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INTRODUCTION 

0L-, 1L- and 2L-languages are together called L-languages and were 
introduced by Lindenmayer  (1968), originally as a tool for certain problems 
in theoretical biology. Herman and Van Dalen have discussed the strength 
of 1L- and 2L-systems (or, rather, their canonical extensions). Doucet  did 
some work on deterministic 0L-systems, and Rozenberg investigated some 
propert ies of L-languages and their generalizations. In  this paper  we are only 
concerned with 0L-languages; we shall present some results characterizing 
this family, and then make a comparison with the "classical" Chomsky 
hierarchy. We shall assume the reader to be familiar with the main facts 
about the Chomsky-languages. 

1. PRELIMINARIES 

1.1 I f  A and B are two sets, then A _C B denotes inclusion of A in B. 
A C B denotes strict inclusion, and A ~ B denotes the negation of A C B; 
A and B are called incomparable if A ~ B and B ~ A. 

The  number  of elements of A is writ ten as # A .  2 A denotes the family 
of all subsets of A. ~ is the empty set. 

Let  Z be a finite set. Any sequence of elements of Z is called a word  over Z. 
I f  x and y are two words over Z, then their concatenation is wri t ten as xy.  

A denotes the empty word. I f  a ~ X,  then a 2 means aa, a 3 means aaa, 

etc; a ° = A. 
I f  L 1 , L 2 are sets of words over Z, then L 1 • L2 = {xy  : x ~ L  1 & y  ~L~}. 

Z* is the (Kleenean) closure of 27 under  concatenation; it means that  Z* = 
oo 

U~=o z i ,  where Z ° = {A}, and Z i = Z i - l "  Z for i = 1, 2, 3,. . . .  Z+ ~ Z* - -  {A}. 
I f  x is a word over Z, then the length of x is denoted by I x J. I f  Z and A are 

two nonempty sets and h is a mapping,  h : Z - + A * ,  which is extended 
to Z* by defining h(A) = A and h(a 1 "" an) = h(al) "'" h(an) for a! ,... , an ~ Z ,  

then h is called a homomorphism. 
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Let X C_Z*, Y C_A*, and h : Z - - - ~ A *  be a homomorphism. Then  
h(X)  = {y  : (3xh (h(x) = y)). 

h 1, defined by h- l (Y )  = {x : h(x) ~ Y}  is called an inverse homomorphism. 

1.2. For definitions of context-sensitive, context-free, and regular 
grammars,  we refer the reader to an appropriate textbook, e.g., Ginsburg [4]. 

As regards the use of different kinds of letters, we shall usually denote 
terminal symbols by a, b, c,...; terminal words by ...w, x , y ,  z; nonterminal 
symbols by A, B, C,...; nonterminal words by ...X, Y, Z; and arbitrary 
words by % fl, y, . . . .  

In describing derivations, we shall use ~ --+a fl for a production rule, ~ ~ fi 
for a derivation of length one, and ~ * / 9  for any derivation of length zero 
or more. I f  there is no risk of confusion, the G is omitted. 

For a fixed, finite alphabet Z one can define the following three families of 
languages: 

DEFINITION. Lf c S :  { M : M C _  Z* and there exists a context-sensitive 
grammar such that L(G) = M}.  
~qocF = {M : M _C Z* and there exists a context-free grammar G such that 
L(G) -~ M) .  
~ R  z = { M : M C Z *  and there exists a regular grammar  G such that 
L(G) = i } .  

For purposes of classification, we also define/@cs = { / :  i - -  {A} E ~ c s ) .  
A set M C_ Z*  is called a context-sensitive (context-free, regular) language if it is 
an element of ~CS(~CF,  ~a~). 

I t  has been proved [cf. Ginsburg] that ~ C Lz°a cF C ~C* acS u {A} for any 
alphabet Z with # Z  > 1. I t  has also been proved [cf. Ginsburg] that 
~f~ = L~°x c r  if # Z  = 1. 

DEFINITION. A linear bounded automaton is a system B = < K,  Z, 8, % ,  F>, 
where K and Z are disjoint, finite, nonempty  sets, 8 is a mapping of K × Z 
into the subsets o f K  × Z × {--1, 0, 1}, % e K ,  andF_C K - -  {%}. 
For arbitrary elements u and v of Z*  and c in Z write 

(i) ucpav ~-- uqcbv if 8(p, a) contains (q, b, - -1)  

(ii) upav P-- uqbv if 8(p, a) contains (q, b, 0) 

(iii) upav ~-  ubqv if 8(p, a) contains (q, b, 1). 

