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Cardiac Imaging

Coronary Arterial 18F-Sodium Fluoride Uptake
A Novel Marker of Plaque Biology

Marc R. Dweck, MD,*† Marcus W. L. Chow,*† Nikhil V. Joshi, MD,*† Michelle C. Williams, MD,*†
Charlotte Jones, BSC,*† Alison M. Fletcher, PHD,† Hamish Richardson, BSC,† Audrey White,*
Graham McKillop, MD,† Edwin J. R. van Beek, PHD,† Nicholas A. Boon, MD,*
James H. F. Rudd, PHD,‡ David E. Newby, DSC*†

Edinburgh and Cambridge, United Kingdom

Objectives With combined positron emission tomography and computed tomography (CT), we investigated coronary arterial
uptake of 18F-sodium fluoride (18F-NaF) and 18F-fluorodeoxyglucose (18F-FDG) as markers of active plaque
calcification and inflammation, respectively.

Background The noninvasive assessment of coronary artery plaque biology would be a major advance particularly in the iden-
tification of vulnerable plaques, which are associated with specific pathological characteristics, including micro-
calcification and inflammation.

Methods We prospectively recruited 119 volunteers (72 � 8 years of age, 68% men) with and without aortic valve dis-
ease and measured their coronary calcium score and 18F-NaF and 18F-FDG uptake. Patients with a calcium
score of 0 were used as control subjects and compared with those with calcific atherosclerosis (calcium score �0).

Results Inter-observer repeatability of coronary 18F-NaF uptake measurements (maximum tissue/background ratio) was
excellent (intra-class coefficient 0.99). Activity was higher in patients with coronary atherosclerosis (n � 106)
versus control subjects (1.64 � 0.49 vs. 1.23 � 0.24; p � 0.003) and correlated with the calcium score (r �

0.652, p � 0.001), although 40% of those with scores �1,000 displayed normal uptake. Patients with increased
coronary 18F-NaF activity (n � 40) had higher rates of prior cardiovascular events (p � 0.016) and angina (p �

0.023) and higher Framingham risk scores (p � 0.011). Quantification of coronary 18F-FDG uptake was hampered by
myocardial activity and was not increased in patients with atherosclerosis versus control subjects (p � 0.498).

Conclusions 18F-NaF is a promising new approach for the assessment of coronary artery plaque biology. Prospective studies with
clinical outcomes are now needed to assess whether coronary 18F-NaF uptake represents a novel marker of plaque
vulnerability, recent plaque rupture, and future cardiovascular risk. (An Observational PET/CT Study Examining the
Role of Active Valvular Calcification and Inflammation in Patients With Aortic Stenosis; NCT01358513) (J Am Coll
Cardiol 2012;59:1539–48) © 2012 by the American College of Cardiology Foundation

Published by Elsevier Inc. doi:10.1016/j.jacc.2011.12.037
Myocardial infarction (MI) is the foremost cause of death in
developed countries (1) and confers a major economic, social,
and healthcare burden worldwide (2). The majority of MIs
result from rupture of atherosclerotic plaque, although identi-
fying those at risk of rupture is problematic. The vast majority
(86%) of culprit atherosclerotic lesions cause non-flow limiting
luminal stenosis (3,4) that will not be detected by noninvasive
stress testing. New methods focusing on plaque pathology are
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Calcification is a key feature of human atherosclerosis,
and its macroscopic presence in the coronary arteries can be
detected by cardiac computed tomography (CT). Coronary
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artery calcium (CAC) scoring
provides a surrogate measure of
the atherosclerotic burden and a
powerful predictor of cardiovas-
cular risk (5). Risk prediction
can be improved by examining
the progression of coronary calcifica-
tion (6,7) and by detecting spotty
calcification (8). However, CT is
unable to measure active calcifica-
tion directly and cannot reliably de-
tect micro-calcifications that can
lead to microfractures and acute
thrombosis (9–11). 18F-sodium
fluoride (18F-NaF) is an established
positron emission tomography
(PET) tracer that detects novel areas
of bone formation and remodeling
(12). Uptake has also been described
in aortic and carotid atheroma where
activity is believed to signal areas of
active vascular calcification, although
this is hypothetical (13–15). To
date, 18F-NaF uptake has not
been measured in the coronary
vasculature.

Inflammation is thought to
play a key role in plaque rupture.
Histologically, the vulnerable
plaque is characterized by a lipid-

rich pool, infiltration of inflammatory cells, and a thin
fibrous cap (4). Macrophages in particular are found in
abundance within ruptured plaques and are thought to
contribute to a pro-thrombotic state and degradation of the
fibrous cap via the action of matrix metalloproteinases
(16). Vascular inflammation can be assessed noninva-
sively in the carotid arteries, aorta, iliac, and femoral
arteries with uptake of 18F-fluorodeoxyglucose (18F-
FDG) as measured by combined PET and computed
tomography (CT) (17). 18F-FDG uptake correlates with
plaque macrophage burden (18), symptoms (19), and
Framingham Risk Score (20) and can be lowered with
statin and other therapies (21,22). Recent in vitro and ex
vivo data have also suggested that 18F-FDG uptake
might reflect plaque hypoxia (23). However, measure-
ment of 18F-FDG uptake within coronary atheroma is
challenging, because of cardiac and respiratory motion
and the intense myocardial 18F-FDG uptake that can
potentially swamp any plaque signal (24,25).

