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Abstract

In this paper, we consider a system of nonlinear variational inclusions involving H -accretive operators studied by Huang and
Fang in q-uniformly smooth Banach spaces. Using resolvent operator technique, we suggest an iterative algorithm for finding an
approximate solution to the system of variational inclusions. Further, we discuss convergence criteria for the approximate solution
of the system of variational inclusions. The theorems presented in this paper improve and unify many known results of variational
inclusions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

Variational inequalities and variational inclusions are among the most interesting and important mathematical prob-
lems and have been studied intensively in the past years since they have wide applications in mechanics, physics, opti-
mization and control, nonlinear programming, economics and transportation equilibrium, and engineering
sciences, etc. In the theory of variational inequalities and variational inclusions, the development of an efficient
and implementable iterative algorithm is interesting and important. Various kinds of iterative algorithms to solve the
variational inequalities and inclusions have been developed by many authors. For details, we can refer to [1–10] and
the references therein. Among these methods, the resolvent operator techniques for solving variational inequalities and
variational inclusions are interesting and important.

Recently, Huang and Fang [5] introduced a new class of maximal �-monotone mapping in Hilbert spaces, which
is a generalization of the classical maximal monotone mapping, and studied the properties of the resolvent operator
associated with the maximal �-monotone mapping. They also introduced and studied a new class of nonlinear variational
inclusions involving maximal �-monotone mapping in Hilbert spaces. For some related works, we refer to [5] and the
references therein.
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In this paper, we further generalize the resolvent operator technique of H -accretive operators introduced by Huang
and Fang. We construct a new algorithm for solving the system of variational inclusions by using the resolvent operator
technique. We discuss convergence criteria for the approximate solution of the system of variational inclusions. The
theorems presented in this paper improve and unify many known results of variational.

In what follows, we always let X be a real Banach space with dual space X∗, 〈·, ·〉 be the dual pair between X and
X∗, and 2X denote the family of all the nonempty subsets of X. The generalized duality mapping Jq(x) : X → 2X is
defined by

Jq(x) = {f ∗ ∈ X∗ : 〈x, f ∗〉 = ‖x‖q, ‖f ∗‖ = ‖x‖q−1},
where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is known that, in general,
Jq = ‖x‖q−2J2, for all x ∈ X, and Jq(x) is single-valued if X∗ is strictly convex. In the sequel, unless otherwise
specified, we always suppose that X is a real Banach space such that Jq(x) is single-valued and H is a Hilbert space. If
X = H , then J2 becomes the identity mapping of H.

The modulus of smoothness of X is the function �X : [0, +∞) → [0, +∞) defined by

�X(t) = sup{ 1
2 (‖x + y‖ + ‖x − y‖ − 1) : ‖x‖�1, ‖y‖� t}.

A Banach space X called uniformly smooth if

lim
t→∞

�X(t)

t
= 0,

X is called q-uniformly smooth if there exists a constant c > 0, such that

�X(t)�ctq, q > 1.

Note that Jq is single-valued if X is uniformly smooth. In the study of characteristic inequalities in q-uniformly smooth
Banach spaces, Xu [10] proved the following lemma.

Lemma 1.1 (Xu [10]). Let X be a real uniformly smooth Banach space. Then, X is q-uniformly smooth if and only if
there exists a constant cq > 0, such that for all x, y ∈ X

‖x + y‖q �‖x‖q + q〈y, Jq(x)〉 + cq‖y‖q . (1.1)

Definition 1.1. Let T , H : X → X be two single-valued operators. The operator T is said to be

(i) accretive if

〈T x − Ty, Jq(x − y)〉�0 ∀x, y ∈ X;

(ii) strictly accretive if

〈T x − Ty, Jq(x − y)〉�0 ∀x, y ∈ X

and the equality holds if and only if y = x;
(iii) strongly accretive if there exists a constant r > 0, such that

〈T x − Ty, Jq(x − y)〉�r‖x − y‖q ∀x, y ∈ X;

(iv) strongly accretive with respect to H if there exists a constant � > 0, such that

〈T x − Ty, Jq(Hx − Hy)〉��‖x − y‖q ∀x, y ∈ X;

(v) Lipschitz continuous if there exists a constant s > 0, such that

‖T x − Ty‖�s‖x − y‖ ∀x, y ∈ X.
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Definition 1.2. Multivalued mapping M : X → 2X is said to be

(i) accretive if x, y ∈ X

〈u − v, Jq(x − y)〉�0 ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(ii) m-accretive if M is accretive and (I + �M)X = X for ∀� > 0, where I denotes the identity mapping on X.