For each c~ in Z * K Z *  write ~ ~-  ~. For ~ and fi in Z * K Z *  write a ~-  fi 
if there exist c~ = % ,..., % = / 3  such that ai ~-- c~i+l for each i < k. 

Let  T(B) = {w ~ Z*  : qo w ~-  fl for some fi ~ Z ' F } .  A w E Z*  is accepted 
by B if and only if w ~ T(B). 
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The class of languages accepted by linear bounded automata is identical 
with the class of context-sensitive languages [Kuroda]. 

1.3. We shall now define 0L-systems and the languages generated by 
them. 

DEFINITION. A OL-system is a system G = <Z, P, a),  where Z (the 
alphabet) is a finite, nonempty set, a (the axiom) is an element of Z +, and 
P (the set of productions) is a finite subset of Z × Z*, such that 

(Va)z (~c~)z, (<a, @ ~ P). 

As in the grammars defined in 1.1, a --> c~ shall mean the same as <a, @ ~ P. 
The  relation ~ in OL-systems differs from the corresponding relation in 

the grammars of 1.1: 

DEFINITION. Let G = (Z, P, a)  be a 0L-system; let x ~ Z+, x = a 1 "- am 
w i t h i n > / l a n d a  s ~ Z f o r j =  1 ..... m; let y ~ Z*. Then  x ~ y if and only if 

(bp~ ,..., p ~ ) ,  (vj)~ . . . . . .  (P5 = <a~,  o,~> & y =- ~ . - .  O'm). 

In the usual way, *~ is defined as the transitive and reflexive closure of ~ . 
G G 

DEFINITION. Let G = (Z, P, a)  be a 0L-system. The language generated 
by G is defined as L(G) = {x : a ~ x}. 

G 

DEFINITION. Let Z be a fixed alphabet. 
(gz = {M : M C Z* & there exists a 0L-system G such that L(G) = M}. 

A set M _C Z* is called a OL-language if it is an element of @E. A special class 
of 0L-languages is defined by (~  = {M : M ~ (9~ & A ~ M}. 

The difference in definition of 0L-languages and context-free languages, 
for example, can be summed up in three points: 

(i) There is no terminal alphabet; every string derived in the system 
(sentential form) is an element of its language. 

(ii) The  axiom of a 0L-system is a word of length one or more. 

(iii) Productions are always applied simultaneously; in other words, 
if a word derives another word, productions are applied to all the letters in it. 
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2. CLOSURE PROPERTIES 

0L-languages are remarkable by their nearly complete lack of closure 
properties under the usually considered operations. We shall show this. 

THEOREM 2.1. OL-languages are not  closed with respect to 

(i) Union 

(ii) Complement 

(iii) Intersection 

(iv) The star operator (or Kleenean closure) 

(v) The q- operator 

(vi) Homomorphisms 

(vii) Inverse homomorphisms 

(viii) Intersection with regular sets. 

Proof. We shall make use of the following 0L-languages to provide 
counterexamples for the different sections: 

K:  = {a 2, a a, a G, a s, a 1° ,...), 

generated by ({a}, {a ---* a, a -+ aa}, a2). 

K2 = (a a, a 4, a 5, a n, aV,...}, 

generated by ({a}, {a -+ a, a -+ a2}, aa). 

K 3 = {a, a, a 2, a a, a4}, 
generated by ({a}, {a --+ A, a --+ a}, a4). 

K~ = {a a, a 6, a :2, a 24, a4S,...}, 

generated by ({a}, {a --+ a2}, aa). 
K ~  = {a ,  a 3, a 4, a 9, a :°, a:* . . . . .  a 16, a 27, a28,. . .} ,  

generated by ({a}, {a -+ a a, a --+ a4}, a). 

K 6 = {ba, ba 2, ba a, ba4,...}, 
generated by ({a, b}, {a -+ a, b --+ b, b --+ ba}, ba). 

K 7 = {b, a 5, a:5}, 
generated by ({a, b}, {a --* a, b --~ a 5, b --> a:5}, b). 

K 8 = {aa} t..a {b 2'~ : k  >~ 2), 
generated by ({a, b}, {a --* bb, b --~ bb}, aa).  

We shall also make use of the fact that two-element subsets of {a} +, such 
as {a a, aa}, are not 0L-languages (in 3.1 (iii) we shall prove this for any finite 
subset 21I of {a} + for which # M  >/2).  
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(i) A trivial counterexample  is {a} k9 {a2}; the componen t  sets are in  
(~{a}, bu t  their  un io n  is not. Less trivial is K 1 u K 4 = {a ~, a 3, a 4, a 6, aS,...}. 