The aim of this study was to investigate coronary arterial uptake
of 18F-NaF and 18F-FDG as markers of active calcification and
inflammation, respectively. We hypothesized that the degree
of uptake of both tracers would correlate with atherosclerotic
disease severity, symptoms, prior cardiovascular events, and

Abbreviations
and Acronyms

18F-FDG � 18F-
fluorodexyglucose

18F-NaF � 18F-sodium
fluoride

CAC � coronary artery
calcium

CAD � coronary artery
disease

CHD � coronary heart
disease

CI � confidence interval

CT � computed tomography

CVA � cerebrovascular
accident

CVD � cardiovascular
disease

LAD � left anterior
descending coronary artery

MACE � major adverse
cardiovascular events

MI � myocardial infarction

PET � positron emission
tomography

SUV � standard uptake value

TBR � tissue/background
ratio
predictors of future clinical risk.
Methods

Study population. This was a substudy of a previously
published prospective cohort of 121 apparently healthy volun-
teers and patients with aortic sclerosis and stenosis (26). All
subjects were over 50 years of age and consecutively recruited
from cardiology outpatient clinics (Royal Infirmary Edin-
burgh) to achieve groups of similar age and sex. Exclusion
criteria included insulin-dependent diabetes mellitus, poorly
controlled type 2 diabetes mellitus, women of childbearing
potential not taking contraception, inability to undergo
PET/CT scanning, and life expectancy �2 years. The study
was approved by the local research ethics committee, and
written informed consent was obtained from all subjects.
Baseline clinical assessment. Baseline clinical assessment
was performed on the day of the initial PET/CT scan and
included current cardiac symptoms, prior coronary intervention
(percutaneous coronary intervention and coronary artery bypass
grafting), and past medical history of previous major adverse
cardiovascular events (MACE) (MI, cerebrovascular accident,
and coronary revascularization). Atherogenic risk factors such
as age, sex, smoking habit, history of hypertension, diabetes
mellitus, hypercholesterolemia, socioeconomic status, and fam-
ily history of cardiovascular disease were identified. Full exter-
nal examination was performed, and height and weight were
measured to determine body mass index. A 12-lead electro-
cardiogram was performed, and venous blood was collected for
measurement of serum creatinine, full lipid profile, and mark-
ers of calcium metabolism. On the basis of this information,
Framingham risk scores for coronary heart disease (CHD),
CHD death, cardiovascular disease (CVD), and CVD death
were calculated.
Dietary restrictions. Myocardial uptake of 18F-FDG can
cause overspill of signal into the coronary arteries, leading to
difficulties in discriminating coronary artery uptake from
myocardium. All patients in our cohort were asked to
observe a carbohydrate-free, high-fat diet for 24 h before
their 18F-FDG scan. This suppresses myocardial uptake by
switching the heart from glucose to free-fatty acid metab-
olism (27–29). Patients were provided with written instruc-
tions and contacted by phone the day before the scan in an
attempt to ensure dietary compliance.
PET/CT image acquisition and reconstruction. Subjects
underwent combined PET/CT imaging of the aorta and
coronary arteries with a hybrid scanner (Biograph mCT,
Siemens Medical Systems, Erlangen, Germany). For the
first scan, an electrocardiogram-gated breath-hold CT scan
(non-contrast-enhanced, 40 mAs/rot [CareDose, Siemens
Medical Systems], 100 kV) of the coronary arteries was
performed for calculation of the CAC score. Study subjects
were then administered a target dose of 125 MBq 18F-NaF
intravenously and subsequently rested in a quiet environment
for 60 min. An attenuation correction CT scan (non-enhanced
120 kV and 50 mA) was then performed, followed by PET

imaging of the thorax in 3-dimensional mode for 10 min.
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For the second scan, subjects were administered a target
dose of 200 MBq 18F-FDG intravenously and subsequently
rested in a quiet environment for 90 min. Combined
PET/CT imaging was then performed as described for the
18F-NaF scan but with a 15-min bed time. Tracer circula-
tion times were based on previous studies with 18F-FDG
and 18F-NaF in atherosclerosis and aimed for optimal
contrast between the aortic wall, coronary arteries, and the
blood pool (14,15,19). The PET data were reconstructed
with the Siemens Ultra-HD (time of flight �True X)
reconstruction algorithm. Corrections were applied for at-
tenuation, dead time, scatter, and random coincidences. All
image analysis was performed on fused PET/CT datasets.
Image analysis: coronary arteries. Evaluation of the cal-
cium score was performed with calcium score analysis
software (VScore, Vital Images, Minnetonka, Minnesota).
Vessel-specific and total Agatston calcium scores were
calculated as described previously (30). The PET and CT
images were fused and analyzed by an experienced reader
with an Osirix workstation (OsiriX version 3.5.1 64-bit;
OsiriX Imaging Software, Geneva, Switzerland). For 18F-
NaF uptake, the coronary arteries were visually identified,
and regions of interest were drawn around areas of maximal
uptake in the left main stem, left anterior descending artery,
circumflex artery, and the right coronary artery. The maxi-
mum standard uptake value (SUV) was recorded from these
regions. It was not possible to determine the mean SUV
values, given the difficulty in identifying the exact borders of
the coronary arteries on the non-contrast-enhanced scans.
The SUV is the decay-corrected tissue concentration of
18F-NaF divided by the injected dose/body weight. How-
ver, SUV measurements in vascular structures are influenced
y variability in 18F-FDG and 18F-NaF activity in the blood.
herefore, SUV measurements were divided by an averaged
ean SUV value in the blood pool, derived from 5 circular

egions of interest drawn in the center of the superior vena
ava. This provided maximum tissue/background ratios
TBRs) as a measure of arterial tracer uptake (18,31).

