcIII, such as P. lutzi, may act in the
sylvatic cycle, and T. brasiliensis infected with TcII and TcIII may
act in both cycles. The additional data presented here corroborate
the hypothesis that this biome sustains reservoirs and vectors of
TcIII so close to human settlements that there are no barriers to
this DTU reaching the peri-domicile. The destruction of the
natural environment is forcing the proximity of wild triatomines
to human dwellings.16,49 However, in this biome, other factors
contribute to strengthen the process, such as irregular vigilance
against insects, which can contribute to the reinvasion of the peri-
domicile and the transmission of TcI and TcIII throughout the
environment.6

Studies have shown the presence of species of carnivores,
marsupials, rodents, and domestic animals capable of hosting
TcIII7,8,28 that are sources of food for insects. Intense hunting of
animals, such as E. sexcinctus and G. spixii, mammals already shown
to be hosts of T. cruzi,7–9 were also observed in the present study. It is
common behavior in the semi-arid area to maintain animals
captured while hunting in captivity for weeks, or even months, so
that the animal can gain weight before slaughter. This could be one
way by which sylvatic DTUs are transmitted to peri-domestic



Figure 3. A RFLP analysis of the mitochondrial COII gene in the Trypanosoma cruzi isolates belonging to different haplotypes, obtained by polyacrylamide gel electrophoresis.

Digestion of the DNA with AluI generates three RFLP patterns for the T. cruzi strains: restriction fragments of 264, 81, and 30 bp are classified as TcI (mitochondrial haplotype

A; lane 1, Col1.7G2 clone), restriction fragments of 212 and 81 bp are classified as TcII (mitochondrial haplotype C; lane 2, strain JG), and restriction fragments of 294 and

81 bp are classified as TcIII–VI (mitochondrial haplotype B; lane 3, strain RN19; lane 4, strain AM64; lane 5, strain 3253; lane 6, CL Brener clone). Lanes 7–13 show T. cruzi

samples of patients 2137, 3188, RN26, RN79, 105, CBS195, and SM76. (B) Analysis of 24Sa rRNA of T. cruzi isolates from chronic chagasic patients and controls. Lane 1,

Col1.7G2 clone (�110 bp); lane 2, JG (�125 bp); lane 3, RN19 (�110 bp); lane 4, AM64 (�117/119 bp); lane 5, 3253 (�110 and 125 bp); lane 6, CL Brener clone (�125 bp);

lanes 7–13, T. cruzi sample of patients 2137, 3188, RN26, RN79, 105, CBS195, and SM76. (C) The SL-IRac gene was used to separate isolates of TcIII and TcIV from other DTUs.

Lanes 1, 2, 5 and 6: controls Col1.7G2 clone, JG, 3253, and CL Brener clone (fragments of 150–157 bp); lanes 4 and 5: controls RN19 and AM64 (fragments of 200 bp); lanes 7–

13: T. cruzi sample of patients 2137, 3188, RN26, RN79, 105, CBS195, and SM76; lane M: molecular size marker; lane NC: negative PCR control.
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triatomine bugs. Nevertheless, the most incisive factor appears to be
the lack of any border between the rural and sylvatic zones, which
allows the vectors and synanthropic mammals to remain in close
contact with humans. It is likely that the absence of limits hinders
epidemiological surveillance actions that should be permanent.

Patients in the present study infected with TcIII (105, CBS195,
and SM76) only presented the indeterminate clinical form, which
was also diagnosed in a patient from the State of Minas Gerais,
Brazil.42 These data suggest that TcIII has low pathogenic power,
even in patients over the mean age (SM76, 67 years old), and since
the three TcIII-infected patients lived in different municipalities,
with no parentage or evidence of oral infection, it is probable that
the infection was transmitted by the vector. A study in Colombia of
chronic patients infected by TcIII, in whom mixed infection with
TcI and TcII was detected,50 demonstrated that it is hard to
distinguish the role of each DTU in the heart diseases analyzed.
Previous findings have shown that TcIII (formerly known as TcIIc)
may be underreported from both domestic and sylvatic transmis-
sion cycles because certain genotyping methodologies fail to
distinguish between TcIV (TcIIa) and TcIII.51 TcIII has been
associated with terrestrial ecotopes from different reservoirs
and vectors.7,33 In the Brazilian Amazon, Venezuela, and Colombia,
TcI is the predominant DTU and the principal cause of both acute
and cardiac Chagas disease, but not of the ‘mega’ syndromes,
whilst TcIII causes sporadic acute cases of Chagas disease in the
Brazilian Amazon basin.49 Outbreaks of acute Chagas disease
caused by both TcI and Z3 (TcIII or TcIV) have been reported.52

