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Abstract

The velocity dependence of the thermal width of heavy quarkonia traveling with respect to the quark–gluon plasma is calculated up to the NLO
in perturbative QCD. At the LO, the width decreases with increasing speed, whereas at the NLO it increases with a magnitude approximately
proportional to the expectation value of the relative velocity between the quarkonium and a parton in thermal equilibrium. Such an asymptotic
behavior is due to the NLO dissociation cross section converging to a nonvanishing value in the high energy limit.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Using arguments based on the contraction of the Debye
screening length in quark–gluon plasma (QGP), Matsui and
Satz [1] suggested J/ψ suppression to be a signature of the
formation of QGP in the early stages of a heavy ion collision.
Indeed measurements at past SPS data [2] showed nontrivial
suppression patterns that could be consistent with the original
prediction. However, recent lattice calculations show that J/ψ

will survive past the critical temperature Tc for the phase tran-
sition [3–7] up to about 1.6 Tc, while χc and ψ ′ will dissolve
above Tc. These findings suggest that a possible mechanisms
for J/ψ suppression could be the disappearance of feedbacks
from the χc and ψ ′, together with the hadronic matter effects,
such as the nuclear absorption, the interactions with comovers,
and the shadowing effect [8,9]. Using a more precise determi-
nation of the cold nuclear matter absorption cross section of
charmonium through p–A collisions [10], it was found that such
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a feed down suppression scenario was indeed favored in results
from semi-central Pb–Pb collisions [11] and from central In–In
collisions at 158 GeV/nucleon [12].

Phenomenologically, the statistical hadronization model
[13–17] applied to the charmonium production [18] appears to
be compatible with RHIC data [19,20]. In a kinetic model, the
charmonium is produced in the whole temporal evolution of the
QGP [21,22]. Further tests at LHC will discriminate between
various pictures, and a unified picture is expected to emerge.

But before a simplified picture of J/ψ suppression can be
adopted, detailed properties of J/ψ above Tc have to be in-
vestigated. Unfortunately, the present lattice calculations based
on maximum entropy method still have poor resolution, and
is not able to reliably determine the thermal width or possi-
ble mass shift above Tc [4,5]. However, there are several re-
cent works that can supplement the lattice calculation. A recent
QCD sum rule calculation using the running coupling constant
and the gluon condensates extracted from a recent lattice data
shows that the width of J/ψ may be broadened or the mass re-
duced just over Tc [23], which is consistent with results from
AdS/QCD [24]. In another recent work, the Debye screening
length in the J/ψ moving with respect to QGP was calculated
in AdS/QCD [25]. In addition, the spectral functions of heavy
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quarkonia were extracted from the imaginary part of Green
functions obtained from potentials fitted to lattice data [26–29].
In another work, the thermal width of J/ψ was investigated us-
ing perturbative QCD up to the NLO [30]. The LO perturbative
QCD calculation for the heavy quarkonium dissociation was in-
vented by Peskin and Bhanot [31,32] more than 20 years ago.
Later, one of us rederived the LO result using Bethe–Salpeter
amplitude [33], which was further used to calculate the NLO
results [34]. In that work, the bound state of quarkonium was
described by Bethe–Salpeter amplitude, and the perturbative
QCD method was applied to calculate the decay process. The
binding energy of the quarkonium and its radius were obtained
by solving the Schrödinger equation with the potential energy
extracted from the lattice QCD calculation [35]. At the NLO, it
was found that the thermal width of J/ψ increases as tempera-
ture increases, while it decreases in the LO. Moreover, the total
width was found to grow to more than 250 MeV at 1.4Tc, as-
suming the thermal quark–gluon masses to be around 400 MeV.
If the thermal width is so large, the J/ψ initially formed at
1.6Tc, will be dissociated immediately and not be able to escape
the quark–gluon plasma until it cools down further to near Tc.