Quantification of 18F-FDG uptake was performed as for
8F-NaF but restricted to the proximal and mid-portions of
he coronary vessels (24). Difficulties were still encountered
s a result of the pervasive myocardial uptake observed with
his tracer, and coronary activity was only quantified in areas
here myocardial uptake could be confidently avoided.

INTER-OBSERVER REPEATABILITY OF IMAGE ANALYSIS.

After the image analysis methodology was established, PET
scans from 20 patients were selected at random from the
cohort. All scans from these patients were analyzed inde-
pendently by 2 trained observers (M.D., N.J.). This pro-
vided measures of inter-observer repeatability for maximum
TBR values.
Image analysis: aorta. The uptake of 18F-FDG (32) and
18F-NaF (13) in the ascending and descending aorta was
quantified as per published methods. Circular regions of

interest were drawn around the aorta on adjacent 3-mm c
axial slices with care taken to avoid uptake from extravas-
cular structures. Maximum SUV values were once more
corrected for blood-pool activity to provide TBR values.
Statistical analysis. Comparisons of tracer uptake were
initially made between those with and without calcific
atherosclerosis. Patients with CAC scores �0 or a prior
history of ischemic heart disease were considered to have
underlying calcific coronary atherosclerosis. Patients with a
CAC score of 0 and no past history of CHD were
considered not to have calcific atherosclerosis and desig-
nated as control subjects. Patients with atherosclerosis were
then divided according to well-established cutoffs in the
coronary calcium score (0, 1 to 100, 101 to 400, 401 to
1,000, �1,000) (33) to assess the impact of disease severity
on tracer activity. Finally, comparisons were made between
subjects who had normal and increased 18F-NaF uptake.
The highest maximum TBR value in the control group was
used as the cutoff value above which 18F-NaF was deemed
to be elevated. In patients with underlying calcific coronary
atherosclerosis, those who had increased 18F-NaF uptake
were defined as having active coronary calcification, whereas
those with normal 18F-NaF uptake were defined as having
inactive calcification.

Continuous variables were expressed as mean � SD and
compared with unpaired Student t test or 1-way analysis of
variance where appropriate. Categorical variables were ex-
pressed as percentages and analyzed with the chi-square test.
Correlations between normally distributed data were per-
formed with Pearson’s correlation, whereas Spearman’s corre-
lation was used for nonparametric data. The 95% normal range
for differences between sets of SUV and TBR measurements
(the limits of agreement) were estimated by multiplying the
SD of the mean difference by 1.96 (34). Intra-class correla-
tion coefficients with 95% confidence intervals (CIs) were
calculated for intraobserver and interobserver variation.
Statistical analysis was performed with SPSS software
(version 18, SPSS, Inc., Chicago, Illinois). A 2-sided p
value �0.05 was regarded as statistically significant.

Results

Baseline characteristics. A total of 119 patients were
recruited (age 72 � 8 years, 68% men, 66% with aortic
stenosis) and had both 18F-NaF (66 � 6 min after 124 �
0 MBq) and 18F-FDG (94 � 7 min after 198 � 13 MBq)
cans of their thorax �1 month apart (median 7 days, inter-
uartile range 1 to 14 days). The effective radiation dose/
atient, including all PET and CT scans, was 9.73 � 1.19 mSv
ith a CT conversion factor of 0.014 mSv/mGy/cm.
Thirteen patients had no past history of coronary artery

isease (CAD) or evidence of calcific coronary atheroscle-
osis and formed the control group (Table 1). A total of 106
atients had evidence of coronary atherosclerosis: 41 having
clinical diagnosis of prior CAD, and a further 65 having
alcium scores above 0. One patient had experienced an
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acute coronary syndrome in the week before his 18F-NaF
scan; otherwise, patients had stable CHD.
Dietary restrictions. Average myocardial SUV across the
entire cohort was 4.6 � 3.6, and dietary restrictions effec-
tively suppressed 18F-FDG myocardial uptake (pre-
specified as a maximum SUV �5 measured in the maximal
area of uptake in the left ventricular septum) in 67% of
patients, similar to that seen in previous studies (24).
Sixty-one percent of patients complied with the dietary

Patient Demographic DataTable 1 Patient Demographic Data

Total

Control
Ca Score

0

n 119 13

Age (yrs) 72 � 8 66 � 7

Male, % 68 46

BMI, kg/m2 28 � 4 28 � 4

CHD, % 34 0

Angina, % 24 0

MACE, % 40 0

Previous MI 12 0

Previous CVA/TIA 6 0

Previous PCI 15 0

Previous CABG 7 0

Smokers (ex or current), % 50 38

Diabetes, % 15 23

Hypertension, % 60 38

Hypercholesterolemia, % 49 38

Aortic stenosis, % 66 54

Aortic sclerosis, % 17 23

ACEi/ARB, % 49 15

Beta-blockers, % 39 15

Statins, % 53 15

Total cholesterol, mg/dl 193 � 50 227 � 48

LDL cholesterol, mg/dl 104 � 44 123 � 45

HDL cholesterol, mg/dl 54 � 20 69 � 42

Creatinine, mg/dl 0.98 � 0.33 0.97 � 0.1

Calcium, mg/dl 9.30 � 0.57 9.41 � 0.2

Phosphate, mg/dl 3.55 � 0.49 3.68 � 0.5

Alk Phosphatase, U/l 84 � 44 93 � 23

Ca score 414 (79–1,251) 0 (0–0)

