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SUMMARY

Current evidence suggests that hypothalamic fatty
acid metabolism may play a role in regulating food
intake;however,confirmationthat it isaphysiologically
relevant regulatory system of feeding is still incom-
plete. Here, we use pharmacological and genetic ap-
proaches to demonstrate that the physiological orexi-
genic response to ghrelin involves specific inhibition of
fatty acid biosynthesis induced by AMP-activated pro-
tein kinase (AMPK) resulting in decreased hypotha-
lamic levels of malonyl-CoA and increased carnitine
palmitoyltransferase 1 (CPT1) activity. In addition, we
also demonstrate that fasting downregulates fatty
acid synthase (FAS) in a region-specific manner and
that this effect is mediated by an AMPK and ghrelin-
dependent mechanisms. Thus, decreasing AMPK ac-
tivity in the ventromedial nucleus of the hypothalamus
(VMH) is sufficient to inhibit ghrelin’s effectsonFASex-
pression and feeding. Overall, our results indicate that
modulation of hypothalamic fatty acid metabolism
specifically in the VMH in response to ghrelin is a
physiological mechanism that controls feeding.

INTRODUCTION

Feeding requires the integration within the central nervous sys-

tem (CNS) of multiple afferent energy-related homeostatic sig-

nals that interact with specific hypothalamic nuclei ordered into

complex neuronal circuits. These nuclei respond to changes in

energy status by altering the expression of specific neuropep-
tides and by inducing structural changes to their neuronal

networks in order to adjust food intake to whole-body energy de-

mands (Flier, 2004; Pinto et al., 2004; Pagotto et al., 2006; Plum

et al., 2006; Morton et al., 2006). It is unclear how the expression

of these neuropeptides is regulated and by which specific sig-

nals and through what efferent systems they accurately match

the bioenergetic needs of the organism. Recent evidence sug-

gests that nutrient-related metabolic pathways, such as fatty

acid metabolism, may act as direct modulators of the hypotha-

lamic control of feeding (Loftus et al., 2000; Obici et al., 2003;

He et al., 2006; Pocai et al., 2006).

The de novo fatty acid biosynthesis pathway comprises three

key enzymes, acetyl-CoA carboxylase (ACC), fatty acid synthase

(FAS), and malonyl-CoA decarboxylase (MCD), all of which are

expressed in the hypothalamus (Kahn et al., 2005; López et al.,

2006). Malonyl-CoA is not only an intermediary in the biosynthe-

sis of fatty acids but also plays an important role in the metabolic

switch that controls the balance between de novo lipogenesis

and fatty acid oxidation. Levels of malonyl-CoA depend on the

balance between ACC activity that catalyzes malonyl-CoA syn-

thesis and the activation of FAS and MCD that facilitates its

clearance. AMP-activated protein kinase (AMPK) is an important

regulator of the fatty acid biosynthetic pathway. Following acti-

vation, AMPK phosphorylates and inhibits ACC, preventing the

production of malonyl-CoA. This further stimulates carnitine pal-

mitoyltransferase 1 (CPT1), ultimately facilitating mitochondrial

fatty acid oxidation (Obici et al., 2003; Kahn et al., 2005; Wolf-

gang et al., 2006). Pharmacologic and genetic evidence has

demonstrated that altered levels and activity of these enzymes

modulate feeding (Loftus et al., 2000; Obici et al., 2003; Mino-

koshi et al., 2004; Wolfgang et al., 2006; López et al., 2006;

Chakravarthy et al., 2007). Since these manipulations altered

the hypothalamic pool of malonyl-CoA (Hu et al., 2003; López
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Figure 1. Fasting Influences Hypothalamic Fatty Acid Metabolism
(A) Western blot; (B) hypothalamic protein levels (±SEM) of pAMPK, AMPKa1, AMPKa2, pACCa, ACCa, ACCb, and FAS; and (C) hypothalamic malonyl-CoA

levels (±SEM) in fed and 24 hr fasted rats. (D) FAS mRNA levels (±SEM) in the ARC, PVH, and VMH of fed and 24 hr fasted rats. (E) Hypothalamic FAS-IR

(403) in fed and 24 hr fasted rats. (F) Measurement of FAS-IR cells (±SEM) in the ARC, PVH, and VMH of fed and 24 hr fasted rats. (G) Expression of FAS in

the VMH (upper: 53; lower: 203), (H) FAS mRNA levels (±SEM) in the VMH, and (I) hypothalamic malonyl-CoA levels (±SEM) of the described groups are shown.

