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1. Introduction and statement of results

Let Fk denote the Fibonacci numbers (where we have shifted the usual initial condition); i.e.
(F1, F2, . . .) = (1,2,3,5,8, . . .).

Consider the formal power series

H(x) =
∏
k�1

(
1 − xFk

)

= (1 − x)
(
1 − x2)(1 − x3)(1 − x5)(1 − x8) · · ·

= 1 − x − x2 + x4 + x7 − x8 + x11 − x12 − x13 + x14 + · · · .

Let hm be the coefficient of xm in H(x). It is clear that hm = h+
m − h−

m , where h+
m is the number of

partitions of m into an even number of distinct Fibonacci numbers, and h−
m is the number of partitions

of m into an odd number of distinct Fibonacci numbers.
In [2], N. Robbins proved that hm ∈ {−1,0,1}. In [1], F. Ardila gave a simpler proof for Robbins’

result by giving a recursion on hm .
In this paper, we consider quasifibonacci numbers, which serve as generalization of Fibonacci num-

bers.
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Definition 1.1. Given a positive integer N � 2. A sequence A1, A2, . . . of positive integers is called
quasifibonacci sequence of level N if

• Ak+N = Ak+N−1 + · · · + Ak for all k ∈ Z
+ , and

• Ak > Ak−1 + · · · + A1 for all 1 � k � N .

We also say that A1, A2, . . . are quasifibonacci numbers.

In particular, (shifted) Fibonacci numbers and Lucas numbers are quasifibonacci.
As we will see in this paper, Robbins’ result can be generalized to quasifibonacci numbers. More

precisely, we shall prove the following theorem:

Theorem 1.1. Let A1, A2, . . . be a quasifibonacci sequence of even level. Consider the formal power series

H(x) =
∏
k�1

(
1 − xAk

)
= (

1 − xA1
)(

1 − xA2
)(

1 − xA3
)(

1 − xA4
) · · ·

= 1 +
∑
m�1

hmxm.

Then hm ∈ {−1,0,1}.

Similarly, we have hm = h+
m − h−

m where h+
m (respectively h−

m) is the number of partitions of m into
an even (respectively odd) number of distinct quasifibonacci numbers.

In this paper, we study the structure of the set of such partitions. In fact, a digraph and poset
structure on such sets will be constructed in Section 3. In Section 4, we will unveil intrinsic symmetry
and recursive relations between these posets. Finally, as an application, we shall prove Theorem 1.1 in
Section 5.

2. Notations

Definition 2.1. The following notations will be used throughout the paper.

• {0,1}ω := {(a1,a2, . . .) | ai ∈ {0,1}, ai = 0 for all but finitely many i’s}.
• Given a quasifibonacci sequence A1, A2, . . . , define

Sn = Sn
({Ak}

)
:=

{
(a1,a2, . . .) ∈ {0,1}ω

∣∣∣ ∞∑
i=1

ai Ai = n,ai ∈ {0,1}
}

.

Sn represents the set of partitions of n into distinct quasifibonacci numbers Ak .
• For a = (a1,a2, . . .) ∈ {0,1}ω , define

s(a) :=
∞∑

i=1

ai Ai .

We also say that a is the representation of s(a).
• For k � N + 1, define

Ak,0 := Ak +
∑

1�i<k−N−1
N�i

Ak−N−1−i,

Ak,1 := Ak +
∑

1�i<k−N
N�i

Ak−N−i,
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Ak,2 := Ak +
∑

1�i<k−N+1
N�i

Ak−N+1−i .

• For any (a1,a2, . . .) ∈ Sn , define the length l(a) to be the largest i such that ai = 1. (Abusing the
notation, we also identify a with (a1,a2, . . . ,al(a)), which is called the reduced representation.)

The next lemma gives some important arithmetic properties of the Ak ’s which will be used fre-
quently throughout the paper.

Lemma 2.1. Let A1, A2, . . . be a quasifibonacci sequence. Then

(1) Ak+2 > Ak + Ak−1 + · · · + A1 for any k ∈ Z
+ ,

(2) for Ak � n < Ak+1 and any a ∈ Sn, we have l(a) ∈ {k − 1,k},
(3) for A1 + A2 + · · · + Ak−1 < n < Ak+1 and any a ∈ Sn, we have l(a) = k,

(4)
∑

1�i�k−1
N�i

Ak−i < Ak,

(5) Ak < Ak,0 < Ak,1 < Ak,2 < Ak+1 ,
(6) A1 + A2 + · · · + Ak > 2Ak,0 .