18F-NaF Max SUV 1.56 � 0.50 1.21 � 0.2

18F-NaF Max TBR 1.59 � 0.48 1.23 � 0.2

Patients with increased coronary 18F-NaF, % 34% 0%

18F-FDG Max SUV 1.54 � 0.24 1.43 � 0.3

18F-FDG Max TBR 1.22 � 0.21 1.18 � 0.3

10-yr Framingham risk scores

CVD 30 � 13 25 � 17

CVD death 14 � 10 8 � 9

CHD 19 � 12 16 � 15

CHD death 6.3 � 4.7 4.5 � 5.4

Values are mean � SD, %, or median (interquartile range). 18F-NaF and 18-FDG values are based up
18F-FDG � 18F-fluorodexyglucose; 18F-NaF � 18F-sodium fluoride; ACEi � angiotensin-conver

score � Agatston coronary calcium score; CABG � coronary artery bypass graft; CHD � corona
lipoprotein; LDL � low-density lipoprotein; MACE � major adverse cardiovascular events; MI � m
tissue/background ratio; TIA � transient ischemic attack.
restrictions, on the basis of dietary diaries, and had lower
myocardial 18F-FDG uptake than non-compliers (SUV
3.2 � 2.3 vs. 6.7 � 4.2; p � 0.001).
18F-NaF coronary uptake. Coronary 18F-NaF uptake
was quantifiable in 96% of the coronary territories exam-
ined. It was not possible to assess the left main stem in 20
patients, due to overspill of activity from the aortic valve
secondary to calcific aortic stenosis (Table 2). Repeatability
studies were excellent for coronary 18F-NaF quantification
with no fixed or proportional biases, limits of agreement of

Atherosclerosis

Ca Score
1–100

Ca Score
101–400

Ca Score
401–1,000

Ca Score
>1,000

19 23 27 37

69 � 8 72 � 8 70 � 9 76 � 7

58 61 74 81

28 � 3 28 � 4 28 � 4 27 � 5

0 17 48 65

0 13 37 43

0 32 44 75

0 9 11 24

0 14 4 8

0 9 22 27

0 0 7 16

53 26 59 59

5 13 12 22

42 65 52 57

39 39 59 57

58 61 78 73

11 22 11 19

21 39 56 76

26 48 44 46

21 52 67 73

199 � 41 204 � 57 175 � 44 181 � 49

119 � 37 112 � 52 93 � 36 94 � 42

54 � 12 52 � 15 54 � 18 51 � 12

0.90 � 0.13 0.93 � 0.12 0.88 � 0.14 0.86 � 0.12

9.41 � 0.97 9.29 � 0.61 9.24 � 0.32 9.24 � 0.49

3.57 � 0.55 3.51 � 0.40 3.53 � 0.40 3.54 � 0.48

83 � 25 79 � 20 80 � 23 77 � 27

19 (2–46) 277 (125–351) 734 (448–888) 1783 (1,357–3,410)

1.28 � 0.27 1.40 � 0.27 1.49 � 0.31 1.97 � 0.60

1.33 � 0.32 1.42 � 0.27 1.59 � 0.29 1.97 � 0.58

5% 26% 41% 59%

1.56 � 0.19 1.55 � 0.27 1.46 � 0.24 1.60 � 0.22

1.25 � 0.18 1.19 � 0.16 1.22 � 0.29 1.24 � 0.15

27 � 13 31 � 10 27 � 12 35 � 13

11 � 8 14 � 8 12 � 10 18 � 11

18 � 11 20 � 10 18 � 12 22 � 12

5.2 � 3.9 6.3 � 3.6 5.3 � 4.4 8.3 � 5.1

aximum values recorded in the coronary vasculature of each patient.
yme inhibitors; Alk � alkaline; ARB � angiotensin receptor blocker; BMI � body mass index; Ca
t disease; CVA � cerebrovascular accident; CVD � cardiovascular disease; HDL � high-density
ial infarction; PCI � percutaneous coronary intervention; SUV � standard uptake value; TBR �
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correlation coefficient value of 0.99 (95% CI: 0.98 to 1.00).
Limits of agreement for 18F-NaF were in the order �0.20
when examined in each of the coronary territories (Table 2).

18F-NaF activity was observed in areas overlying, adjacent
to, and remote from existing coronary calcification. Uptake was
focal in nature and could be localized to individual coronary
plaques. Areas of coronary calcification with no 18F-NaF
uptake were also commonly observed (Fig. 2).

Coronary 18F-NaF uptake was higher in those with
coronary atherosclerosis, compared with the control group
(1.64 � 0.49 vs. 1.23 � 0.24; p � 0.003) (Table 1). The
highest maximum TBR value in the control group was 1.61,
which was used to divide patients with coronary atheroscle-
rosis into those with increased 18F-NaF uptake (active
calcification; TBR maximum �1.61; n � 40) and those
without (inactive calcification; TBR maximum �1.61; n �
66) (Fig. 2, Table 3).