Another important aspect to be considered in a realistic
heavy ion collision is the velocity of the J/ψ with respect to
the QGP. In particular, at LHC, more energetic heavy quarko-
nia are expected to be produced and absorbed. Previously the
Debye screening length between a heavy quark and a heavy
anti-quark pair moving with respect to the QGP was calculated
in a kinetic theory approach [36]. It was found that the Debye
screening length becomes shorter as the velocity increases, be-
cause the parton density enhances in the heavy quarkonium rest
frame [36,37]. Recently, the screening length was investigated
in an AdS/CFT calculation [25,38], where it was found to be
approximately proportional to [1 − v2]1/4, v being the veloc-
ity of J/ψ with respect to the QGP. But whether AdS/CFT
calculations represents real QCD phenomena still remain con-
troversial. Therefore, in this work, we will extend a previous
NLO perturbative QCD calculation for the thermal width of a
quarkonium at rest [30] to that of a quarkonium moving with
respect to the QGP. The works mentioned above [25,36–38] an-
ticipated the shortening of the Debye screening length when the
heavy quark and anti-quark pair moves in the quark–gluon mat-
ter or equivalently when the matter is boosted, which may be
called as the change of static properties. On the other hand, our
results provide another component of the change through the
thermal width of the quarkonia as it moves through the matter.
This may be called as the change of dynamical properties. The
shortening of Debye screening length means the radius and the
binding energy of heavy quarkonia should change as it moves
through the matter. However, in this work, the radius and the
binding energy of static quarkonia are used for the purpose of
investigating the change of a purely dynamical property. We
find that at the LO, the width decreases with increasing v, which
is caused by the vanishing of the dissociation cross section of
the quarkonium by an energetic gluon. However, at the NLO
the thermal width increases with v. This is due to the nonvan-
ishing asymptotic cross section between the quarkonium and an
energetic parton at the NLO, which for the Coulomb wave func-
tion of the quarkonium scales as the square of the Bhor radius.
In Section 2, we briefly review formulas used throughout this
Letter. In Section 3, we apply these formulas to J/ψ and Υ .
Some discussions are given in Section 4. In Appendix A, we
derive the asymptotic form of the dissociation cross section of
a quarkonium in the high energy limit.

2. Thermal width of a heavy quarkonium in pQCD

The width of a hadron in the vacuum comes from its sponta-
neous decay. On the other hand, its thermal width results from
its interactions with the surrounding thermal particles. This
thermal width of a quarkonium moving with velocity β in the
medium is defined as

(1)Γ eff
β = dp

∫
d3k

(2π)3
n(k0)vrel(β)σ (k,β),

where dp is the degeneracy factor, n(k0) is the distribution func-
tion of the thermal particle, vrel the relative velocity between
decaying particle and the thermal particle, and σ(k,β) their
energy-dependent elementary dissociation cross section. Be-
cause we are interested in the decays of heavy quarkonia in the
quark–gluon plasma, the decaying particle is a heavy quarko-
nium and the thermal particles are light quarks and gluons. In
this work, we considered only three light flavors. The dissocia-
tion cross section can be written as

(2)σ(k,β) = 1

4vrel(β)EΦ(β)Ep(k)

∫
d(p.s.)|M̄|2.

The first factor on the right side is the inverse of initial flux.
EΦ(β), Ep(k) are the energies of a quarkonium and a parton
respectively. p.s. means phase space of final states, and M̄ is
the spin-averaged invariant amplitude. The invariant amplitudes
for the decay of a quarkonium by partons are listed in [30,34].
Substituting Eq. (2) into Eq. (1) we find,

Γ eff
β = dp

∫
d3k

(2π)3

n(k · u)

4EΦ(β)Ep

∫
d(p.s.)|M̄|2

(3)= dp

2EΦ(β)

∫
d4k

(2π)3

δ+(k2 − m2
p)

ek·u/T ± 1

∫
d(p.s.)|M̄|2.

Here the positive sign in the denominator is for a fermion
and the negative sign for a boson medium. The function δ+
means only positive energy is allowed, and u is the four velocity
of the thermal bath, hereafter called the Lab frame. In the Lab
frame, u = (1,0,0,0), whereas in the quarkonium rest frame,
u = (1−β2)−1/2(1,0,0,−β). In the second equality of Eq. (3),
all factors except EΦ(β) are Lorentz invariant. In fact, because
EΦ = γmΦ , where γ = 1/

√
1 − β2 and mΦ is the mass of a

quarkonium, γΓ eff
β is also Lorentz invariant quantity, and we

have

(4)γΓ eff
β = γΓ eff

Lab = Γ eff
quarkonium rest frame,

where Γ eff
quarkonium rest frame is calculated in the rest frame of the

quarkonium with a moving medium. This relation just reflects
time dilation.
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3. The thermal width of moving J/ψ and Υ in QGP

We now apply the preceding formulas to calculate the ther-
mal width of the J/ψ and the Υ . All calculation will be per-
formed in the Lab frame, and Γ will be used to represent Γ eff