3V: third ventricle; **p < 0.01 versus fed; ***p < 0.001 versus fed or fed/vehicle; #p < 0.05 fast 24 hr/vehicle versus fast 24 hr/compound C; ###p < 0.001 fast

24 hr/vehicle versus fast 24 hr/compound C.
et al., 2006; Chakravarthy et al., 2007) and/or long-chain fatty

acids-CoA (LCFA-CoA) (Obici et al., 2003; He et al., 2006; Pocai

et al., 2006), these metabolites have been proposed as signals of

nutrient abundance able to modulate feeding.

Ghrelin (a hormone produced in the stomach with orexigenic

properties) has recently attracted enormous interest as a poten-

tial antiobesity therapeutic target (Foster-Schubert and Cum-

mings, 2006). Chronic ghrelin administration promotes weight

gain and adiposity (Tschop et al., 2000). Also, obese patients di-

agnosed with Prader-Willi syndrome have increased levels of

ghrelin (Cummings et al., 2002). Furthermore, loss-of-function

experiments using ghrelin knockout (KO) mice (Wortley et al.,

2005) or ghrelin receptor KO (GHS-R KO) mice (Zigman et al.,

2005) have shown that lack of ghrelin function protects against

early-onset obesity. Altogether, these studies indicate that ghre-

lin might be an important signal for humans and rodents to
390 Cell Metabolism 7, 389–399, May 2008 ª2008 Elsevier Inc.
prepare for meal initiation (Cummings et al., 2001; Drazen

et al., 2006).

In this study, we show that increased ghrelin levels, in the con-

text of food deprivation, promote feeding through AMPK-medi-

ated modulation of hypothalamic fatty acid metabolism, thus

leading to decreased malonyl-CoA and increased CPT1 activity.

Altogether these data demonstrate a physiological role for hypo-

thalamic fatty acid metabolism modulation as the mechanism

activated by ghrelin.

RESULTS

Fasting Induces Phosphorylation of Hypothalamic AMPK
and Decreases FAS in the VMH
Fasting stimulated the phosphorylation of hypothalamic AMPK

and ACCa (Figures 1A and 1B), resulting in a decrease in
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Figure 2. Leptin Fails to Regulate Hypothalamic Fatty Acid Metabolism

(A) Food intake (±SEM) and (B) body weight change (±SEM) of rats treated with IP injections of vehicle or leptin are shown. (C) FAS mRNA levels (±SEM) in the VMH

and (D) hypothalamic malonyl-CoA levels (±SEM) of the described groups are also shown. FAS mRNA levels (±SEM) in the VMH of ob/ob mice (E) and obese

Zucker rats (F) are shown together with lean controls. NFI: non-food intake; *p < 0.05 versus fed/vehicle; **p < 0.01 versus fed/vehicle; ***p < 0.001 versus

fed/vehicle; ###p < 0.001 versus fed/leptin.
hypothalamic malonyl-CoA levels (Figure 1C). FAS mRNA

(Figures S1A and S1B available online) and protein (Figures

S1C–S1E) were specifically detected in the arcuate (ARC), para-

ventricular (PVH), and ventromedial (VMH) nuclei, where FAS

was coexpressed with brain-derived neurotrophic factor

(BDNF) (Figure S1E). Total levels of FAS protein in the hypothal-

amus did not change after 24 hr fasting (Figures 1A and 1B).

However, 24 hr fasting selectively decreased FAS mRNA expres-

sion (Figure 1D) and FAS-immunoreactive cells in the VMH

(Figures 1E and 1F).

AMPK Signaling Regulates Fasting-Induced Inactivation
of Hypothalamic ACC and FAS in the VMH
To establish a link between fasting, phosphorylation of AMPK,

and inhibition of ACC and FAS, we investigated the effect of

compound C, a nonspecific inhibitor of AMPK (Zhou et al.,

2001; Bain et al., 2007), in fasted rats. Compound C clearly in-

hibited the AMPK pathway as demonstrated by the decreased

phosphorylation of AMPK and ACCa (Figures S2A and S2B). In-

terestingly, compound C also caused a reduction in the expres-

sion of Ca2+/calmodulin-dependent protein kinase kinase

(CaMKKa), which has previously been reported to phosphorylate

AMPK in vitro (Hawley et al., 2005; Woods et al., 2005) (Figures

S2A and S2B). In contrast, compound C had no significant effect

on a number of other protein kinase pathways studied (Figures

S2A and S2B), including some of those that have recently been

reported to be inhibited by high doses of compound C in vitro

(Bain et al., 2007).

Intracerebroventricular (ICV) administration of compound C to

24 hr fasted rats prevented the previously observed fasting-

induced physiological decrease of FAS mRNA levels in the
VMH (Figures 1G and 1H). This suggests that the effect of fasting

in decreasing FAS mRNA expression in the VMH involves an

AMPK-dependent mechanism. AMPK inhibition by compound

C also resulted in activation of ACC. As a result of this, ma-

lonyl-CoA levels remained elevated at fed-state levels despite

rats being fasted for 24 hr (Figure 1I).