Patients with increased 18F-NaF uptake were older,
ore likely to be male, and had lower serum high-density

ipoprotein cholesterol concentrations than those without
ncreased uptake (Table 3). Overall statin use was similar
etween the groups, although atorvastatin use seemed to be
ouble in those with active calcification (28% vs. 14%; p �

0.077). They also had higher calcium scores, and there was
a strong correlation between the CAC score and 18F-NaF
uptake (r � 0.652, p � 0.001). However extensive overlap

as observed, with some patients with increased 18F-NaF
ptake having relatively little coronary calcification (mini-
um Agatston score 98) and patients without 18F-NaF

ptake having extensive calcium (maximum Agatston score
,636). Indeed 41% of patients with CAC scores �1,000
ad no significant 18F-NaF uptake (Table 1).
Sites of increased 18F-NaF uptake were evenly distrib-

ted across the coronary vasculature (Table 2), and activity
as 50% higher on average in these plaques compared with

18F-NaF and 18F-FDG SUV Max and TBR Max ValuesTable 2 18F-NaF and 18F-FDG SUV Max and TBR Max Values

Coronar

LMS LAD C

18F-NaF

% interpretable 83% 100% 9

SUV max 1.36 � 0.40 1.32 � 0.46 1.38

TBR max 1.36 � 0.44 1.35 � 0.46 1.42

% with increased activity
(TBR �1.61)

13% 21% 1

Interobserver limits of agreement
(mean difference � 2 SD)

0.06 � 0.17 0.01 � 0.20 0.00

18F-FDG

% interpretable 25% 74% 3

SUV max 1.55 � 0.25 1.45 � 0.27 1.48

TBR max 1.20 � 0.23 1.14 � 0.23 1.14

Interobserver limits of agreement �0.09 � 0.28 �0.21 � 0.48 �0.12

The 18F-NaF and 18F-FDG maximum standard uptake values (SUV max) and tissue/background
repeatability statistics are also provided for TBR maximum measurements in each of the coronar

CX � circumflex; LAD � left anterior descending coronary artery; LMS � left main stem; RCA �
nactive plaques in the same patient (2.14 � 0.42 vs. 1.43 � F
.32; p � 0.001). In 25 patients, significant uptake was
bserved in 2 or more coronary territories.
Patients with high 18F-NaF uptake were more likely to

ave a clinical diagnosis of CAD (60% vs. 26%; p � 0.001),
nginal symptoms (40% vs. 20%; p � 0.023), prior revascular-
zation (38% vs. 11%: p � 0.001), and previous MACE (45%
s. 23%; p � 0.016) (Table 3). Furthermore, cardiovascular risk
actor burden was increased. Framingham risk prediction
cores were higher in those with increased 18F-NaF uptake in
erms of Framingham CVD (p � 0.033), CHD (p � 0.049),
VD death (p � 0.011), and CHD death (p � 0.024) (Fig. 3,
able 3). Interestingly 10-year Framingham risk scores for
VD, CVD death, and CHD death all displayed a correlation
ith 18F-NaF coronary uptake but not with the CAC score

Table 4). Framingham risk scores are not designed for
atients with prior cardiovascular events. If these patients were
xcluded from the analysis, risk scores remained higher in those
ith active calcification for both CHD (18 � 12 vs. 26 � 12;
� 0.020) and CVD (29 � 13 vs. 37 � 12; p � 0.017).
One patient was assessed 1 week after sustaining an

nferior non–ST-segment elevation MI. Intense uptake was
bserved in the proximal right coronary artery, which had
een felt clinically to be the culprit coronary artery (on the
asis of dynamic changes on the electrocardiogram and
ppearances at invasive coronary angiography). Relatively
ittle uptake was observed in his other coronary territories,
espite having 3-vessel CAD and extensive coronary calci-
cation (Fig. 2, Online Video).
8F-FDG coronary uptake. The 18F-FDG uptake was
ifficult to quantify, particularly in the left main stem and
ircumflex artery. It was not possible to quantify accurately
n 49% of the vessel territories examined (Table 2). This was
argely the result of myocardial spill over into the coronary
rteries, which was observed despite the dietary restrictions
mposed in the study. Even when possible, coronary 18F-

ies

Ascending Aorta Descending AortaRCA All Vessels

100% 96% 100% 100%

2 1.27 � 0.41 1.56 � 0.50 1.97 � 0.43 2.01 � 0.40

2 1.30 � 0.41 1.59 � 0.48 2.01 � 0.31 2.06 � 0.35

16% 34% — —

1 0.01 � 0.21 0.03 � 0.14 — —

74% 51% 100% 100%

8 1.34 � 0.22 1.54 � 0.24 2.23 � 0.35 2.24 � 0.31

9 1.05 � 0.24 1.22 � 0.21 1.78 � 0.25 1.79 � 0.25

2 �0.23 � 0.30 �0.22 � 0.32 — —

BR max) values in the coronary arteries, ascending aorta, and descending aorta. Inter-observer
ries (mean difference � limits of agreement).