Lab
from now on. The degeneracy factor dp in Eq. (1) is set to 16
for the gluons and to 36 for the quarks. For numerical purpose
in these calculations, the Tc value is taken to be 170 MeV. The
figures in the upper panel of Fig. 1 show the variation of the
thermal width Γ of J/ψ in the LO of perturbative QCD as a
function of the velocity of the quarkonium in QGP. To the LO,
the elementary dissociation process is a thermal gluon dissoci-
ating the quarkonium into a c̄c pair. Since the gluons acquire an
effective thermal mass in the QGP, we introduce a constant ther-
mal mass of either 400 or 600 MeV [39], respectively to repre-
sent a value at the lower and upper limit. The graphs in the left
figure are obtained with a thermal gluon mass of 400 MeV, and
the right figures with 600 MeV. The dissociation cross section
in the LO has the maximum value when the absorbed energy
is slightly above the threshold, and then rapidly decreases as
the gluon energy increases further [33,34]. However, since the
thermal mass of an absorbed gluon is larger than the energy that
gives the maximum cross section, larger thermal mass will give
smaller cross section. The binding energy of a J/ψ in QGP is
obtained by solving the Schrödinger equation with a potential
extracted from the lattice data, from which we find that it varies
from 36.4 MeV to few keV as the temperature changes from
1.13Tc to 1.65Tc [30,35]. When the thermal mass of the ab-
sorbed gluon becomes larger, the dissociation begins at higher
energy and the thermal width becomes smaller. This is why the
thermal width with thermal gluon mass of 600 MeV is smaller
than that with 400 MeV. The graphs at the LO also show that
the thermal width decreases as the velocity of J/ψ in QGP in-
creases. The reason for it is again simple to understand. As can
be seen from Eq. (1), the thermal width is a convolution of el-
ementary cross section, the relative velocity between the J/ψ

and the colliding parton, and the thermal distribution function
of the parton. However, as J/ψ moves across the parton matter,
many slow partons becomes fast partons as seen by the J/ψ . As
the dissociation cross section by fast parton is small in the LO,
due to the small wave function overlap, the thermal width de-
creases.

The figures in the lower panel of Fig. 1 show the thermal
width of J/ψ as a function of the velocity at the NLO, when
the thermal mass of a parton is 400 MeV (left) or 600 MeV
(right) respectively. These are the sum of quark induced and
gluon induced NLO processes. As in the LO case, the width
is smaller for larger thermal parton mass. This is mainly due
to a larger virtuality of the gluon propagator when the initial
parton has a larger thermal mass. As shown in the figure, in
contrast to the results at the LO, the thermal widths slowly
increase as the velocity of J/ψ increases. Such different be-
havior results from the asymptotic form of the NLO dissocia-
tion cross section, which converges to some finite value at the
high energy limit. In Appendix A, we derive the asymptotic
form of the NLO dissociation cross section, assuming the ther-
mal parton mass to be sufficiently small. If the cross section is
Fig. 1. The variation of the thermal widths Γ of J/ψ in the LO (upper) and in
the NLO (lower) as a function of their velocity in QGP for various temperatures,
and assuming the thermal mass of a parton to be 400 MeV (left) or 600 MeV
(right).

almost constant, the thermal width can be approximated as fol-
lows,

(5)Γ ∼ σ

∫
d3k

(2π)3
n(k0)vrel(β) ∼ σ

〈
vrel(β)

〉
,

where 〈vrel(β)〉 is the expectation value of the relative velocity
between partons and the J/ψ moving with velocity β . As men-
tioned above, as J/ψ moves faster, the expectation value of the
relative velocity increases. If the J/ψ moves with the speed of
light, 〈vrel(β)〉 approaches 1, and Γ ∼ σ . In conclusion, while
the width decreases in the LO, its magnitude is small such that
the sum of the LO and the NLO width increases with the veloc-
ity.