It is well known that when X = H is Hilbert space, concept of accretive is identical with monotone.

Remark 1.1. If X = H , Jq replaces by the operator � : X → X in Definitions 1.1 and 1.2, then the operators is called
�-monotone type (see [8]).

Definition 1.3. Let H : X → X be a single-valued mapping and M : X → 2X multivalued mapping. We say that M
is H -accretive if M is accretive and (H + �M)X = X hold, for � > 0.

Definition 1.4. Let H : X → X be a strictly accretive mapping and M be an H -accretive mapping. The resolvent
mapping RH

M,� : X → X associated with H and M is defined by

RH
M,�(u) = (H + �M)−1(u) ∀u ∈ X.

Lemma 1.2 (Fand and Huang [4]). Let H : X → X be strongly accretive mapping with constant r > 0 and M : X →
2X be an H -accretive mapping. Then, the resolvent operator RH

M,� : X → X is Lipschitz continuous with constant
1/r , i.e.

‖RH
M,�(u) − RH

M,�(v)‖� 1

r
‖u − v‖ ∀u, v ∈ X.

2. The iterative algorithm for a system of variational inclusions

In this section, we consider the following system of variational inclusions of finding u, v ∈ X such that

0 ∈ Hg(u) − Hg(v) + �(T (v) + M(g(u))), (2.1)

0 ∈ Hg(v) − Hg(u) + �(T (u) + M(g(v))), (2.2)

where � > 0, � > 0, T , H : X → X is a single-valued mapping, M is multivalued mapping, g : X → X is strongly
accretive single-valued mapping.

We remark that if u = v, � = � (2.1), (2.2) reduces to a variational inclusion of finding u ∈ X such that

0 ∈ T (u) + M(g(u). (2.3)

Variational inclusion (2.3) is an important generalization of variational inclusion considered by Fang and Huang [4]. If
H = I (2.1), (2.2) reduces to a variational inclusion of finding u, v ∈ X such that

0 ∈ g(u) − g(v) + �(T (v) + M(g(u))), (2.4)

0 ∈ g(v) − g(u) + �(T (u) + M(g(v))). (2.5)

This variational inclusion considered by Kazmi and Bhat [8]. For applications of such variational inclusions, see [9,6].
Some special cases:
Case I: If X=H is Hilbert space H =I , g=I M(g(·))=��(·), where � : H → R∪{+∞} is a proper function, and

��(·) denotes the �-subdifferential of �, then (2.4), (2.5) reduces to the following system of nonlinear variational-like
inequalities. Find u, v ∈ H such that

〈T (v) − �−1(u − v), �(w, u)〉 + �(w) − �(u)�0 ∀w ∈ H, � > 0, (2.6)

〈T (v) − �−1(u − v), �(w, u)〉 + �(w) − �(u)�0 ∀w ∈ H, � > 0. (2.7)
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Case II: If in case I�(w, u)=w−u, ∀w, u ∈ H , and��be the subdifferential of a proper convex lower semicontinuous
function � : H → R ∪ {+∞}, then (2.6), (2.7) reduces to the following system of nonlinear variational inequalities:
find u, v ∈ H such that

〈T (v) − �−1(u − v), w − u〉 + �(w) − �(u)�0 ∀w ∈ H, � > 0, (2.8)

〈T (v) − �−1(u − v), w − u〉 + �(w) − �(u)�0 ∀w ∈ H, � > 0. (2.9)

Case III: If, in case II, we take ��=�K , the indicator function on a nonempty closed convex set K ⊂ H , then system
(2.8), (2.9) reduces to the following system of finding u, v ∈ H such that

〈�T (v) − u + v, w − u〉�0 ∀w ∈ H, � > 0, (2.10)

〈�T (v) − u + v, w − u〉�0 ∀w ∈ H, � > 0 (2.11)

which is same as the system of nonlinear variational inequalities considered by many authors. For the suitable choices of
the mappings T, g, and M, (2.1), (2.2) includes, as special cases, various classes of variational inclusions and variational
inequalities, see [1–10] and the references therein.