There  is no 0L-system H = ({a}, P,  @ such that  L ( H )  = K s kA K4; for it is 
clear that  a --~ A cannot  be in  P, so ~ = ae; also a 2 ~ a 3, which means  that  
bo th  a ~ a and  a ~ a 2 mus t  be in P ;  with these rules, however, a 4 ~ a a, 

and a 5 ~ K 1 t j  K 4. 

(ii) Tr iv ia l  non-0L- languages  are the complements  of 2~* (the empty  

set) and  of 2J+ (the set conta in ing  only A). T h e  complemen t  of K s ,  
{a}* - -  K s = {A, a, a s, a 5, a7,...}, is also no t  in (9{o } . For,  i f H  = <{a}, P,  @ is 

such that  L ( H )  = {a}* - -  K1 ,  then both  a ~ A and some a - ~  a m mus t  be  

in  P .  This ,  however,  enables one to produce  words of even length (take any 

word of {a}* - -  K s , apply the second rule to two of its letters, and the first 

rule to the others), which do not  belong in  {a}* - -  K s . T h e  s ta tement  still 
holds for complements  with respect to 27+ instead of 27* : {a}+ - -  K2 = 
{a, a a} ~ (~a}. 

(iii) Again, all those intersect ions conta in ing  either no e lement  or only 
A can serve as counterexamples.  Also, K 1 t~ K~ = {a 2 , a 4} is not  in d?(~). 
Less trivial is K z ~ K 5 ~ {a ~, a 4, a 9, a ~°, a11,...}. By an a rgumen t  similar to 

that  in (i) one can easily show that  this set is not  in  (~{~}. 

(iv) Consider  K6* , and  assume that  there exists a H = ({a, b}, P,  @ 

such that  L ( H )  = Ks*.  F r o m  the two facts that  A ~ K~* and  that  all other 
words conta in  bo th  a 's  and b's, it follows that  bo th  a - *  A and  b - ~  A mus t  
be  in  P.  But  this implies that  a - ~  a ~ ¢  P for every m / >  1 (otherwise a m 

would  be in L(H)) .  So, for any rule a - +  a in  P,  either ~ = A or a = ~1b~2 

for some ~1 and a 2 in {a, b}*. But  this means  that  H, which should produce  
words  of the form ba '~ for arbi trary large n, is no t  able to do so. 

(v) Obviously,  Ks+ = {sa "- s k : k >~ 1 & (si = a 2 V si = b~)}. Assume 
that  there exists a H = <{a, b}, P,  ~)  such that  L ( H )  =- Ks+. T h e n  a --+ A 
and b - +  A are no t  in P,  since A ~ Ks+. So e ~ aa, and,  as a 2 ~ a 4, a - +  a ~ 
is in P (a - ~  a in P and  a -+  a ~ in P lead to obvious contradictions).  As b ~ 
is in L ( H ) ,  either a 2 ~ b 4 or a 4 ~ b 4. I n  bo th  cases, the existence of some 
P- ru le  a --~ b k (k = 1, 2, or 3) is necessary. But  with such a rule, a 2 =~ a2b ~ 

with k = 1, 2 or 3, and  such a word is not  in  Ks +. So the required  H does no t  
exist, and  Ks + is no 0L-language.  

(vi) A trivial counterexample  is the erasing h o m o m o r p h i s m  defined 
by  h(a) ~- A ,  applied to any 0L-language over {a}. A more  interest ing case 
is the  h o m o m o r p h i s m  h~ : {a}* - +  {a}* defined by h ~ ( a ) =  aS;h~(Ks) 
{A, a 5, a 1°, a 15, a2°}, which is no t  in d){~i, as the reader will easily see. 
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(vii) Again,  {A} and ~ can be used as a proof: if h 2 :{a}*--~ {a}* 
maps  a into a 1°, then  hKl(Ka)= {A}; and  h~l(K4)~- ~ .  Less trivial is 

h-~l(Ks) = {a ~, a ~, a6,...}. By a similar a rgumen t  as used in (i), one can readily 
show that  this set is no t  in  (~{~}. Still  another  counterexample  is provided by  

h l ~ ( K 9  = {a, a ~} ~ 0{o.~}. 

(viii) Let  R denote the  regular language {a3, a4, a'5, a6,...}; then  

K 8 n R = {a 3, a 4} ~ (¢(al. Both Z and  {A} are regular sets; so intersect ing 

them with an appropriate  0L-language again provides two counterexamples.  