However, data from Venezuelan localities have shown that TcI is
responsible for human acute Chagas infection and for causing
severe heart failure,53 in contrast to an outbreak of acute cases
caused uniquely by the genotype TcIII/Z3.29 Three stocks from
chronic chagasic patients (one with an asymptomatic form, two
with a cardiac–digestive form) were found to be closely related to
Z3/TcIII,54 highlighting the need for the characterization of
epidemiological and clinical traits associated with different
genotypes of Chagas disease in the region under study.

In this study, TcI was associated with chronic chagasic patients
presenting cardiac, digestive, and indeterminate clinical forms.
Human infection with TcI has been reported in the State of Rio
Grande do Norte, although with no association with clinical forms.6

The recent description of the importance of TcI in the development of
cardiomyopathies in Argentina21 and cardiac alterations in
Colombia50,55 has drawn attention to the possibility that this DTU
contributes to the pathogenicity of Chagas disease. In Colombia and
Venezuela, TcI isolates have been associated not only with low
parasitemia and very mild clinical symptoms, but also with severe
acute symptomatic cases and death.50,53 TcI haplotypes TcIa and
TcId have been identified in different tissues from a heart-
transplanted Chagas cardiomyopathy patient with reactivation,
indicating histotropism.14 A high percentage of isolates belonging to
TcI haplotype TcId were identified in Venezuelan patients infected
with oral outbreaks and there was evidence of multiclonal infections



Figure 4. Distribution of discrete typing units (DTUs) of Trypanosoma cruzi in different municipalities of the State of Rio Grande do Norte, Brazil.

K. Martins et al. / International Journal of Infectious Diseases 39 (2015) 68–75 73
in patients, triatomine vectors, and reservoirs in the regions of these
outbreaks, suggesting multiple infections in reservoirs from urban
and rural areas.56 Further studies are needed to determine whether
the different clinical forms found here are relevant to some TcI
haplotypes, immune responses of patients, or multiple infections by
different DTUs not detected by the methodology used.

In this study, the distribution of TcI in patients from several
municipalities, who did not share food sources capable of
transmitting T. cruzi, suggests that transmission in the semi-arid
area is vectorial and is not associated with oral outbreaks, as
reported previously for this DTU.57 Since TcI has been detected in
humans, T. pseudomaculata, and T. brasiliensis7,58, it is believed that
the TcI present here could be associated with the Triatoma genus
acting as vectors.

Chagasic patients with TcII presented cardiac, digestive, or
indeterminate clinical forms, corroborating previous findings in
which DTU II populations have been shown to play a major role in
Brazilian chagasic patients.18,27,42 This DTU is considered common
in humans, with high homology among different hosts and locations
in the semi-arid region.32 T. brasiliensis, a vector capable of acting as a
link between sylvatic and domestic cycles, has regularly been found
to be infected.6 TcII has also been observed in Cingulata, Rodentia, and
Primata, which are distributed in many American regions, and these
also occasionally carry TcIII.26 These orders are common in the semi-
arid region and are probably involved as reservoirs of this DTU.

The data presented here demonstrate that transmission cycles
of T. cruzi in the semi-arid region can sustain epidemiological
patterns of the parasite that are different to those of other regions
of the country. Moreover, TcIII was identified for the first time in
northeastern Brazil as a causative agent of chronic human disease;
no similar reports from other states of the region have been
verified. These findings alert us to the complexity of controlling the
transmission of the parasite in such areas, where overlapping
sylvatic and peri-domiciliary cycles occur.
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