coronary artery; other abbreviations as in Table 1.
y Arter

X

9%

� 0.4

� 0.4

9%

� 0.2

3%

� 0.2

� 0.1

� 0.4

ratio (T
DG repeatability was inferior to that for 18F-NaF, with a
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fixed bias of 0.22, limits of agreement of � 0.32 and an
ntra-class correlation coefficient value of 0.67 (95% CI:
.31 to 0.86) (Fig. 1).
There were no differences in 18F-FDG uptake between the

ontrol group and those with atherosclerosis (1.18 � 0.31 vs.
.23 � 0.20; p � 0.498) (Table 1). There also was no

correlation between 18F-FDG activity and the CAC score,
whether in the coronary vasculature as a whole (r � 0.063, p �
0.538) or on a vessel-by-vessel basis (LAD: r � �0.041, p �
.705; RCA: r � 0.039, p � 0.726). The 18F-FDG coronary
ptake was not associated with increased rates of CAD,
nginal symptoms, prior coronary revascularization, or previous

ACE. Neither was there a significant correlation with any of
he risk prediction scores (Table 4).

ortic uptake. 18F-NaF uptake in the aorta was observed in

Figure 1 Bland Altman Plot of Inter-Observer Repeatability
for Max TBR Values for 18F-NaF and 18F-FDG

Bland Altman plot of inter-observer repeatability for maximum (Max) tissue/
background ratio (TBR) values for (A) 18F-sodium fluoride (18F-NaF) and
(B) 18F-fluorodeoxyglucose (18F-FDG). Blue line shows the mean inter-observer
difference. Grey lines show the limits of agreement for measurements.
focal distribution most commonly in areas overlying or
djacent to existing aortic calcification (Fig. 4). Less frequently
8F-NaF uptake occurred in the absence of local calcium (Fig.
, Table 2). Across the cohort as a whole, 18F-NaF uptake in
he aorta was higher than in the coronary arteries (2.01 � 0.31
s. 1.59 � 0.48; p � 0.001) (Table 2). Uptake in the ascending
orta correlated with activity in the descending aorta (r �
.815, p � 0.001) and the coronary arteries (r � 0.525, p �
.001) and with Framingham risk scores (e.g., ascending aorta
s. CVD: r � 0.208, p � 0.024). However, among those with
ncreased coronary 18F-NaF activity, a correlation was no
onger observed between activity in the coronary vasculature
nd the aorta (r � 0.157, p � 0.333).

Figure 2
Fused Positron Emission
Tomography/Computed Tomography
Images of 18F-NaF Activity in the Coronary Arteries

(A) Patient in the control group with no coronary calcium and no coronary 18F-
sodium fluoride (18F-NaF) uptake. Note the intense uptake in the vertebrae.
(B) Patient with extensive calcification in the left anterior descending artery
(LAD) but no 18F-NaF uptake. (C) Intense focal 18F-NaF uptake is observed
in the proximal LAD overlying existing coronary calcium in this region. (D) In-
creased and focal 18F-NaF uptake is observed in the mid-LAD adjacent to an
area of existing coronary calcification. (E) Patient who suffered a recent inferior
non-ST-segment elevation myocardial infarction showing intense focal uptake of
the proximal right coronary artery with sparing of the LAD. The proximal right
coronary artery was felt to be the culprit artery on the basis of the electrocar-
diogram and appearances on coronary angiography (F), which demonstrated a
complex ulcerated plaque with in situ thrombus (Online Video).

http://jaccjacc.cardiosource.com/vol59/issue17/4194_VID1-vol59iss17.mov
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18F-FDG uptake was observed in a circumferential
pattern around the aortic wall as previously described
(Fig. 4) (17). Maximum 18F-FDG TBR in the ascending
aorta correlated strongly with that in the descending aorta
(r � 0.824, p � 0.001) and the coronary arteries (r � 0.543,

� 0.001). 18F-FDG activity was higher in the aorta than
he coronary arteries (1.78 � 0.25 vs. 1.22 � 0.21; p �
.001) (Table 2). There was no correlation between 18F-
aF and 18F-FDG uptake in the ascending aorta (r �

.043, p � 0.647), descending aorta (r � 0.124, p � 0.183),
r the coronary arteries (r � 0.127, p � 0.21).

iscussion

his is the first study to describe 18F-NaF uptake in the
oronary arteries with PET/CT. We have demonstrated
hat this technique is both feasible and repeatable and that

Baseline Characteristics and10-Year Framingham Risk ScoresTable 3 Baseline Characteristics and
10-Year Framingham Risk Scores

Low 18F-NaF
Uptake (n � 66)