COROLLARY 2.2. OL-languages are not closed with respect to either gsm- 

mappings or inverse gsm-mappings. 1 

3. 0L-LANGUAGES OVER A ONE-LETTER ALPHABET 

A m o n g  the 0L-languages  a special place is taken by  those over a one-let ter  
alphabet .  We  shall first say someth ing  about  their  closure properties.  Looking 

at the counterexamples  used in the proof  of T h e o r e m  2.1, one can see that  it 
holds also for this special class, with one exception. 

3.1. THEOREM The OL-languages over a one-letter alphabet are closed with 

respect to the Kleenean closure. 

Proof. Let  G = ({a}, P,  a r) be an arbitrary 0L-sys tem over {a}. First,  
we shall exclude the special case of L ( G ) =  {a}. I t  is clear that  a* is a 
0L-language.  Second, i fL(G)  is a finite set (different f rom {a}), then  the proof 
follows f rom Remark  3.2. So we assume that  L(G) is infinite. Given  i < r, if  
there are any  words  in L(G) of the form a k'r+i for some k > /0 ,  then  we shall 
denote  the shortest among  them by  w~. Toge ther  with a r, the different w~ 
form the set T. T h e  set of immedia te  successors of words in T together  with 
a r is denoted  by 5~; more  formally, 2P z {y ~ {a}* : (~X)r(X ~ y)} u {at}. 
Of course 5 ~ is finite. Now take the 0L-sys tem H = ({a}, Q, a s) with 

Q = {a --~ A} • {a --~ t : t ~ 2P}. We  shall show that  L ( H )  = (L(G))*. 

(i) Let  x e L ( H ) .  Either  x = A, or x = a ~, or x is something  else. 

1 A generalized sequential machine (gsm) is a sextuple S = (g ,  ~, A, 5, ~, ql), where 
g is a finite nonempty set (of states), X and A are (input and output) alphabets, ~ is a 
mapping o f K  × 2; into K, ~ is a mapping o f K  × ~'into A*, and ql is an element of 
g .  ~ and h are extended to K X Z* m the usual way. If X C X*, then the gsm-mapping 
of X by S is defined by S(X) = {;~(ql, x) : x E X}. If Y _C A *, then the inverse gsm- 
mapping of Y by S is defined by S-I(Y) = {x c X : A(ql, x) ~ Y}. 

643/19/4-3 
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In  the first two cases, x E (L (G) )* .  In the third case x must  have an immediate 
predecessor, y, in L ( H )  (meaning that y ~ x), of the form am. This  means that  
x itself is of the form x 1 ' "  x~ with all xi  taken from {A} u ~ and, con- 
sequently, words f romL(G)  (if they are not equal to A). So x is a concatenation 
of words from L ( G ) ,  and x e (L (G) )* .  

(ii) Now it must  be proved that y e ( L ( G ) ) *  implies y e L ( H ) .  I t  is, 
however, sufficient to prove that x e L ( G )  implies x e L ( H ) .  For  let 
y = x I "- x~ with all x, in L ( G ) .  a r *=> a kr for every k, in particular, a r *~ a ~r. 

.H >~ -far 

I f  a ~ ~ xi  implies a ~ ~ x~ for all ~, then also a ~" ~ a ~'~r ~ x .  "" x~  = y .  The  
• H H H 

argument fails only if y ~- A, but  in that case y is in L ( H )  anyhow. 
So let x be inL(G).  Either x ~ a r (and then x e L ( H ) ) ,  or x has a direct prede-  

cessor in L ( G )  : v ~ x.  Then,  v is of the form a ~, with u >/1 .  According to the 
G 

construction of the set T, a ~ (being an element of L(G)) can always be divided 
into elements of T; to be more precise, if a ~ = a ~'~'+~ (with 1 ~< i ~< r) and 
w~ ~ a ~'~+i, then v = a ~ ~ a r "" a~wi (with a ~ repeated k - -  l times, and 
k - -  l never negative). As v is now written as a concatenation of k - -  l + 1 
elements of T : v  ~ v 1 " " v k _ z + l ,  the corresponding division of x, 
x = x 1 " '  x~_~+ 1 (determined by vi ~ xi for each i) has the proper ty  that  
all xi are in 2P. 

The  remainder of the proof is now easy; v I ~ X l ,  for Q contains both a- -+x  1 

and a - +  A (to be applied once and ] v i i  - -  1 times, respectively). Similarly, 

By induction, v *~ x implies v ~ x; so x e L ( G )  implies x E L ( H ) .  As 
G 

mentioned before, it follows that (L(G))* _C L ( H ) .  