In this section, we mainly discuss iterative methods for the system of variational inclusions (2.1), (2.2).
First, we give the following lemma, the proof of which is a direct consequence of the definition of RH

M,� and hence,
is omitted.

Lemma 2.1. Let H : X → X be a strictly accretive and let M : X → 2X be H -accretive, then (u, v) is the solution
of variational inclusions (2.1), (2.2) if and only if it satisfies

g(u) = RH
M,�[Hg(v) − �T (v)], � > 0, (2.12)

where

g(v) = RH
M,�[Hg(u) − �T (u)], � > 0. (2.13)

Iterative Algorithm I. For an arbitrarily chosen u0 ∈ X, compute {un}, {vn} by the iterative schemes

un+1 = un − g(un) + RH
M,,�[Hg(vn) − �T (vn)], � > 0, (2.14)

where

g(vn) = RH
M,�[Hg(un) − �T (un)], � > 0. (2.15)

If g is invertible, then (2.14), (2.15) can be rewritten as

g(u) = RH
M,�[HRH

M,�(Hg(u) − �T (u)) − �Tg−1RH
M,�(Hg(u) − �T (u))]

= RH
M,�(H − �Tg−1)RH

M,�(H − �Tg−1)g(u). (2.16)

This fixed-point formulation allows us to suggest the following iterative method which is known as modified resolvent
method. Thus we have the following Iterative Algorithm II.

Iterative Algorithm II. For an arbitrarily chosen u0 ∈ X, compute {un} by the iterative scheme

g(un+1) = RH
M,�(H − �Tg−1)RH

M,�(H − �Tg−1)g(un), � > 0, � > 0, n = 0, 1, 2, . . . . (2.17)

If, � = � and un = vn for all n > 0, then the Iterative Algorithm I reduces to the following iterative algorithm.

Iterative Algorithm III. For an arbitrarily chosen u0 ∈ X, compute {un} by the iterative scheme

un+1 = un − g(un) + RH
M,�[Hg(un) − �T (un)], � > 0. (2.18)

We remark that Iterative Algorithm III gives the approximate solution to the variational inclusion (2.3).
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Theorem 2.1. Let X be a q-uniformly smooth Banach space and H : X → X be a strongly accretive and Lipschitz
continuous operator with constants r and 	, respectively. T : X → X be Lipschitz continuous and strongly accretive
with respect to g with constants s and t, respectively. g : X → X is a strongly accretive and Lipschitz continuous
operator with constants 
 and �, respectively. Assume that M : X → 2X is an H -accretive operator and there exist
� > 0, � > 0, such that

0��1 + 1


r2 (�2 + �3)(�2 + �4) < 1,

where

�1 = (1 − q
 + cq�q)1/q, �2 = [�(1 − qr + cq	q)]1/q ,

�3 = (� − q�s + cq�q tq)1/q, �4 = (� − q�s + cq�q tq)1/q . (2.19)

Then, the iterative sequence {un}, {vn} generated by Algorithm I converges strongly to the unique solution (u, v) of
variational inclusions problem (2.1), (2.2).

Proof. From Algorithm I and Lemma 1.2, we have

‖un+1 − un‖ = ‖un − g(un) + RH
M,�(Hg(vn) − �T (vn))

− un−1 + g(un−1) − RH
M,�(Hg(vn−1) − �T (vn−1))‖

�‖un+1 − un + [g(un) − g(un−1)]‖
+ ‖RH

M,�(Hg(vn) − �T (vn)) − RH
M,�(Hg(vn−1) − �T (vn−1))‖

�‖un+1 − un + [g(un) − g(un−1)]‖ + 1

r
‖Hg(vn) − Hg(vn−1) − �T (vn) + �T (vn−1)‖

�‖un+1 − un + [g(un) − g(un−1)]‖ + 1

r
‖Hg(vn) − Hg(vn−1)

− g(vn) + g(vn−1)‖ + 1

r
‖g(vn) − g(vn−1) − �T (vn) + �T (vn−1)‖. (2.20)