High 18F-NaF
Uptake (n � 40) p Value

Age, yrs 71 � 8 75 � 8 0.015*

Male, % 65 80 0.103

BMI, kg/m2 27 � 4 28 � 5 0.343

CHD, % 26 60 �0.001†

Angina, % 20 40 0.023*

MACE, % 23 45 0.016*

Previous MI 11 18 0.324

Previous CVA/TIA 8 5 0.591

Previous PCI 9 30 0.005†

Previous CABG 2 18 0.003†

Smokers (ex/current), % 50 52 0.803

Diabetes, % 12 18 0.410

Hypertension, % 59 68 0.387

Hypercholesterolemia, % 49 53 0.745

ACEi/ARB, % 50 58 0.453

Beta-blockers, % 38 50 0.221

Statin, % 52 68 0.107

Atorvastatin, % 14 28 0.077

Total cholesterol, mg/dl 196 � 48 174 � 48 0.023*

LDL cholesterol, mg/dl 105 � 43 96 � 43 0.288

HDL cholesterol, mg/dl 55 � 15 48 � 11 0.021*

Creatinine, mg/dl 0.90 � 0.14 0.87 � 0.11 0.278

Calcium, mg/dl 9.21 � 0.43 9.39 � 0.79 0.125

Phosphate, mg/dl 3.55 � 0.52 3.51 � 0.43 0.647

Alkaline phosphatase, U/l 81 � 23 87 � 69 0.473

Coronary calcium score 372 (75–994) 1249 (589–2790) �0.001†

Coronary 18F-NaF TBR max 1.34 � 0.17 2.14 � 0.42 �0.001†

Coronary 18F-FDG TBR max 1.23 � 0.20 1.23 � 0.20 0.875

10-yr Framingham risk scores

CVD 29 � 13 34 � 12 0.033*

CVD death 12 � 9 17 � 11 0.011*

CHD 18 � 11 23 � 12 0.049

CHD death 5.8 � 4.4 7.9 � 4.6 0.024*

Values are mean � SD, %, or median (interquartile range). Baseline characteristics and 10-year
Framingham risk scores of patients with coronary atherosclerosis and either normal (SUV �1.61) or
high (SUV �1.61) coronary 18F-NaF uptake. *p � 0.05 †p � 0.01

Abbreviations as in Table 1.
t can provide key insights into coronary artery plaque
iology. Activity was higher in patients with atherosclerosis
ompared with control subjects, displaying a progressive rise
ith increasing atherosclerotic burden. Furthermore, 18F-
aF uptake can be used to discriminate between those

atients with active and inactive coronary calcification.
hose with active calcification (38%) were more likely to
ave clinically significant CAD, a higher incidence of
revious MACE, lower serum high-density lipoprotein
holesterol concentrations, and higher Framingham risk
rediction scores. Therefore, 18F-NaF holds promise as a
eans of identifying high-risk populations and refining the

redictive power of CAC scoring. Finally, the spatial
esolution of PET/CT allows localization of the 18-NaF
ignal to specific coronary territories and plaques offering
he possibility of identifying vulnerable or culprit plaque on
n individual basis.

18F-NaF uptake has been described recently in the aorta
14) and carotid arteries (15) and is believed to reflect active
ascular calcification. Although histological validation of
his hypothesis is lacking, mechanistic information can be
xtrapolated from 18F-NaF uptake in bone that has been
tudied for over 30 years. In that tissue, 18F-NaF is
ncorporated directly into exposed hydroxyapatite crystal via
n exchange mechanism with hydroxyl groups (35). There-
ore it detects novel areas of calcification as well as regions
f remodeling and is used clinically in Paget’s disease (36),
rimary osteoblastic tumors, and metastatic bone disease
37). Similarly, we believe that coronary uptake reflects
ctive calcification in atherosclerotic plaque. Certainly cor-
nary 18F-NaF uptake seems to offer information that is
dditional and complementary to CAC scoring. Although
8F-NaF activity was most commonly observed overlying

Figure 3
10-Year Framingham Risk Scores for Control
Subjects and Patients With Atherosclerosis Who
Did and Did Not Have Increased 18F-NaF Uptake

Error bars denote the SD of the mean. 18F-NaF � 18F-sodium
fluoride; CHD � coronary heart disease; CVD � cardiovascular disease.
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existing calcium and a strong correlation was observed with
the CAC score, 41% of patients with scores �1,000 had no
significant 18F-NaF uptake and, areas of increased tracer
uptake were also found in regions remote from established
alcium. This activity potentially relates to developing micro-
alcification that is frequently beyond the resolution of CT and
elieved to be associated with increased mechanical stress and
isk of future cardiovascular events (9–11). Therefore, 18F-
aF seems to distinguish between patients with dormant

alcific disease, established many months or years previously,
nd subjects with metabolically active disease where the calci-
cation process is ongoing. Importantly this distinction seems
o be of clinical relevance, with higher rates of anginal symp-
oms, prior MACE events, and cardiovascular risk factor scores
bserved in those with active disease.

Calcification plays a key role in the pathophysiology of
therosclerosis, although its triggers remain debated. Ath-
rosclerotic plaques with healed rupture almost invariably
ontain calcium (38,39), leading to the hypothesis that
alcification forms part of a healing response to such events
7,40,41). The spatial resolution of PET/CT is sufficient to
ocalize 18F-NaF activity to specific coronary territories,
uggesting that 18F-NaF might be able to identify the
resence and location of recent plaque rupture. This is
upported by the PET/CT findings in the patient with recent

I. Extensive calcification was present in all 3 vessels, yet
ncreased 18F-NaF was only observed in the culprit lesion,
hich was found to be complex and associated with thrombus

t the time of coronary angiography. According to this hy-
othesis, the increased 18F-NaF activity observed in patients
ith stable CAD reflects sub-clinical plaque rupture that has

Correlation of 10-Year Framingham Risk ScoresWith the Coronary Calcium Score and PET UptaTable 4 Correlation of 10-Year Framingham
With the Coronary Calcium Score a

CVD Events

Coronary calcium score r � 0.112

p � 0.230

18F-NaF max TBR

Coronary arteries r � 0.196

p � 0.035*

Ascending aorta r � 0.208

p � 0.024*

Descending aorta r � 0.199

p � 0.032*

18F-FDG max TBR

Coronary arteries r � �0.024

p � 0.815

Ascending aorta r � �0.018

p � 0.845

Descending aorta r � �0.043

p � 0.645

Correlation of 10-year Framingham risk scores with the coronary calci
*p � 0.05; †p � 0.01.