Proof. (1) By the definition of quasifibonacci numbers, it is clear that Ak+2 > Ak+1 � Ak + · · · + A1
when 1 � k � N . The case for k > N follows from induction. Actually, we use the following inequality:

Ak+2 = Ak+1 + · · · + Ak−N+2 � Ak+1 + Ak

and then apply the induction hypothesis Ak+1 > Ak−1 + · · · + A1 to replace Ak+1.
(2) It is clear that l(a) � k. Suppose l(a) � k − 2. By the previous lemma, n � Ak−2 + · · · + A1 < Ak ,

a contradiction. Therefore, l(a) � k − 1.
(3) This is straightforward.
(4) Write k − 1 = Nk1 + r (0 � r � N − 1). Then

∑
1�i�k−1

N�i

Ak−i =
k1∑
j=1

N−1∑
i=1

Ak− jN+i +
r∑

i=1

Ai

=
k1∑
j=1

(Ak− jN+N − Ak− jN ) +
r∑

i=1

Ai

= Ak − Ar+1 +
r∑

i=1

Ai

< Ak.

(5) It is obvious that Ak < Ak,0 < Ak,1 < Ak,2. By (4),

Ak,2 = Ak +
∑

1�i<k−N+1
N�i

Ak−N+1−i

< Ak + Ak−N+1

� Ak + Ak−1

� Ak+1.
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(6) By (4), we have

2Ak,0 = Ak + Ak +
∑

1�i<k−N−1
N�i

Ak−N−1−i +
∑

1�i<k−N−1
N�i

Ak−N−1−i

< Ak + (Ak−1 + · · · + Ak−N ) +
∑

1�i<k−N−1
N�i

Ak−N−1−i + Ak−N−1

� A1 + A2 + · · · + Ak. �
3. A digraph and poset structure on Sn

For each n � 1, we construct a digraph Gn := Gn({Ak}) in the following way:

(1) Set V (Gn) = Sn . In particular, set Gn = ∅ if Sn = ∅.
(2) For a = (a1,a2, . . .), b = (b1,b2, . . .) ∈ Sn , let (a,b) ∈ E(Gn) if there exists k ∈ Z

+ such that
• ak+N = 1, ak = ak+1 = · · · = ak+N−1 = 0,
• bk+N = 0, bk = bk+1 = · · · = bk+N−1 = 1,
• at = bt for all t /∈ {k,k + 1, . . . ,k + N}.
(Here (u, v) represents the directed edge u → v .)

The digraph structure induces a partial order on Sn as follows:

For a,b ∈ Sn, set a � b if there exists a path in Gn from a to b.

In other words, a covers b if and only if (a,b) ∈ E(Gn). We call this partial order the carry forward
order on Sn .

This makes Sn into a poset Pn . The following examples show the corresponding Hasse diagrams
for Pn({Fk}) and Pn({Lk}), where {Fk} and {Lk} denote the Fibonacci numbers and Lucas numbers,
respectively.

Example 3.1. First 24 Hasse diagrams for Pn({Fk}):

Example 3.2. First 24 Hasse diagrams for Pn({Lk}):
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Comment: In general, we can construct digraph and poset structure on any finite subset of {0,1}ω .
The corresponding partial order is still called the carry forward order.

For Ak � n < Ak+1, define

Tn := {
a ∈ Sn

∣∣ l(a) = k
}
,

Rn := {
a ∈ Sn

∣∣ l(a) = k − 1
}
.

By Lemma 2.1(2), we have Sn = Tn ∪ Rn .
Furthermore, let Un , Dn denote the subposet of Pn restricted on the vertex set Tn and Rn , respec-

tively. (Abusing the notation, Un , Dn also denote the corresponding subdigraphs of Gn .)

Example 3.3. The figure below shows that P24 can be decomposed into U24 and D24.

Now we study the structure of the posets Pn in detail.

Proposition 3.1. Suppose Sn �= ∅. Then there is a unique maximal element 1̂ in Pn. More precisely, 1̂ is the
only element in Sn which does not contain N consecutive 1’s.