3.2. R e m a r k  One can also prove that, for any nonempty finite set S C {a}*, 
with S* ~ {A}, S* is a 0L-language; for, if S ~ {x~ ,..., xk}, then S* is 
generated by the 0L-system H = ({a}, {a -+ A ,  a -+ x l  ,..., a -+ xk}, xT~). 

3.3. Theorem 3.1 suggests an "ar i thmet ical"  characterization of certain 
0L-languages. 

Let  N denote the set of natural numbers.  Given a one-letter alphabet 
27 - -  {a}, we can represent the natural numbers  in terms of 27* in an obvious 
manner,  a m representing n for n = 0, 1, 2 , . . .  

Given a set M C N, we shall denote by Add(M)  the smallest subset of N 
that contains M and is closed under addition. Then  Theorem 3.1 and 
Remark 3.2 state that, if M is representable by a 0L-language (or finite), then 
Add(M)  is representable by a 0L-language. We shall show that, using the 
same representation, one can characterize, for any one-letter alphabet 27, 
the family (9~. 
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For  a finite F = {m 1 ,..., me} C N - -  {0} and a na tura l  n u m b e r  n (n ¢= 0), 
we define 5#(F, n) by 

~ ( F ,  n) = {p + N : (3hl ,..., k~)N(P = klm~ + h~m2 + "'" + k~ms)} u (n}. 

3.4. LEMMA Let  X = {a}, and K C_ Z*,  K infinite. I f  K e (~ ,  then there 

exist a natural number n > 0 and a nonempty finite set F C N - -  {0} such that 

K = {a~ : j  + ~ ( F ,  n)}. 

Proof. Let  G = ({a}, P,  ~} be a OL-system such that  L ( G ) ~  K.  Let  
- -  a ~o, and P = {a --+ a k : k e B} for s o m e / ~  C N. We  claim that  L(G) = 

{a ' :  j ~ J ( B ,  m0)}, where B = / ~  - -  (0}. 

(i) Let  x e L(G).  I f  x = a, then  x = amo and mo e 5P(B, too). I f  x @ a, 
then  there  exists a y  ~ L ( G )  with y ~ x. Let  y = a r. T h e n  obviously there  

exist k 1,.. . ,  k~ e N (with k 1 - ] - . . . +  k s = r) and m 1,..., m s ~ B  such that  
x = a Q with q = klm 1 @ k2m 2 + ".  + hsm s ( intui t ively speaking, a --+ a ~ 
is applied to ka occurrences of a in  y,  a -+  a ~2 to k~ occurrences,  and  so 

on, thus  ob ta in ing  x from y). So q e 5°(B, m0). Hence,  if x e L(G),  t hen  

x e {a~ : j  e 5~(B, mo) ). 

(ii) Let  j e 5P(B, too). I f  j = ,no, then,  of course, a~ : a e L ( G ) .  I f  

j =/- m 0 , t hen  there exist k 1 ,..., k ,  e N such that  j ~ him 1 -~ k2m ~ ... ksms 
(where B = {m 1 ,..., m~}). Note that,  because L(G) is infinite,  there exists 
a word ag e L ( G )  such t h a t g  > k 1 + --- -t- k~. Now, i f j  = 0, then  obviously 
aJ e L ( G ) ,  and  i f j  =/= 0, t hen  a~ ~ a '  (apply a ~ a ~ to k~ occurrences of a 

G 
in  a g, a - -+  a ~ to k~ occurrences,  and  so on ;  to the r emain ing  

g - -  (k a @ "-- @ k~) occurrences,  apply a - ~  A). So j e 5P(B, m0) impl ies  
a j e L ( G ) .  

Combin ing  (i) and (ii), one obta ins  

K = L(G)  = { g  : j  ~ 5P(B, m0) }. 

3.5. LEMMA Let  n e N - -  {0} a n d F  be a nonempty finite subset of  N --  {0}. 
Then there exists a OL-language K C {a}* such that K = {a' : j ~ .Y(F, n)}. 

Proof. Take  G = ({a}, {a--+a I : f e F w { O } } , a n } .  I n  a similar way to 
the previous proof, one can show that  L(G) = {a' : j + ~ ( F ,  n)}. 

3.6. We can now give a characterization of 0L-languages conta in ing A 
over a one-let ter  alphabet.  

THEOREM 3.6. Let  Z = {a}, and K e (9~. 

(i) K is finite i f  and only i f  either K = {A, a '~} for  some m > 0 or K 
is prefix-closed (meaning that K = {A, a, a2,..., am}for some m > 0). 



310 ROZENBERG AND DOUCET 

(ii) K is infinite i f  and only i f  there exist an n ~ N, n > O, and a nonempty 
finite set F C N - -  {0} such that K = {aJ : j ~ 5~(F, n)}. 