Decreased Leptin and Leptin Signaling Are Not Involved
in Fasting-Induced Changes of ACC and FAS in the VMH
We initially hypothesized that fasting-induced hypoleptinemia

(Table S1) may mediate a fasting-induced decrease of ACC ac-

tivity and FAS expression in hypothalamus. Fed rats treated with

leptin showed a marked decrease in both food intake and body

weight (Figures 2A and 2B). Both FAS mRNA levels in the VMH

and hypothalamic malonyl-CoA decreased by fasting, and their

levels were not restored by leptin administration (Figures 2C

and 2D). No changes in FAS mRNA levels in the VMH of fed

ob/ob mice and fed obese Zucker rats were detected when com-

pared to their respective controls (Figures 2E and 2F). These re-

sults show that FAS expression in the VMH and hypothalamic

ACC activity are not regulated by leptin, either in the fed or

fasted state.

The Orexigenic Effect of Ghrelin Is Mediated
by Hypothalamic AMPK
AMPK has recently been proposed as a target of ghrelin in the

hypothalamus (Andersson et al., 2004; Kohno et al., 2008).

However, this hypothesis has not been confirmed by data link-

ing AMPK stimulation with ghrelin orexigenic activity. ICV

administration of ghrelin to fed satiated rats induced a marked

increase in their food intake (Figures 3A and S3A). Under these
Cell Metabolism 7, 389–399, May 2008 ª2008 Elsevier Inc. 391
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Figure 3. Ghrelin Activates Hypothalamic AMPK and ACC

(A) Cumulative food intake (±SEM), (B) western blot, and (C) hypothalamic protein levels (±SEM) of pAMPK, AMPKa1, AMPKa2, pACCa, ACCa, and ACCb in

vehicle and ghrelin ICV-treated rats are shown. (D) shows cumulative food intake (±SEM) after ICV administration of vehicle or compound C prior to ICV admin-

istration of vehicle or ghrelin. *p < 0.05 versus vehicle or vehicle/vehicle; **p < 0.01 versus vehicle or vehicle/vehicle; ***p < 0.001 versus vehicle or vehicle/vehicle;

#p < 0.05 ghrelin/vehicle versus ghrelin/compound C; ##p < 0.01 ghrelin/vehicle versus ghrelin/compound C.
conditions ghrelin administration induced a time-dependent

increase in AMPK and ACCa phosphorylation levels, peaking

acutely at 1 (data not shown) and 2 hr and returning to normal

levels by 6 hr post-treatment (Figures 3B and 3C). To determine

whether the orexigenic effect of ghrelin was AMPK dependent

we used compound C. Our data demonstrated that ICV admin-

istration of compound C to fed rats completely prevented the

central orexigenic effect of ghrelin (Figure 3D). The same

dose of compound C when administered alone did not have

any effect on feeding, excluding the possibility of a direct

anorectic effect.

Compound C has been shown to inhibit a number of protein

kinases in vitro, suggesting its lack of specificity on AMPK

(Bain et al., 2007); thus in order to confirm the link between
392 Cell Metabolism 7, 389–399, May 2008 ª2008 Elsevier Inc.
AMPK and ghrelin orexigenic effects, we adopted a molecular

approach to inhibit AMPK, using dominant-negative forms of

AMPKa1 and a2 (a1a2 DN). Adenoviruses harboring a1a2 DN

(Woods et al., 2000) were injected stereotaxically into the VMH

(Figure 4A). Infection efficiency was demonstrated by hypotha-

lamic expression of GFP expressed by the adenovirus construct

(Figure 4B) specifically in the VMH (Figure 4C) and also by the

fact that pACC levels were significantly decreased in the hypo-

thalamus of ghrelin-treated rats injected with a1a2 DN when

compared to ghrelin-treated rats injected with control adenovi-

rus containing GFP (Ghrelin/GFP: 100 ± 10.6; Ghrelin/a1a2 DN:

63.5 ± 6.5; p < 0.01). Our data demonstrate that stereotaxic

delivery of a1a2 DN in the VMH robustly impaired the central

orexigenic effect of ghrelin (Figure 4D).
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Central Administration of Ghrelin Decreases FAS
Expression in the Hypothalamus
Central (ICV) ghrelin administration induced a time-dependent