Furthermore, if Ak � n < Ak+1 , then l(1̂) = k.

Proof. Suppose a ∈ Sn is a maximal element in Pn . It is clear that a does not contain N consec-
utive 1’s. (Otherwise, assume that ak = ak+1 = · · · = ak+N−1 = 1 and ak+N = 0. Set b = (b1,b2, . . .)

where bk = bk+1 = · · · = bk+N−1 = 0, bk+N = 1 and bt = at for t /∈ {k,k + 1, . . . ,k + N}. Then b ∈ Pn
but b > a.)
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Now we show the uniqueness. Suppose both a and a′ are maximal elements in Pn . Let k be the
largest index such that ak �= a′

k . Without loss of generality, assume that ak = 0, a′
k = 1 and at = a′

t = 0
for t > k. Since a is maximal, it does not contain N consecutive 1’s. It follows that

s(a) �
∑

1�i�k−1
N�i

Ak−i

which is the largest possible value of length k − 1 with no N consecutive 1’s.
However, Lemma 2.1(4) gives

s(a) �
∑

1�i�k−1
N�i

Ak−i < Ak � s(a′),

a contradiction. Hence the maximal element is unique. Denote it by 1̂.
Now suppose Ak � n < Ak+1. By Lemma 2.1(2), l(1̂) ∈ {k,k − 1}. As proved above, any element of

length k − 1 with no N consecutive 1’s is smaller than Ak . So we must have l(1̂) = k. �
Corollary 3.2. Suppose

n >
∑

1�i�k−1
N�i

Ak−i

and Sn �= ∅. Then n � Ak.

Proof. Assume that∑
1�i�k−1

N�i

Ak−i < n < Ak.

Then we must have l(1̂) � k − 1. Thus

n = s(1̂) <
∑

1�i�k−1
N�i

Ak−i,

a contradiction. �
Similarly, we have the following dual result:

Proposition 3.3. Suppose Sn �= ∅. Then there is a unique minimal element 0̂ in Pn. More precisely, 0̂ is the
only element in Sn which does not contain N consecutive 0’s in reduced representation.

Although we have l(1̂) = k when Ak � n < Ak+1, we do not have l(0̂) = k − 1 in general.
Furthermore, in Section 5, we will show that Pn is a modular lattice.

4. Symmetry and recursions

If we view P1, P2, . . . as a sequence, then there exist local symmetry relations between the posets.
For instance, in Example 3.1, the posets are central symmetric from P7 to P12, and from P12 to P20.
In general, similar symmetry appears for all quasifibonacci sequences.

In order to describe this special symmetry relation, we recall the definition of dual posets.

Definition 4.1. Two posets P , Q are dual posets to each other if there exists an order-reversing bijec-
tion φ : P → Q whose inverse is also order-reversing; that is

x � y in P ⇔ φ(y) � φ(x) in Q .
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Proposition 4.1. For Ak � n < Ak+1 , let n′ = A1 + A2 + · · · + Ak − n. Then Pn is dual to Pn′ .

Proof. Define φ : Pn → Pn′ by setting (a1,a2, . . . ,ak) 
→ (1−a1,1−a2, . . . ,1−ak). (Note that ak is not
necessarily nonzero.)

It is easy to check that (a,b) ∈ E(Gn) if and only if (φ(b),φ(a)) ∈ E(Gn′ ). Hence Pn is dual to Pn′
via φ. �

Being more careful, we can derive similar symmetry on Un and Dn .

Proposition 4.2. For Ak � n < Ak + Ak−1 , let n′ = A1 + A2 + · · · + Ak − n. Then Un is dual to Dn′ , and Dn
is dual to Un′ .

Proof. It suffices to show that φ(Un) = Dn′ and φ(Dn) = Un′ .
Let a = (a1,a2, . . . ,ak) ∈ Un (ak = 1). Since n − Ak < Ak−1, ak−1 = 0. Thus 1 − ak = 0, 1 − ak−1 = 1.

Hence l(φ(a)) = k − 1.
On the other hand, for any b = (b1,b2, . . . ,bk) ∈ Dn , we must have 1 − bk = 1. So l(φ(b)) = k.
Therefore, φ(Un) = Dn′ and φ(Dn) = Un′ , as desired. �
Other than symmetry, there are intrinsic recursive relations in the poset sequence {Pn}. In order

to describe the recursion clearly, we introduce the following notations.