Proof. (i) Let G = ({a}, P, a m) be a 0L-system such that L(G) is finite 
and L(G) a @A. Then obviously a ~ A is in P. I f  P contains nothing else, 
L(G) = {A, am}. If, on the other hand, P contains some a --+ aL then r = 1 
(otherwise L(G) would be infinite); but then L(G) is prefix-closed. Conversely, 
for an arbitrary m > 0, both {A, a m} and {A, a, aS,..., a m} are obviously 
elements of t0A. 

(ii) For infinite K, the theorem follows directly from lemmas 3.4 
and 3.5. 

3.7. COROLLARY If K is an infinite set in (9{a}, then there exist a finite 
set F and positive integers M and d such that K = F u { M  4- hd : k >/0}. 

Proof. The statement follows from Lemma 3.4 if one takes for d the 
greatest common divisor of m 1 ,..., ms (in the same notation of Lemma 3.4). 
The  reader will be familiar with the fact that the set {him i 4- k2m 2 + "" 
4- hsm~ : kl .... , ks ~ 0} can be written as F w { M  4- kd : h ~ 0} for some 
integer M and some finite set F. 

Now if k 0 is the smallest integer for which M 4- kod ~ n, then put 
M = M 4- kod. This completes the proof. 

4. 0L-LANGUAGES AND CHOMSKY'S HIERARCHY 

In  this section we shall discuss the connections between context-flee and 
context-sensitive languages and the OL-languages. 

4.1. THEOREM For any alphabet Z, (fix and 5 ~  are incomparable, but not 
disjoint. 

Proof. (i) The 0L-languages K1, K s , / £ 3 ,  KG, KT, as used in the proof 
of 2.1, are all regular sets. So (9~ n ~ §  4= ~ .  

(ii) The 0L-language K 4 is not regular, since it is not ultimately 
periodic [4]. So ~Ox ~ ~q~g. 

(iii) All finite sets are regular, but many of them are not in (9 Z . In  fact, 
every finite subset M of {a} + which has two or more elements is not a 0L- 
language. To see this, assume the contrary. Then  there exists a 0L-system 
G = {{a}, P, a 1~) such that L(G) • M.  Now all possible assumptions on P 
lead to contradictions: if P contains any a - ~  a m with m > 1, then M is 
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infinite;  if  P contains a ~ A, t h e n / I  E M ;  and in the  only remain ing  case 

(namely,  P consist ing of no th ing  bu t  a -+ a), # M  = 1. H e n c e  M ~ (9 Z . 

Tr iv ia l  examples  of  sets in oT~ bu t  not  in (9~ are {A} and ;~. 

Remark. T h e  fol lowing example  shows that  the  regular sets outs ide (9 z 

are not  all finite. L e t  M1 ---- {a 2~ : n / >  1} t3 {aa}. T h e n  M 1 ~ (9x, for any 27. 

T o  see this, t ry  to const ruct  a 0L-sys tem G ----- <{a}, P,  a )  such t ha tL (G)  ~ M.  

Firs t ,  note  that  a --+ .4 is not  in P (or else A wou ld  be in MI) .  Consequent ly ,  

the  shortest  w o r d  of  M x ,  a 2, mus t  be  the  axiom. Hence  a 2 *~ a 3, and even 

a 2 ~ a ~. T h e  latter s ta tement  implies  that  a --+ a and a --+ a ~ are bo th  in P.  

But  then  a 3 ~ a 5, which  is contradictory,  since a 5 ¢ M1 • 

4.2. THEOREM 2 I f  G = <V, X, P, S )  is a context-free grammar, then there 

exists a OL-system H such that L (H)  n X* = L(G). 

Proof. Define  Q - -  P w {a ~ a : a e V), and then  H ---- <V, Q, S ) .  

(i) Suppose  that  S ~ x. W e  shall p rove  by induc t ion  on the  n u m b e r  
G 

of derivat ion steps that  S * x. I f  S =~ x, then  obviously S ~ x. N o w  suppose 
H G H 

that  the s ta tement  is val id for all der ivat ions of  k steps. L e t  S =~ w 1 ~ w2 "'" 
w~ ~ x. T h e n  w~ z w'dw",  and x == w'aw", and A ~ c~ is in P.  Since 

G G. ~ , t t/ t /  
a ~ a i s m Q f o r e v e r y a E V ,  w ~ w  a n d w  ~ w . 3 S i n c e P C O ,  A ~c~.  