specific increase in food intake (Figures 3A and S3A) and

a time-dependent decrease in FAS mRNA levels in the VMH in

fed rats (Figures 5A, 5B, and S3C), as well as a decrease in total

hypothalamic FAS activity (Figure 5C) and protein levels (Figures

5D and 5E) after 6 hr of treatment. No changes in FAS mRNA

levels were found either in other hypothalamic nuclei, such as

ARC and PVH, or in other brain areas, such amygdala (Amyg),

striatum, habenula (Hb), fields CA1, CA2, and CA3 of the hippo-

campus (HippCA1, 2, 3), hippocampus dentate gyrus (HippDG),

motor cortex, pyriform cortex, sensory cortex, substantia nigra

(SN), and zona incerta (thalamus, ZI), at any of the evaluated

doses (Figure S3C). The decrease in FAS expression was asso-

ciated with reduced levels of sterol regulatory element binding

protein-1 (SREBP1) (Figures 5D and 5E). Peripheral (intra-

peritoneal, IP) administration of ghrelin induced a marked

orexigenic response (Figure S3B) and reproduced the specific

inhibitory effect on FAS mRNA expression in the VMH (Figures

5F and S3D). Overall, these results suggest that peripheral ghre-

lin regulates hypothalamic FAS.

Figure 4. The Orexigenic Effect of Ghrelin Is Mediated

by AMPK in the VMH

(A) Coronal section of a rat brain at the level of the hypothala-

mus showing the injection route for a unilateral stereotaxic

microinjection of adenoviral expression vectors. The injection

route, enclosed in a red rectangle, is precisely placed in the

VMH.

(B) Western blot showing GFP protein levels in the hypothala-

mus of sham control rats (non-adenovirus-treated, negative

control), rats treatedwitha GFP-expressingadenovirus (positive

control), and rats treated with a1a2 DN adenovirus in the

VMH.

(C) Representative immunofluorescence with anti-GFP anti-

body showing GFP expression in the VMH of sham control

rats (non-adenovirus-treated, negative control) and rats treated

with a1a2 DN adenovirus in the VMH; as expected nonpositive

signal was detected in the VMH of sham control rats.

(D) Cumulative food intake (±SEM) after ICV administration of

vehicle or ghrelin to rats stereotaxically treated with a GFP-ex-

pressing adenovirus or a1a2 DN adenovirus. mt: mammillotha-

lamic tract; 3V: third ventricle; **p < 0.01 versus vehicle/GFP;

***p < 0.001 versus vehicle/GFP; #p < 0.05 ghrelin/GFP versus

ghrelin/a1a2 DN; ##p < 0.01 ghrelin/GFP versus ghrelin/a1a2 DN.

Since agouti-related protein (AgRP) and neuro-

peptide Y (NPY) expression increases after central

ghrelin administration (Seoane et al., 2003; Smith,

2005) (Figure S3E), we initially hypothesized that

the effects of ghrelin on FAS may be mediated by

the upregulation of these neuropeptides. However,

our results showed that ICV administration of AgRP

or NPY (Figure S3F) did not affect FAS mRNA. The

specificity of the ghrelin effect on FAS in the VMH

is further supported by the fact that double immu-

nocytochemistry of FAS and GHS-R revealed that

86.1% ± 1.4% immunoreactive cells in the VMH ex-

pressing FAS also coexpressed GHS-R (Figure 5G),

whereas other hypothalamic nuclei did not display

such a level of coexpression (ARC: 57.6% ± 2.4% of double-

stained cells; p < 0.001 versus VMH; PVH: 41.0% ± 2.5% of dou-

ble-stained cells; p < 0.001 versus VMH). Overall the data suggest

that ghrelin may exert a direct action on FAS-expressing neurons

in the VMH.

Ghrelin Mediates the Fasting-Induced Decrease
of FAS in the VMH
We hypothesized that the fasting-induced decrease in FAS

expression could be mediated by an elevated ghrelin tone (Table

S1) on FAS neurons. We first evaluated the effect on FAS mRNA

of a ghrelin antagonist, BIM-28163 (Halem et al., 2005), when ad-

ministered centrally in 24 hr fasted rats. Our data showed that

pharmacological blockage of ghrelin action attenuated the fast-

ing-induced decrease of FAS mRNA (Figures 5H and 5J). Sec-

ond, we examined the effects of fasting on FAS expression in

GHS-R KO characterized by a complete lack of ghrelin signaling

(Smith, 2005; Zigman et al., 2005). In response to fasting, GHS-R

KO mice did not show decreased FAS mRNA levels in the VMH

(Figures 5I and 5K). Therefore, our results are consistent with the

hypothesis that endogenous ghrelin mediates the effect of

fasting on FAS expression.
Cell Metabolism 7, 389–399, May 2008 ª2008 Elsevier Inc. 393
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Figure 5. Ghrelin Inhibits FAS Expression Specifically in the VMH

(A) Expression of FAS in the VMH and (B) FAS mRNA levels (±SEM) of vehicle and ghrelin ICV-treated rats (upper: 53; lower: 203) are shown. (C) Hypothalamic

FAS activity (±SEM), (D) western blot, and (E) hypothalamic FAS and SREBP1 protein levels (±SEM) of vehicle and ghrelin ICV-treated rats are shown for 2 and