Definition 4.2. Suppose a = (a1,a2, . . .), b = (b1,b2, . . .) ∈ {0,1}ω satisfy at = 0 whenever bt = 1. De-
fine

a + b := (a1 + b1,a2 + b2, . . .).

Similarly, suppose a = (a1,a2, . . .), b = (b1,b2, . . .) ∈ {0,1}ω satisfy at = 1 whenever bt = 1. Define

a − b := (a1 − b1,a2 − b2, . . .).

Definition 4.3. Let P be a finite subset of {0,1}ω . The poset structure on P is determined by the carry
forward order. Let b = (b1,b2, . . . ,bk) ∈ {0,1}ω . Suppose that for any a = (a1,a2, . . .) ∈ P , we have
at = 0 whenever bt = 1. Define

P + b = {a + b | a ∈ P },
regarded as a poset, with the induced partial order.

Example 4.1. The following figure gives an example for P = P26({Fk}) and b = (10000001):
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We can also define the addition between the posets:

Definition 4.4. Let P , Q be disjoint finite subsets of {0,1}ω with digraph and poset structure defined
in Section 3. Let P1, Q 1 be subposets of P , Q , respectively. Suppose there is a bijection ψ : P1 → Q 1
such that a covers ψ(a) for all a ∈ P1.

Define

P +̂
(P1,Q 1)

Q = P ∪ Q

regarded as a digraph with

V (P +̂
(P1,Q 1)

Q ) = V (P ) ∪ V (Q ),

E(P +̂
(P1,Q 1)

Q ) = E(P ) ∪ E(Q ) ∪ {(
a,ψ(a)

) ∣∣ a ∈ P1
}
.

We will drop the label “(P1, Q 1)” if this causes no confusion. Moreover, it ψ is not hard to see that
ψ is a strictly order-preserving map (i.e., ψ(p1) < ψ(p′

1) whenever p1 < p′
1). So we can view P +̂ Q as

a poset induced by the digraph.

In particular, Pn = Un +̂ Dn .

From now on, let τk denote the only element in {0,1}ω with the kth entry being 1 and the others
being 0; i.e., τk = (00 . . . 01) ∈ S Ak .

Let ηk denote the only element (a1,a2, . . . ,ak−1) in {0,1}ω with ak−1 = ak−2 = · · · = ak−N = 1 and
ak−N−1 = · · · = a1 = 0; i.e., ηk = (00 . . . 0011 . . . 11) ∈ S Ak .

Now we describe the recursion explicitly. In particular, we show that each Pn with Ak � n < Ak+1
can be expressed in terms of P1, P2, . . . , P Ak−1.

Proposition 4.3. If Ak,2 < n < Ak+1 , then Pn is isomorphic to Pn−Ak . More precisely, we have Pn =
Pn−Ak + τk, Un = Un−Ak + τk and Dn = Dn−Ak + τk.

Proposition 4.4. If Ak,1 < n � Ak,2 , then

Pn = (Pn−Ak + τk) +̂ (Dn−Ak + ηk)

= (Pn−Ak + τk) +̂
(Dn−Ak

+τk,Dn−Ak
+ηk)

(Dn−Ak + ηk),

Un = Pn−Ak + τk and Dn = Dn−Ak + ηk.
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Proposition 4.5. If Ak,0 < n � Ak,1 , then

Pn = (Pn−Ak + τk) +̂ (Pn−Ak + ηk)

= (Pn−Ak + τk) +̂
(Pn−Ak

+τk,Pn−Ak
+ηk)

(Pn−Ak + ηk),

Un = Pn−Ak + τk and Dn = Pn−Ak + ηk.

The only remaining case is Ak � n � Ak,0. By Proposition 4.1, Pn is dual to Pn′ where n′ = A1 +
A2 + · · · + Ak − n.

By Lemma 2.1(1) and (6), we have

n′ � A1 + A2 + · · · + Ak − Ak

= A1 + A2 + · · · + Ak−1

< Ak+1,

n′ � A1 + A2 + · · · + Ak − Ak,0

> Ak,0.