Fig. 2 shows the thermal widths of Υ as a function of its ve-
locity in QGP. As in the case of J/ψ , the widths decrease in the
LO, but increase in the NLO as the velocity increases. However,
the slope of increase is steeper for Υ than for the J/ψ , which
comes from the difference in their binding energies. If the bind-
ing energy is larger, the threshold energy becomes larger and
so does the energy at which the LO cross section becomes
maximum. The dominant NLO process is a forward scattering
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Fig. 2. The variation of the thermal width Γ of Υ in the LO (upper) and in
the NLO (lower) as a function of their velocity with the parton thermal mass of
400 MeV (left), of 600 MeV (right).

contribution, where the incoming parton emits a virtual gluon,
which then dissociated the quarkonium via the LO process.
This causes the monotonically increasing NLO cross section
to reach its asymptotic value at a higher incoming energy when
the binding energy is larger. This is the reason why for the Υ

system, the thermal width has a larger slope when the velocity
increases. The thermal width steadily increases until the Υ is
traveling close to the speed of light so that most of the thermal
partons have sufficient amount of energy to dissociate the Υ at
the asymptotic limit. In contrast, for the J/ψ at rest, nontrivial
fraction of the thermal partons already dissociates the quarko-
nium at the asymptotic limit.

Up to now, the thermal mass of partons were assumed to
be temperature independent for simplicity. However it is pre-
dicted to scale as g(T )T by finite temperature QCD calcula-
tions. Therefore, we finally present the result for the thermal
widths of J/ψ and Υ obtained with temperature dependent
thermal masses for the partons. The masses of thermal gluon
and quark are taken respectively as,

m2
g(T ) = g2(T )T 2

2

(
Nc

3
+ NF

6

)
,

Fig. 3. The variation of the thermal width Γ of J/ψ (left) and of Υ (right)
from the sum of LO and NLO as a function of their velocity, obtained with the
temperature dependent thermal mass [39].

(6)m2
q(T ) = g2(T )T 2

3
,

with

g2(T ) = 48π2

(11Nc − 2Nf ) lnF 2(T ,Tc,Λ)
.

The number of color Nc is set to 3, and the number of flavor Nf

to 3. For the function F(T ,Tc,Λ), we use the form obtained in
[39] from a fit to the lattice QCD calculations. Fig. 3 shows
the thermal widths of J/ψ and of Υ obtained with tempera-
ture dependent parton masses. The magnitudes of the widths lie
between the boundaries obtained with a constant thermal mass
of 400 and 600 MeV, as shown in Figs. 1 and 2 for J/ψ and Υ ,
respectively. This is so because the temperature dependent ther-
mal mass lie between 400 and 600 MeV in the temperature
range considered in this work. Moreover, the functional depen-
dencies of the thermal widths with respect to the velocity are
similar to those obtained with a constant thermal mass.

4. Discussion

In the heavy ion collisions at LHC, not only will the heavy
quarkonia be more amply produced, but be produced more ener-
getically. The suppression and/or relative enhancement of these
high pT quarkonia will also occur in such an environment. In
this respect, it is very important to know how the properties of
heavy quarkonia will change when they move with respect to
the QGP. Our result, based on the NLO perturbative QCD cal-
culation, shows that the thermal width becomes larger as the
quarkonium travels faster with respect to the QGP. The rate of
increase is larger for the case of Υ case than for the J/ψ , al-
though the magnitude itself is larger for the latter. Our result
suggests that the survival rate of J/ψ will be lower than that ob-
tained with the velocity independent thermal width calculated
at rest [30]. Consequently, if a relative suppression of J/ψ with
higher than lower pT is observed, as suggested by [25], it may
be a consequence of the broadening of the thermal width of
J/ψ as well as of the shortening of the Debye screening length.



T. Song et al. / Physics Letters B 659 (2008) 621–627 625
The difference between these two effects is that the former de-
pends on the size of fireball while the latter does not. Therefore,
a systematic study on the A-dependence will be able to discrim-
inate between these two effects.
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Appendix A

Here, we derive the asymptotic form of the cross section for
the process Φ +q → Q+Q̄+q in high energy limit. The cross
section for three-body decay is expressed as follow [30]

σ = g4m2
QmΦ

3
√

(q · k1)2 − m2
Φm2

k1

β∫
α

dw2

√
1 − 4m2

Q/w2

162π3mΦ |�k1|

(A.1)×
β ′∫

α′
dp2

Δ

∣∣∣∣∂ψ(p)

∂p

∣∣∣∣
2(

−1

2
+ k2

10 + k2
20

2k1 · k2

)
,

where q , k1, k2 are the momentum of quarkonium Φ , incoming
thermal quark, and outgoing thermal quark, respectively, and
p2