6 hr. (F) shows FAS mRNA levels (±SEM) of vehicle and ghrelin IP-treated rats. (G) Double immunohistochemistry (upper: 403; lower: 1003) shows FAS and GHS-R

coexpression in the VMH. (H and I) Expression of FAS in the VMH (upper: 53; lower: 203) and (J and K) FAS mRNA levels (±SEM) in the VMH of the described
394 Cell Metabolism 7, 389–399, May 2008 ª2008 Elsevier Inc.
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Figure 6. The Orexigenic Effect of Ghrelin Is Mediated by Hypothalamic Malonyl-CoA and CPT1
(A and C) Expression of FAS in the VMH (upper: 53; lower: 203) and (B and D) FAS mRNA levels (±SEM) in the VMH of the described groups are shown. Also

shown are (E) malonyl-CoA levels (±SEM), (F) CPT1 activity (±SEM), (G) western blot, and (H) CPT1c protein levels (±SEM) in the hypothalamus of vehicle and

ghrelin ICV-treated rats. (I) shows cumulative food intake (±SEM) after ICV administration of vehicle or etomoxir prior to ICV administration of vehicle or ghrelin.

3V: third ventricle; *p < 0.05 versus vehicle/vehicle; **p < 0.01 versus vehicle or vehicle/vehicle; ***p < 0.001 versus vehicle or vehicle/vehicle or vehicle/GFP;
#p < 0.05 ghrelin/vehicle versus ghrelin/etomoxir; ##p < 0.01 ghrelin/vehicle versus ghrelin/compound C or ghrelin/etomoxir; ###p < 0.001 ghrelin/GFP versus

ghrelin/a1a2 DN.
AMPK Signaling Mediates Ghrelin-Induced Decrease
of FAS in the VMH
Our initial data demonstrated that fasting effects on FAS expres-

sion are mediated by AMPK-dependent (Figures 1G and 1H) and

ghrelin-dependent mechanisms (Figure 5). To investigate the link

between those pathways, we analyzed the effect of AMPK inhi-

bition on hypothalamic FAS mRNA expression in ghrelin-treated

rats. AMPK inhibition by central administration of compound C to

ghrelin-treated rats prevented the ghrelin-induced decrease

of FAS mRNA expression in the VMH (Figures 6A and 6B). To

further strengthen these data, we used a1a2 DN adenovirus

(Woods et al., 2000). Our data demonstrate that stereotaxic
delivery of a1a2 DN in the VMH prevented the ghrelin-induced

decrease in FAS mRNA levels in the VMH (Figures 6C and 6D).

The data demonstrate that the ghrelin effect on FAS mRNA

expression is mediated by an AMPK-dependent mechanism.

The Orexigenic Effect of Ghrelin Is Mediated
by Decreasing Hypothalamic Content of Malonyl-CoA
and Stimulation of Hypothalamic CPT1 Activity
Having shown that ghrelin induces activation of AMPK, phos-

phorylation of ACC, and decreased FAS levels, we investigated

the net effect of these changes in malonyl-CoA. Our results

show that hypothalamic malonyl-CoA levels decrease acutely
groups are shown. 3V: third ventricle; *p < 0.05 versus vehicle; **p < 0.01 versus vehicle; ***p < 0.001 versus fed or vehicle; #p < 0.05 fast 24 hr/vehicle versus fast

24 hr/ghrelin antagonist (BIM-28163); ###p < 0.001 versus WT/fast 24 hr.
Cell Metabolism 7, 389–399, May 2008 ª2008 Elsevier Inc. 395
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2 hr after ghrelin treatment, and its levels increase up to normal

values by 6 hr after ghrelin treatment (Figure 6E).

Ghrelin regulated hypothalamic CPT1 activity in a time-depen-

dent fashion, and the activity increased acutely at 1 hr (data not

shown) and 2 hr and was restored to normal levels by 6 hr after

treatment (Figure 6F). Interestingly, the timing of these changes

in CPT1 response matched the changes in malonyl-CoA levels

induced by ghrelin treatment. Moreover, no changes were de-

tected in the hypothalamic protein levels of CPT1 (Figures 6G

and 6H). This suggests that the stimulatory action of ghrelin on

CPT1 activity may be mediated by simultaneous changes in ma-

lonyl-CoA levels. To determine whether the effect of ghrelin on

food intake involved the activation of CPT1, we investigated

the effect of etomoxir, an inhibitor of CPT1 (Thupari et al.,

2002), on ghrelin orexigenic effect. ICV administration of eto-

moxir decreased the orexigenic effect of ghrelin at 2 hr (55% de-

creased compared to ghrelin-treated; p < 0.01) and 4 hr (34%

decreased compared to ghrelin-treated; p < 0.05) after its ICV

administration (Figure 6I). The selected dose of etomoxir in-

hibited CPT1 activity (vehicle-treated: 157.3 ± 18.4 pmol palmi-

tate/min/mg protein versus etomoxir-treated: 109.0 ± 13.1 pmol

palmitate/min/mg protein; p < 0.05). However, when adminis-

tered alone, this dose did not have any effect on feeding, exclud-

ing the possibility of a direct anorectic effect. Overall, the data

demonstrate that ghrelin orexigenic action is partially mediated

by stimulation of CPT1 activity.