By Lemma 1.1 and strongly accretive of H, one has

〈Hg(vn) − Hg(vn−1), Jq(g(vn) − g(vn−1))〉�r‖g(vn) − g(vn−1)‖q ,

‖Hg(vn) − Hg(vn−1) − g(vn) + g(vn−1)‖q

= ‖g(vn) − g(vn−1)‖q + cq‖Hg(vn) − Hg(vn−1)‖q − q〈Hg(vn) − Hg(vn−1), Jq(g(vn) − g(vn−1))〉
�(1 − qr + cq	q)‖g(vn) − g(vn−1)‖q ��(1 − qr + cq	q)‖vn − vn−1‖q . (2.21)

Again, since T : X → X is strongly accretive with respect to g, we have the following estimate:

‖g(vn) − g(vn−1) − �T (vn) + �T (vn−1)‖q = ‖g(vn) − g(vn−1)‖q + cq�q‖T (vn) − T (vn−1)‖q

− q�〈T (vn) − T (vn−1), Jq(g(vn) − g(vn−1))〉
�(� − q�s + cq�q tq)‖vn − vn−1‖q , (2.22)

‖un − un−1 + [g(un) − g(un−1)]‖q = ‖un − un−1‖q + cq‖g(un) − g(un−1)‖q

− q〈g(un) − g(un−1), Jq(un − un−1)〉
�(1 − q
 + cq�q)‖un − un−1‖q . (2.23)

Now, we have

‖g(vn) − g(vn−1)‖ · ‖vn − vn−1‖q−1 �〈g(vn) − g(vn−1), Jq(vn − vn−1)〉�
‖vn − vn−1‖q ,
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which implies

‖vn − vn−1‖� 1



‖g(vn) − g(vn−1)‖

= 1



‖RH

M,�(Hg(un) − �T (un)) − RH
M,�(Hg(un−1) − �T (un−1))‖

� 1

r

‖Hg(un) − Hg(un−1) − �T (un) + �T (un−1))‖

� 1

r

{[�(1 − qr + cq	q)]1/q + (� − q�s + cq�q tq)1/q}‖un − un−1‖, (2.24)

where (2.15) has been used.
Combining (2.20)–(2.24), we have

‖un+1 − un‖�
(

�1 + 1


r2 (�2 + �3)(�2 + �4)

)
‖un − un−1‖�k‖un − un−1‖, (2.25)

where

�1 = (1 − q
 + cq�q)1/q, �2 = [�(1 − qr + cq	q)]1/q ,

�3 = (� − q�s + cq�q tq)1/q, �4 = (� − q�s + cq�q tq)1/q , (2.26)

k = �1 + 1


r2 (�2 + �3)(�2 + �4).

Since 0�k < 1 by condition (2.19). Now, (2.25) implies that {un} is Cauchy sequence in X. Also, (2.24) implies that
{un} is Cauchy sequence in X. Hence, there exist u, v ∈ X such that un → u, (n → ∞) vn → v, (n → ∞) . Since
T , H, g, RH

M,� are continuous, then it follows Iterative Algorithm I that u, v ∈ X satisfy (2.1), (2.2), i.e. {un}, {vn}
strongly convergence the solution of variational inclusions problem. �

Remark 2.1. It is clear that r < 	, s < t�q−1, 
��. If � > 1, q = 2, i.e. X is 2-uniformly smooth, the following relation
hold for some suitable values � > 0,

∣∣∣∣� − s

c2t2

∣∣∣∣ <
√

s2 − c2t2�2(2 − �2)

c2t2 , s > t
√

c2�2(2 − �2), �2 < 1,

and it ensures that �2 + �4 < 1. The following relation hold for some suitable values � > 0,

∣∣∣∣� − s

c2t2

∣∣∣∣ <
√

s2 − �c2t2 + c2t2(
r2 − 
r2�1 − �2)
2

c2t2 ,

t
r2√c2 >
√

�c2t2 − s2 + t
√

c2(
r2�1 + �2)

and it ensures that �2 + �3 < 1. Hence, for some suitable values � > 0, � > 0, above conditions ensures that 0�k < 1.
For example, c2 =1, r =0.98, 	=1.02, �=0.7, 
=1, s =0.8, t =1.02, �=1.001, �=0.8, �1 =0.04, �2 =0.29, �3 =
0.62, �4 = 0.63, k = 0.91, then (2.19) hold. We note that Hilbert spaces and Lq (or lq ) are 2-uniformly smooth.
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