Δ = (k1 − k2)
2, w2 = (q +pΔ)2. The momentum p is the rel-

ative three momentum between Q and Q̄. If the quarkonium is
the Coulomb bound state of 1S, the absolute square of deriva-
tive of quarkonium wavefunction is

∣∣∣∣∂ψ(p)

∂p

∣∣∣∣
2

= 210πa5
0

a2
0p2

(|a0p|2 + 1)6

(A.2)= 210π(a0ε0)
5 k10 − k20 − ε0

(k10 − k20)6
,

where a0 is the Bohr radius and ε0 is the binding energy of
the quarkonium. In the second line of the above equation, the
energy conservation condition mΦ + k10 = p2/mQ + k20, and
the relation a2

0 = 1/(ε0mQ) have been used. It might seem odd
to use the nonrelativistic energy conservation condition in the
high energy limit. However, in the high energy limit, the for-
ward scattering is dominant, and therefore, while the incoming
quark energy is very large, the transferred energy carried by the
virtual gluon that dominantly dissociates the quarkonium is not
large. This is so because the LO dissociation cross section is
dominant near threshold. Hence a nonrelativistic treatment of
the bound state kinematics is justified. α, β , α′, and β ′ are the
integration limits for drawing Dalitz plot on the plane of p2

Δ

and w2. They are respectively

α = 4m2
Q,

β = (
√

s − mk1)
2,

α′ = −b −
√

b2 − ac,

(A.3)β ′ = −b +
√

b2 − ac,
where

b = {
s − (mΦ + mk1)

2}{s − (mΦ − mk1)
2}/(2s)

− {
s − (

m2
Φ − m2

k1

)}(
w2 − m2

Φ

)
/(2s),

b2 − ac = {(
s − m2

Φ + m2
k1

)2 − 4sm2
k1

}
× {

w2 − (u + mk1)
2}{w2 − (u − mk1)

2}/(4s2).
Here, s is the square of the initial energy in center-of-mass

frame. In the limit of s → ∞,

β → s,

α′ → w2 − s,

β ′ → 0,

k10, |�k1| → s

2mΦ

,

k20 → s − w2 + p2
Δ

2mΦ

and the initial flux becomes

(A.4)4
√

(q · k1)2 − m2
Φm2

k1
→ 2s.

Then the elementary cross section becomes

σ ≈ 16g4m2
QmΦ(a0ε0)

5

3π2s2

s∫
4m2

Q

dw2

√
1 − 4m2

Q

w2

0∫
w2−s

dp2
Δ

× (k10 − k20 − ε0)

(k10 − k20)6

[
−1

2
+ (k10 − k20)

2

2k1 · k2
+ k10k20

k1 · k2

]

≈ 16g4m2
QmΦ(a0ε0)

5

3π2s2

s∫
4m2

Q

dw2

√
1 − 4m2

Q

w2

0∫
w2−s

dp2
Δ

(A.5)× (k10 − k20 − ε0)

(k10 − k20)6

k10k20

k1 · k2
.

Because k10 − k20 varies from ε0 approximately to s1/2, first
two terms in the square bracket have no contribution in the large
s limit. After integration with respect to p2

Δ, the cross section
becomes

σ ≈ 28g4m2
Qm4

Φ(a0ε0)
5

3π2

s∫
4m2

Q

dw2

×
√

1 − 4m2
Q/w2

(w2 − m2
Φ)5

[
−25

12
+ ln

w2 − m2
Φ

2m2
k1

(A.6)− 2mΦε0

w2 − m2
Φ

(
−137

60
+ ln

w2 − m2
Φ

2m2
k1

)]
,

where we used the following decomposition formula for inte-
gration with respect to p2 ,
Δ
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1

(x − a)(x − b)n

= −1

a − b

1

(x − b)n
+ −1

(a − b)2

1

(x − b)n−1
+ · · ·

+ −1

(a − b)n

1

x − b
+ 1

(a − b)n

1

x − a

and we ignored the thermal mass mk1 for simplicity except in
the logarithm as a regulator. This elimination brings about a po-
tential problem when the binding energy is very small. To see
its subtlety, consider the decomposition formula in the follow-
ing example,

1

(2m2
k1

− p2
Δ)(w2 − p2

Δ − m2
J/ψ)

(A.7)

= 1

w2 − m2
Φ − 2m2

k1

{
1

2m2
k1

− p2
Δ

− 1

w2 − p2
Δ − m2

Φ

}
.