DISCUSSION

The main conclusion from our study is that the orexigenic effect

of ghrelin involves the activation of hypothalamic AMPK and

inactivation of enzymatic steps of the de novo fatty acid bio-

synthetic pathway in the VMH, resulting in decreased malonyl-

CoA leading to activation of CPT1 (Figure 7). This observation

indicates that VMH fatty acid metabolism is a bona fide compo-

nent of the energy homeostatic system that integrates peripheral

signals, such as ghrelin, with the central mechanisms regulating

food intake.

Recent evidence indicates that hypothalamic lipid metabolism

plays a role in energy homeostasis through modulation of

malonyl-CoA and LCFA-CoA levels (Hu et al., 2003; Obici et al.,

2003; He et al., 2006; Pocai et al., 2006; López et al., 2006). Ad-

ditionally, pharmacological and genetic models have shown that

impairment of the fatty acid synthesis pathway in CNS has a se-

vere impact on food intake and body weight homeostasis (Loftus

et al., 2000; Obici et al., 2003; Minokoshi et al., 2004; López et al.,

2006; Chakravarthy et al., 2007); however the physiological

relevance of the hypothalamic fatty acid metabolism in the feed-

ing neurocircuitry and, more importantly, its relationship with

peripheral signals regulating food intake remains unknown.

It is widely accepted that the effect of ghrelin on feeding is ex-

erted in the hypothalamus via the ARC where GHS-R mRNA is

coexpressed with NPY and AgRP (Seoane et al., 2003; Smith,

2005). Recent data also indicate that ghrelin modulates hypotha-

lamic AMPK (Andersson et al., 2004; Kohno et al., 2008). How-

ever, despite this evidence, the molecular mechanisms and an-

atomical details of this interaction have not been fully identified.

More importantly, there is no mechanistic data indicating that

AMPK is required for ghrelin’s orexigenic effects. In this study,
396 Cell Metabolism 7, 389–399, May 2008 ª2008 Elsevier Inc.
we demonstrate that central inactivation of AMPK in the VMH

blocks the orexigenic effect of ghrelin and that this effect is asso-

ciated with decreased hypothalamic malonyl-CoA content and

activation of CPT1.

Levels of malonyl-CoA play a key role in fatty acid turnover by

acting both as a substrate for FAS and as an inhibitor of CPT1,

the enzyme importing fatty acyl-CoAs into mitochondria for oxi-

dation (Obici et al., 2003; Wolfgang et al., 2006). Recent reports

have demonstrated that pharmacological inhibition or gene tar-

geting of CPT1 reduces food intake (Obici et al., 2003; Wolfgang

et al., 2006). Our results show that malonyl-CoA is acutely

decreased by 2 hr after ghrelin administration, as a result of ghre-

lin action phosphorylating AMPK and inhibiting ACC. This

resulted in a decrease in malonyl-CoA levels associated with in-

creased CPT1 activity, which resulted in increased feeding. The

Figure 7. Proposed Model of Ghrelin Actions on Hypothalamic Fatty

Acid Metabolism

Fasting increases ghrelin secretion from stomach. Ghrelin orexigenic effects

involve the activation of hypothalamic AMPK and inactivation of enzymatic

steps of the de novo fatty acid biosynthetic pathway, resulting in decreased

malonyl-CoA, leading to activation of CPT1. In addition, fasting downregulates

FAS in the VMH through an AMPK and ghrelin-dependent mechanisms. Ghre-

lin actions are represented by blue arrows and a blue X, which shows attenu-

ation of CPT1 inhibition. 3V: third ventricle; a1a2 DN: AMPKa1 and a2 domi-

nant-negative adenovirus; ARC: arcuate nucleus of the hypothalamus; DMH:

dorsomedial nucleus of the hypothalamus; LHA: lateral hypothalamic area;

PVH: paraventricular nucleus of the hypothalamus; VMH: ventromedial

nucleus of the hypothalamus.



Cell Metabolism

Ghrelin and Hypothalamic Fatty Acid Metabolism
physiological significance of ghrelin’s rapid and transient effect

on depleting malonyl-CoA levels and activating CPT1 is intrigu-

ing. However, given the potential role of peripheral (stomach-de-

rived) ghrelin in promoting meal initiation (Cummings et al., 2001;

Drazen et al., 2006), it is tempting to speculate a potential role for

the fasting-induced ghrelin-AMPK-malonyl-CPT1 hypothalamic

system as an acute signal, triggering the beginning of feeding af-

ter a period of fasting coincident with increased ghrelin levels.