Hence Pn′ can be determined by the propositions above. Moreover, by Proposition 4.2, Un and Dn

are dual to Dn′ and Un′ , respectively. So they can also be determined by recursions.

Proof of Proposition 4.3. Assume Sn �= ∅. (Otherwise the proposition is trivially true.) Let 1̂ be the
maximal element in Pn . Then l(1̂) = k (Proposition 3.1). So 1̂ − τk ∈ Sn−Ak , which implies Sn−Ak �= ∅.
Note that

n − Ak > Ak,2 − Ak =
∑

1�i<k−N+1
N�i

Ak−N+1−i .

By Corollary 3.2, we have n − Ak � Ak−N+1.
For any a ∈ Sn ,

s(a) = n � Ak + Ak−N+1

> (Ak−1 + · · · + Ak−N ) + (A1 + A2 + · · · + Ak−N−1) (Lemma 2.1(1))

= A1 + A2 + · · · + Ak−1.

Hence l(a) = k for all a ∈ Sn . In particular, it is valid to do the subtraction a − τk .
Therefore, the map

φ : Pn → Pn−Ak ,

a 
→ a − τk

gives an isomorphism from Pn to Pn−Ak and Pn = Pn−Ak + τk . �
Proof of Proposition 4.4. Assume Sn �= ∅. In this case, Sn = Tn ∪ Rn .

Applying a similar argument, we obtain n � Ak + Ak−N . Furthermore, by Proposition 3.1, l(1̂−τk) =
k − N .

Define

φ1 : Un → Pn−Ak ,

a 
→ a − τk.

Then φ1 gives an isomorphism from Un to Pn−Ak and Un = Pn−Ak + τk .
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On the other hand, for any a = (a1,a2, . . . ,ak−1) ∈ Dn , we claim that ak−N = ak−N+1 = · · · = ak−1.
Assume the contrary. Then

s(a) � A1 + · · · + Ak−N−1 + Ak−N+1 + · · · + Ak−1

< (Ak−N + Ak−N−1) + Ak−N+1 + · · · + Ak−1

= Ak−N−1 + Ak

< Ak−N + Ak

� n,

a contradiction.
Hence, the subtraction a − ηk is valid.
Note that l(a − ηk) � k − N − 1 = l(1̂ − τk) − 1. Thus a − ηk ∈ Dn−Ak for all a ∈ Dn . So the map

φ2 : Dn → Dn−Ak ,

a 
→ a − ηk

gives an isomorphism from Dn to Dn−Ak and Dn = Dn−Ak + ηk .
Therefore,

Pn = (Pn−Ak + τk) +̂ (Dn−Ak + ηk)

via the natural map ψ : Dn−Ak + τk → Dn−Ak + ηk: a + τk 
→ a + ηk . �
Proof of Proposition 4.5. The proof is almost the same. Assume Sn �= ∅.

In this case, we have n � Ak + Ak−N−1 and l(1̂ − τk) = k − N − 1.
For a ∈ Dn , we still have ak−N = ak−N+1 = · · · = Ak−1 = 1. So the map

φ2 : Dn → Pn−Ak ,

a 
→ a − ηk

gives an isomorphism from Dn to Pn−Ak . This completes the proof. �
5. Applications

5.1. Modularity of the lattices Pn

Theorem 5.1. Pn, Un, Dn are modular lattices.

Proof. We prove the statement by induction on n.
Base case: When n < AN+1, Pn is either ∅ or a single-element set. The statement is trivially true.
Inductive step: Consider Ak � n < Ak+1 (k � N + 1). It is clear that the dual poset of a modular

lattice is also a modular lattice. When Ak � n � Ak,0, we have Ak,0 < A1 + A2 + · · · + Ak − n < Ak+1
(Lemma 2.1(1) and (6)). So, by symmetry (Proposition 4.1), it suffices to consider Ak,0 < n < Ak+1.