H H --~ H 

So w~ ~ x. F r o m  the  induc t ion  hypothesis  it follows that  S *~ w k implies  
H :¢ G 

S *~ w,. : hence  S ~ w k ~ x. 
H ~" H H 

(ii) Fo r  the  p roof  that  L(H)  c~ I *  CL(G),  assume that  x ~ V +, y ~ V* 

and x ~ y. Le t  x = a t "'" am wi th  each ai in 27. T h e r e  exist p roduc t ions  

a l  --+ ~1 ,..., am ~ c% in P such that  ~ "" am = y. N o w  4 

t 
a l " " a m  ~ ~aa2"'" a,~ +G ~:%a3"'" a,n ~c "'" +c %~2"'" c% 

holds in G So, i f  x =~ y,  then  x ~- y 
" H G 

Again us ing induct ion,  it follows that  S *~ y implies  S N y. By (i) and (ii) 
H G 

we have now proved  that  S *~ x if  and only if S *~ x, for every x ~ V*. 
O , H 

H e n c e  L(C)  = 27* n L(H).  In fact, L(H)  = {x : S ~ x}. 

4.3. THEOREM ~ Let H <I, P, @ be a OL-system with the property that 

a --~ a is in P for every a e 27. 

Theorems 4.2 and 4.3 have also been found, independently, by A. Lindenmayer 
[10]. Theorem 4.3 is also stated in [Van Dalen]. 

a If x : at "'" a~ and a~ ~ w~ for each a~, then clearly x ~ wl "'" w,~. 
G 

t 
D e f i n e x ~ y i f a n d o n l y i f x ~  y o r x  = y .  

G G 
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Then L(H)  is a context-free language. 

The proof is quite similar to the proof of Theorem 4.2 and can be omitted. 

4.4. COROLLARY ff H = <27, P, a) is a OL-system, then any subsystem of 
H containing the identity production for each of its letters generates a 
context-free language. More formally: if  2 C {a : a ~ Z & <a, a) ~ P}, 
P = {<a, @ ~ P : a E ~'}, ff is any axiom over 2 ,  and IVI = <2, P, 65, then L(IYI) 
is context-free. 

4.5. COROLLARY A OL-language M C_Z* is context-free if  and only if  
there exists a OL-system G --  < V, P, a) with the properties 

(i) (Va)v(<a, c~) E P), 

(ii) L(G) n Z* = M. 

The "if" follows from Theorem 4.3, the "only if" from Theorem 4.2. 

4.6. Theorem 4.3 also holds for a larger class of languages, obtained 
by extending the notion of 0L-languages. 

A system G = <Z, P, O) will be called a OL-system with context-free root 
if 2J and P are defined as in 0L-systems, and O is a context-free language 
over Z, serving as a set of axioms. The  relations :> and *~ are defined as 

G G 
in 0L-systems, and the only difference lies in the definition of the language 
generated by G : L(G) = {x ~ Z* : (3a)o(a *~ x)}. 

G 

4.6. THEOREM Let G = (Z,  P, O) be a OL-system with context-free 
root. I f  a ~ a ~ P for every a ~ Z, then L(G) is context-free. 

Proof. Let O = L(C) for some context-free grammar C = < U , / ' ,  O, S) .  
Obviously, ( U - - / ~ ) n Z =  2~. Now take the context-free grammar 
H = < V ,  27, R , S ) ,  with V : Z t A ( U - - / ' ) u 2  (where Z : { ~ : a ~ 2 J } )  
and R = {(a, &) : <a, c~) ~ Q} u ((a, s> : (a, @ ~ P} u {(g, a)  : a ~ Z}. In  
much the same way as in 4.2 and 4.4 one can prove that L(G) = L(H).  

4.7. THEOREM For every alphabet Z, (~z and ~ c e  are incomparable, but 
not disjoint. 

Proof. (i) Theorem 4.3 shows that @z n ~ c F  ~= ys. 

(ii) (9~ ~[ ~CF, as is shown by the 0L-system 

G = <{a, b, c}, {<a, aa), <b, bb), <c, cc)}, abc>. 
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Clearly, L(G) = {aZ"b~"c 2" : n >~ 0}. That  L(G) is not context-free can be 
easily shown analogously to the proof (by Bar-HilM, Perles and Shamir, and 
by others) that {anb~c n : n >/1}  is not context-free. 

The  statement still holds for the special case that # Z  = 1; the example 
mentioned in 4.1 (ii) showed that (9(~} f o~°~a}, and, as mentioned in 1.1, 

(iii) ~°xce f (flz follows from ~og ~ (gz, which was proved in Theorem 
4.1. This  says nothing, of course, about the not-regular context-free sets. 
Tha t  these are not generally in (~z is shown, e.g., by the set {anb n : n >/2},  

which is context-free, not regular, and not 0L. The  last of these three 
statements is quite easily proved along the lines of 2.1 (i). 