Further work using a genetic ablation strategy, such as the

CPT1c KO mice (Wolfgang et al., 2006), instead of CPT1’s phar-

macological inhibition with etomoxir, might help to clarify this hy-

pothesis. One interesting point is the elucidation of the precise

roles of both hypothalamic ACC isoforms (ACCa and ACCb). De-

spite ACCb being the isoform mainly involved in the regulation of

fatty acid oxidation, at least in nonlipogenic tissues (Wolfgang

and Lane, 2006), our data suggest that in the hypothalamus,

ACCa may modulate both fatty acid synthesis and oxidation.

Another intriguing question is the output system for this mecha-

nism. Current data have demonstrated that the sympathetic

nervous system is implicated in the transmission of the ‘‘malonyl-

CoA signal’’ from the brain to skeletal muscle (Cha et al., 2005)

and also in the modulation of central ghrelin actions on white ad-

ipose tissue (WAT) lipid metabolism (Theander-Carrillo et al.,

2006). On the basis of these data, a similar mechanism may be

involved in the output response of the ghrelin-AMPK-malonyl-

CPT1 axis from the hypothalamus to peripheral organs, such

as the pancreas, liver, and WAT.

In peripheral tissues, such as liver, muscle, and WAT, the

physiological response to starvation involves a coordinated

downregulation of the lipogenic pathway with simultaneous ac-

tivation of the oxidative pathway (Brown and Goldstein, 1997).

Lipids are an important component of the CNS composition;

the brain relies heavily on lipids to maintain its metabolic and

cell membrane homeostasis (Goldberg, 2003). Thus, it would

certainly be unexpected to find that the CNS lipid metabolism

may be subjected to major changes linked to daily nutritional

changes. In fact, it is counterintuitive that physiological periods

of food deprivation may compromise lipid metabolism in the en-

tire CNS. However, it cannot be excluded that the mechanisms

involved in lipid biosynthesis may, in selected nuclei, be used

as a sensing mechanism to maintain energy balance. Our data

provide evidence that the effect of starvation on hypothalamic

fatty acid metabolism is different than in peripheral organs. For

instance, despite the activity of AMPK and ACC being increased

in whole hypothalamus during fasting (Minokoshi et al., 2004),

levels of FAS mRNA and protein levels are maintained not only

in most hypothalamic nuclei (e.g., ARC or PVH) but also in the

rest of the CNS areas we studied (cortex, hippocampus, thala-

mus, etc.). However, we have identified the VMH as the hypotha-

lamic nuclei where FAS is specifically downregulated in re-

sponse to fasting. Interestingly, our results also indicate that

the energy homeostasis-related signal sensed to regulate fatty

acid metabolism in the hypothalamus and feeding behavior

may not necessarily be a nutrient, but the stomach-secreted hor-

mone ghrelin, acting through hypothalamic AMPK. There is evi-

dence that AMPK also controls the activity of ACC and MCD and

the expression of FAS mRNA in peripheral tissues, such as liver

and adipose tissue (Saha et al., 2000; Zhou et al., 2001). How-

ever, our data, by using both pharmacological and adenovirus-
based approaches, show that hypothalamic FAS expression is

a downstream target of AMPK in the hypothalamus.

The physiological significance of ghrelin effects on FAS-ex-

pressing neurons in the VMH is intriguing. The decrease in ma-

lonyl-CoA levels in response to ghrelin is transient so that by 6 hr

after ghrelin treatment, malonyl-CoA is restored to its normal

levels. Even though the mechanism by which malonyl-CoA levels

are restored may be related to the termination of ghrelin stimula-

tion of AMPK, our data also suggest that a direct effect of ghrelin

decreasing FAS expression and activity in the VMH may also

contribute to this process. Thus, we propose that ghrelin-in-

duced and fasting-induced decreases in FAS levels in the VMH

may be a physiological adaptive mechanism that helps to pre-

vent malonyl-CoA from decreasing to deleteriously low levels

in the hypothalamus. The observation that the decrease of FAS

in response to fasting and ghrelin administration is limited to

the VMH is particularly interesting. The VMH is well placed to in-

tegrate peripherally supplied signals that regulate food intake

with the input from other neighboring nuclei and the brainstem,

connected through specific neuronal projections (Tong et al.,

2007). Thus, our data provide evidence indicating that, besides

its role of maintaining lipid biosynthesis, FAS in the VMH may

also have an additional role as a sensor of the nutritional state.