(1) If Ak,2 < n < Ak+1, then, by Proposition 4.3, Pn , Un , Dn are isomorphic to Pn−Ak , Un−Ak

and Dn−Ak , respectively. So they are modular lattices by the induction hypothesis.
(2) If Ak,1 < n � Ak,2, then, by Proposition 4.4, Un , Dn are isomorphic to Pn−Ak and Dn−Ak , respec-

tively. So they are lattices by induction.
To show that Pn is a lattice, we need to show that for any x, y ∈ Pn , x ∨ y and x ∧ y exist. Indeed,

if x, y ∈ Un or x, y ∈ Dn , then x ∨ y and x ∧ y exist by the induction hypothesis. If x ∈ Un and y ∈ Dn ,
we claim that x ∨ y coincides with x ∨ ψ−1(y), which exists by induction. Clearly, x ∨ ψ−1(y) is an
upper bound of x and y. On the other hand, if z ∈ Un is an upper bound of y, it must be an upper
bound of ψ−1(y). Therefore, x ∨ y = x ∨ ψ−1(y), as desired. Hence Pn is a lattice.
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Now we check the modularity. We need to show that x, y both cover x ∧ y if and only if x, y are
both covered by x ∨ y.

Indeed, if x, y ∈ Un and x, y ∈ Dn , the statement follows by the induction hypothesis.
Suppose x ∈ Un and y ∈ Dn . Assume that x ∨ y covers both x, y. Obviously, x ∨ y ∈ Un . So x ∨ y =

ψ−1(y) and ψ−1(y) covers x. Hence ψ(x) is covered by both x and y, as desired. Similarly, if x ∧ y is
covered by both x and y, then ψ−1(y) covers both x and y.

(3) If Ak,0 < n � Ak,1, then, by Proposition 4.5, Un , Dn are both isomorphic to Pn−Ak . The rest of
proof is similar to case (2). �
5.2. Quasifibonacci sequences of even level

In this section we will prove Theorem 1.1. As mentioned in the introduction section, hm is the
difference of the number of partitions into an even number of Ak ’s and the number of partitions into
an odd number of Ak ’s.

To distinguish these two kinds of partitions, we define the sign function σ : {0,1}ω → ±1 by setting
σ(a) = 1 if a contains an even number of 1’s and σ(a) = −1 otherwise. In general, for any finite
subset P of {0,1}ω with natural partial ordering, define

σ(P ) :=
∑
a∈P

σ(a).

It is clear that hn = σ(Pn). We also define fn = σ(Un) and gn = σ(Dn). Then, obviously, hn = fn + gn .
The following lemma will be useful in the proof below.

Lemma 5.2.

• Let a,b ∈ {0,1}ω . Then σ(a ± b) = σ(a)σ (b).
• Let a ∈ {0,1}ω and P a finite subset of {0,1}ω . Then σ(P + a) = σ(P )σ (a).
• Let P , Q be finite subsets of {0,1}ω . Then σ(P +̂ Q ) = σ(P ) + σ(Q ).

Proof. Straightforward. �
To visualize the relation of odd and even partitions, we color the digraph with two colors. In

the corresponding Hasse diagram, a vertex a ∈ Pn is colored black if σ(a) = 1 and colored white if
σ(a) = −1. The figure below shows the first 24 colored Hasse diagrams for Pn({Fk}):

Suppose a covers b in Pn . By the definition, b has N − 1 more 1’s than a. Hence adjacent vertices
in the corresponding digraph have different colors if N is even.

Now we prove Theorem 1.1 by proving the following stronger result:

Proposition 5.3. For any n ∈ Z
+ , fn, gn, hn ∈ {−1,0,1}.

Proof. We perform induction on n.
Base case: When n < AN+1, Pn is either ∅ or a single-element set. The statement is true.
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Inductive step: Consider Ak � n < Ak+1 (k � N + 1).
(1) If Ak,2 < n < Ak+1, then Un = Un−Ak + τk , Dn = Dn−Ak + τk , Pn = Pn−Ak + τk . Hence we have

fn = σ(τk) fn−Ak = − fn−Ak ∈ {−1,0,1}.
Similarly, we have gn = −gn−Ak ∈ {−1,0,1} and hn = −hn−Ak ∈ {−1,0,1}.