Within the integration range, the left side of Eq. (A.7) is always
positive. However, if the binding energy is very small, 1/(w2 −
m2

Φ − 2m2
k1

) of the right side of Eq. (A.7) has a singularity. Of
course, the term in the parenthesis on the right side diverges
at the same time, and the equality is maintained. However, if
the thermal mass 2m2

k1
is dropped during the approximation for

simplicity, such divergence might not cancel and bring out the
wrong result.

As the forward scattering becomes dominant in high en-
ergy scattering, most of the contributions come from the region
w2 ∼ 4m2

Q in the integration of w2. Therefore, the main sup-
pression factor in the integrand in Eq. (A.6) in the s → ∞ limit
is 1/(w2 − m2

Φ)5. Terms such as ln(w2 − m2
Φ) and 1/

√
w2 can

be replaced by ln(4m2
Q − m2

Φ) and 2mQ respectively. Then we
have,

σ ≈ 27g4mQm4
Ψ (a0ε0)

5

3π2

s∫
4m2

Q

dw2

√
w2 − 4m2

Q

(w2 − m2
Φ)5

×
[
−25

12
+ ln

4m2
Q − m2

Φ

2m2
k1

(A.8)− 2mΦε0

w2 − m2
Φ

(
−137

60
+ ln

4m2
Q − m2

Φ

2m2
k1

)]
.

Using the beta function
∞∫

0

du
um

(1 + u)m+n+2
= m!n!

(m + n + 1)! ,

the w2 dependent terms become

lim
s→∞

s∫
4m2

Q

dw2

√
w2 − 4m2

Q

(w2 − m2
Φ)5

= 5π

128(4m2
Q − m2

Φ)7/2
,

lim
s→∞

s∫
4m2

dw2

√
w2 − 4m2

Q

(w2 − m2
Φ)6

= 7π

256(4m2
Q − m2

Φ)9/2
,

Q

Fig. 4. The discrepancy between Eqs. (A.1) and (A.9).

and finally the cross section becomes

σ ≈ 2g4m4
Φa2

0

3πm
1/2
Q (2mQ + mΦ)9/2

[
−125

12
mQ + 167

60
mΦ

(A.9)+ (5mQ − mΦ) ln
ε0(2mQ + mΦ)

2m2
k1

]
.

Fig. 4 shows the discrepancy between the result of Eq. (A.1)
and the result of Eq. (A.9) at

√
s = 100 GeV, where we used the

binding energy of J/ψ in the vacuum [34]. It is shown that the
error decreases as the thermal mass of a parton decreases. If we
further ignore the binding energy of a quarkonium, mΦ = 2mQ,
we find

(A.10)σ ≈ g4a2
0

48π

(
3 ln

2ε0mQ

m2
k1

− 97

20

)
.

This formula has several important features. First, the cross
section is proportional to the square of the Bhor radius. It is
a consequence of the dipole type of cross section, which is
proportional to the derivative of the momentum wave function
squared. The second important feature is the logarithmic term
with argument proportional to the thermal mass, which acts as
the regulator.

In the case of Φ + g → Q + Q̄ + g, the terms in the square
bracket of Eq. (A.5) are replaced by the following [30,34]

k1 · k2

k10k20
− 4 + 2k10

k20
+ 2k20

k10
− k2

20

k2
10

− k2
10

k2
20

+ 2

k1 · k2

(A.11)×
[
(k10 − k20)

2
{

(k10 + k20)
2

k10k20
− 2

}
+ k10k20

]
.

In the asymptotic limit, all but the last term in the square bracket
of Eq. (A.11) are suppressed in the large s limit. Because its
coefficient is twice of that for the quark induced case, the as-
ymptotic cross section is two times larger. This ratio can also
be seen in the quark and gluon induced dissociation cross sec-
tions shown in figures of Ref. [30].

We remark that the asymptotic value for the cross section ob-
tained in Appendix A is for the Coulomb bound state, while in
the previous sections, both the Bohr radius a0 and the binding
energy ε0 of quarkonia are extracted independently from lat-
tice data, such that the relation a2

0 = 1/(ε0mQ) is not satisfied.
Moreover, the extracted binding energy is too small compared
to the thermal mass of a parton, especially in the case of J/ψ .
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Because of these reasons, Eq. (A.9) or Eq. (A.10) cannot be
used directly. Nevertheless, the property that the dissociation
cross section in the NLO converges to nontrivial finite value in
the high energy limit is still maintained.
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