In summary, here we show that the orexigenic action of ghrelin

depends on the specific regulation of hypothalamic fatty acid

metabolism mediated by AMPK, malonyl-CoA, and CPT1 activ-

ity (Figure 7). Our data also identify the fatty acid biosynthetic

pathway in the VMH as a potentially important physiological

mediator of feeding behavior of relevance for the understanding

and treatment of obesity.

EXPERIMENTAL PROCEDURES

Animals

We used adult male Sprague-Dawley rats and lean and obese Zucker rats,

adult male GHS-R KO mice, ob/ob mice, and their wild-type (WT) littermates.

The experiments were performed in agreement with the International Law on

Animal Experimentation. We used 8–16 animals per group, apart from immu-

nohistochemistry where we used 4–6.

Treatments

Fed and fasted rats received two IP administrations of leptin (200 mg). Animals

were sacrificed 12 hr after the second injection (9:00 am, day 1), exactly 24 hr

after fasting started. Chronic (ICV) cannulae were stereotaxically implanted as

previously described (López et al., 2006). Rats received an ICV administration

of ghrelin (0.25, 2, or 5 mg; Bachem), ghrelin antagonist BIM-28163 (10 nmol;

Ipsen) (Halem et al., 2005), AgRP (5 mg) (Tang-Christensen et al., 2004), NPY

(10 mg) (Tritos et al., 1998), etomoxir (10 mg), compound C (10 mg), or vehicle

(saline or DMSO). For ghrelin IP treatments rats received a single administra-

tion of ghrelin (10 nmol = 33.7 mg) (Wren et al., 2000; Andersson et al., 2004)

and were killed after 6 hr. All drugs (apart from ghrelin and BIM-28163) were

from Sigma.

Stereotaxic Microinjection of Adenoviral Expression Vectors

Rats were placed in a stereotaxic frame (David Kopf Instruments) under

ketamine/xylazine anesthesia. The VMH were targeted bilaterally using a

25-gauge needle (Hamilton) connected to a Hamilton 1 ml syringe. The injection

was directed to stereotaxic coordinates 2.3/3.3 mm posterior to the bregma

(two injections were performed in each VMH), ± 0.6 mm lateral to midline

and 10.2 mm below the surface of the skull (Figure 4A). Adenovirus vectors

were one of the following: (1) Cre-GFP (1 3 1010 pfu/ml) or (2) a1a2 DN (mix

1:1); they were delivered at a rate of 200 nl/min for 5 min (1 ml/injection site),

and the entire injector system was left in place for an additional 5 min after
Cell Metabolism 7, 389–399, May 2008 ª2008 Elsevier Inc. 397
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the injections were completed. After the procedure was complete, chronic

(ICV) cannulae were stereotaxically implanted as previously described (López

et al., 2006). Six days after adenovirus injection rats were ICV-treated with

ghrelin for 6 hr. After that time their brains were dissected and processed by

GPF-immunohistochemistry and FAS in situ hybridization or western blot.

We used 10 animals per group.

Blood Biochemistry

Plasma, leptin, and ghrelin levels were measured using rat ELISA kits (Crystal

Chem Inc).

In Situ Hybridization

Coronal brain sections (16 mm) were probed with specific antisense oligos (Ta-

ble S2) as previously described (López et al., 2006) (see Supplemental Data).

Immunohistochemistry

Diaminobenzidine (DAB) immunohistochemistry, immunofluorescence, and

double labeling were performed as described (López et al., 2006) using a rabbit

anti-GFP, anti-FAS (Abcam), and/or anti-GHS-R antibody and/or an anti-

BDNF antibody (Santa Cruz) (see Supplemental Data).

Western Blotting

Hypothalamic total protein lysates were subjected to SDS-PAGE, electro-

transferred on a PVDF membrane, and probed with the following antibodies:

ACC, pACC-Ser79, AMPKa1, AMPKa2, and pIRF-3-Ser396 (Upstate);

CaMKKa, CaMKKb, and pGP (Santa Cruz); CPT1c (Phoenix); FAS (BD),

pAMPKa-Thr172, and pSRC-Tyr527 (Cell Signaling); b-Actin and GFP (Abcam)

as previously described (López et al., 2006).

Enzymatic Assays

FAS activity was performed as previously described (Lelliott et al., 2005). CPT1

activity was measured using the method of Bieber et al. (1972).

Malonyl-CoA Assay

Malonyl-CoA was measured as previously described (Lelliott et al., 2005;

López et al., 2006).

Statistical Analysis

Data are expressed as mean ± SEM. Statistic significance was determined by

Student’s t test or ANOVA and post-hoc Bonferroni test. p < 0.05 was consid-

ered significant.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, two

tables, and three figures and can be found with this article online at http://

www.cellmetabolism.org/cgi/content/full/7/5/389/DC1/.
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