Abbreviations as in Table 1.
een demonstrated in over 10% of such patients undergoing
angioscopy (42,43) and is thought to underlie the step-wise
growth of coronary atheroma.

Coronary calcification might occur as a response to
intense plaque inflammation. Similar calcific responses can
be observed in other inflammatory conditions such as
tuberculosis, and intra-vascular ultrasound studies have
recently associated micro-calcification with a large necrotic
core (44). However, this theory is not supported by our
18F-FDG data, which failed to show a correlation with
18F-NaF activity in either the coronary arteries or the aorta,
indicating that inflammation and calcification occur inde-
pendently in these regions.

By contrast to 18F-NaF, 18F-FDG activity was not
increased in patients with coronary atherosclerosis, com-
pared with control subjects. However, our data were
hampered by myocardial uptake that rendered one-half of
the coronary territories un-interpretable. This largely
reflected the imperfect dietary compliance that occurred
in one-third of patients, despite the detailed written
instructions and verbal reminders provided. Further stud-
ies are required in younger cohorts in whom compliance
might be improved, although our data do suggest that
18F-FDG might be of limited use in the assessment of
stable coronary disease. Inflammation has a more prom-
inent role in acute coronary syndromes, and therefore
18-FDG might provide more information in these pa-
tients. Indeed a recent study demonstrated increased
18F-FDG uptake in unstable versus stable plaque in the
proximal coronary vasculature (24).
Study limitations. Positron emission tomography/CT is
expensive, especially when compared with circulating biomark-

Scores
T Uptake

0-Yr Framingham Risk Scores

Death CHD Events CHD Death

0.152 r � 0.047 r � 0.110

0.101 p � 0.617 p � 0.237

0.282 r � 0.138, r � 0.220

0.002† p � 0.137 p � 0.017*

0.239 r � 0.141 r � 0.195

0.009† p � 0.129 p � 0.035*

0.231 r � 0.144 r � 0.191

0.012* p � 0.122 p � 0.039*

0.118 r � 0.059 r � 0.060

0.245 p � 0.565 p � 0.560

�0.047 r � 0.031 r � 0.012

0.618 p � 0.741 p � 0.899

�0.052 r � 0.030 r � �0.019

0.584 p � 0.752 p � 0.842

re and 18F-NaF or 18F-FDG uptake in the coronary arteries and aorta.
keRisk
nd PE
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ers of calcification activity, and this might limit its clinical use.
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However, we have demonstrated that—among those with
increased 18F-NaF uptake—activity in the coronaries did not
correlate with that in the aorta, suggesting that it is driven by
local rather than systemic factors. Therefore blood-based
biomarkers are unlikely to provide an accurate indication of
coronary calcification activity and instead will tend to reflect
that within larger vessels or skeletal bone. Therefore, in our
opinion the added costs of PET/CT are justified by its unique
ability to measure calcification activity specific to the coronary
vasculature. Moreover, 18F-NaF is a very simple and relatively
cheap ligand to produce.

The majority of our patients had either concomitant
aortic stenosis or aortic sclerosis. Although atherosclero-
sis and aortic stenosis often co-exist and share many
common etiological factors and histopathological simi-
larities, it is nevertheless important to confirm these
findings in a cohort of patients more representative of the
clinical population with atherosclerosis in the absence of

Figure 4
Vascular Positron Emission
Tomography/Computed Tomography
Scans in the Coronary Arteries and Aorta

(A) 18F-FDG. Intense 18F-FDG myocardial uptake is observed that obscures
uptake in the coronary arteries, although activity can be observed in the
descending aorta. (B) Effective myocardial suppression has been achieved,
and a focal area of uptake can be observed in the mid-LAD. (C) Increased
18F-FDG activity can be observed in a circumferential pattern in both the
ascending and descending aortae that rarely overlapped with existing aortic
calcium. (D) 18F-NaF. Increased 18F-NaF uptake is present in the ascending
and descending aortae remote from existing vascular calcification. Also note
activity in in the ribs, sternum, and vertebra. Abbreviations as in Figures 1
and 2.
aortic stenosis.
Finally, risk prediction scores are intended to predict
events in asymptomatic patients and therefore are not
strictly applicable to subjects with an established clinical
diagnosis of ischemic heart disease or aortic valve disease.
Given these issues, we acknowledge that our data with
respect to risk prediction are preliminary and need valida-
tion in further prospective clinical trials. However, these
scores remained higher in patients with increased coronary
NaF uptake even after patients with prior MACE were
excluded from the analysis. Therefore we believe that this
approach has helped to establish an association between
18F-NaF activity and the presence of traditional cardiovas-
cular risk factors and provides a potential assessment of the
risk of future cardiovascular events.

Conclusions

18F-NaF holds promise as a noninvasive method for inves-
tigating the role of active calcification in coronary athero-
sclerosis. There was a strong correlation with established
coronary calcium, but 41% of patients with calcium scores
�1,000 had no significant 18F-NaF uptake. This suggests
that 18F-NaF uptake provides different information, relat-
ing to metabolically active calcific plaque and developing
micro-calcification. Moreover, this information seems to be
of clinical significance in relation to symptomatic status,
prior MACE events, and cardiovascular risk scores. Pro-
spective studies to determine the relationship between
18F-NaF uptake, morphological plaque characteristics, and
future cardiovascular events are now needed in subjects with
stable and unstable CAD.
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APPENDIX
For a supplemental video, please see the online version of this article.
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