(2) If Ak,1 < n � Ak,2, then Un = Pn−Ak + τk and Dn = Pn−Ak + ηk and Pn = (Pn−Ak + τk) +̂
(Dn−Ak + ηk). Hence we have

fn = σ(τk)hn−Ak = −hn−Ak ∈ {−1,0,1},
gn = σ(ηk)gn−Ak = gn−Ak ∈ {−1,0,1}

and

hn = σ(Pn−Ak + τk) + σ(Dn−Ak + ηk)

= σ(Pn−Ak )σ (τk) + σ(Dn−Ak )σ (ηk)

= −hn−Ak + gn−Ak

= − fn−Ak ∈ {−1,0,1}.
(3) If Ak,0 < n � Ak,1, then Un = Pn−Ak +τk , Dn = Pn−Ak +ηk and Pn = (Un−Ak +τk)+̂(Dn−Ak +ηk).

Hence we have

fn = σ(τk)σ (Pn−Ak ) = −hn−Ak ∈ {−1,0,1},
gn = σ(ηk)σ (Pn−Ak ) = hn−Ak ∈ {−1,0,1}

and

hn = σ(Pn−Ak + τk) + σ(Pn−Ak + ηk)

= σ(Pn−Ak )σ (τk) + σ(Pn−Ak )σ (ηk)

= −hn−Ak + hn−Ak

= 0.

(4) If Ak � n � Ak,0, then Un , Dn , Pn are dual to Dn′ , Un′ and Pn′ , respectively, where n′ = A1 +
A2 + · · · + Ak − n lies between Ak,0 and Ak+1. Hence we have

fn = (−1)kσ(Dn′ ) = (−1)k gn′ ∈ {−1,0,1}ω,

gn = (−1)kσ(Un′ ) = (−1)k fn′ ∈ {−1,0,1}ω
and

hn = (−1)kσ(Pn′ ) = (−1)khn′ ∈ {−1,0,1}ω.

This completes the proof. �
To write down the recursion explicitly, we have

( fn, gn,hn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1)k+1 gγk−n−Ak (−1)k+1 fγk−n−Ak (−1)k+1hγk−n−Ak if Ak � n < γk − Ak,2;
(−1)k gγk−n−Ak (−1)k+1hγk−n−Ak (−1)k+1 fγk−n−Ak if γk − Ak,2 � n < γk − Ak,1;
(−1)khγk−n−Ak (−1)k+1hγk−n−Ak 0 if γk − Ak,1 � n � Ak,0;−hn−Ak hn−Ak 0 if Ak,0 < n � Ak,1;−hn−Ak gn−Ak − fn−Ak if Ak,1 < n � Ak,2;− fn−Ak −gn−Ak −hn−Ak if Ak,2 < n < Ak+1

where γk = A1 + A2 + · · · + Ak .
Comment: If we take Ak = Fk , then the recursion above is precisely the one in [1].
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5.3. Quasifibonacci sequences of odd level

In this case, N is an odd number. Hence for each pair of adjacent vertices (a,b) in Gn , the parity of
the number of 1’s in a and b must be the same. In other words, every adjacent pair of vertices have
same color. Since Pn are lattices, Gn are connected graphs. Therefore all vertices in Pn have same
color. It is easily seen that hn is not bounded in this case. Instead we have the following estimate.

Proposition 5.4. Let k � N be an integer. For any Ak � n < Ak+1 , |hn| � 2k−N .

Proof. Base case: When n < AN+1, Pn is either ∅ or a single-element set. So hn ∈ {0,−1}. The state-
ment is true.

Inductive step: Consider Ak � n < Ak+1 (k � N + 1). With a similar argument, we can derive the
following recursion:

hn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)k+1hγk−n−Ak if Ak � n < γk − Ak,2;
(−1)k+1(gγk−n−Ak + hγk−n−Ak ) if γk − Ak,2 � n < γk − Ak,1;
(−1)k+12hγk−n−Ak if γk − Ak,1 � n � Ak,0;
−2hn−Ak if Ak,0 < n � Ak,1;
−gn−Ak − hn−Ak if Ak,1 < n � Ak,2;
−hn−Ak if Ak,2 < n < Ak+1

where γk = A1 + A2 + · · · + Ak .
Note that |gm| � |hm| (∀m ∈ Z

+). Hence, in any of the six cases, |hn| � 2 · 2k−N−1 = 2k−N . This
completes the proof. �

Comment: This upper bound is the best possible because there exists Ak � n < Ak+1 satisfying
|hn| = 2k−N for all k � N . However, it is possible to improve the result by splitting the intervals into
more pieces and refining the estimate.
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