4.8. After Theorems 4.1 and 4.7 which established connections between 
0L-languages and regular and context-free languages, we shall now proceed 
to prove the strict inclusion of the class of 0L-languages in the class of context- 
sensitive languages. The  following lemma (which we need for Theorem 4.9) 
can be proved in a purely formal way, but this would necessitate the use of 
a rather complex formalism to describe a derivation, resulting in an obscure 
and tedious proof. Instead, we prefer to give a semiformal proof which is both 
reasonably clear and readily translatable into a proof of greater rigour. 

LI?MrvIA 4.8. Let  G be a OL-system. Then there exists a number C a such 

that for  every word w in L(G)  there exists a derivation such that [ u [ <~ C~ "1 w I 

for  every word u in that derivation. 

Proof. (i) First we shall define the notions productive and improductive 

element, ancestor, and age. 

We assume a derivation D : x  *~ y to consist of a sequence of words 
beginning with x and ending with y, together with the precise set of produc- 
tions used in each step. We shall only consider finite derivations. Within 
a one-step derivation D : x ~ y, one can in an obvious way 5 for any substring 

of x specify- the subst r ing~ o f y  derived (in D) from 2. This  notion can also 
be extended to longer derivations x G y. Of course, such an 2 may consist 
of only one letter. So, given a D : x = a "" aj "" a m *~ y,  the substring 
35(a~.) o f y  derived from a~- is precisely and uniquely defined. We shall call a s 
(D-) improductive if and only if this 35(aj) is empty. (This simply means that aj 
does not contribute to the last word of D). All letters in words of D (or letters 
in D, as we shall somewhat loosely call them) which are not D-improductive 
we shall call (D-) productive. 

5 A similar notion was introduced by Parikh for context-free grammars.  
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If, in a certain D : x *~ y, p is a substring of y, p is derived from some 
letter a 3 (sop ~ p(a~) for some a 3- in D), and35 is any substring offl(a3), then a~ 
is called a (D-)ancestor of 35. Furthermore, in the derivation x *~ y~ ~ Yk-1 

"'" ~ Yz ~ Y, a is the k-th ancestor of some 35 in y if a is an ancesotr of 
and a is in Yk • 
I t  is not difficult to see that, in a given derivation, 

(1) except in the first word of the derivation, each letter has one and 
only one first ( =  direct) ancestor; 

(2) all ancestors of a productive letter are also productive; 

(3) all strings derived from an improductive letter consist wholly 
of improductive letters. 

The (D-)age of a D-improductive letter is defined as the number of its 
D-improductive ancestors + 1. Thus,  if an improductive letter has age 1, 
this means that all its ancestors are productive; if it has age 4, it means that 
its first, second and third ancestors are improductive, all further ancestors 
(if they exist) being productive (this follows from (2)). 

(ii) With the aid of the newly defined concepts, we can now prove our 
lemlIla .  

Let G ~- <Z, P, a)  be a 0L-system, with # Z  = n, and 

max{] c~ ] : <a, ~> ~ P} = K. 

Le t -w~L(G) ,  and let D : a = w  0 ~ w  1 ~ ' - ' ~ w ~ _  l ~ w , ~ - w  be some 
derivation of w. 

Consider an arbitrary word w~ in D(1 ~ q ~ m --  1). wq can be partitioned 
into substrings, as fo l lows:~q  contains all D-productive letters of w~, 
x 1 contains all D-improductive letters of D-age 1,..., x~ contains all D-impro- 
ductive letters of D-age p. Note that 

(4) each of these substrings may lie scattered over w~ (but this will 
not affect the argument). 

(5) wq may contain letters of any age p, except that p ~ q. 

(6) I~01 ~ 1 ~ 1 [  ~ < ' "  ~ l ~ ] .  

(7) I ~ 1 ~< 1 w~l for all j ,  0 ~< j <~ m - -  1. 

Now, still in wq, consider a letter in some xj for which j ~ n -}- 1. It has 
more than n D-improductive ancestors, which implies that, among these, some 
letters occur at least twice; in other words, the line of ancestors contains a loop. 
This loop can be removed without any effect on w (all letters in the loop being 
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improductive). By removing this loop and all similar loops throughout the 
derivation, one obtains a new and simplified derivation D', with the properties 

(a)  ~ ~ ,  w 

(b) no D'-improductive letter has a D'-age > n. 

Denote the words in D' by adding ' to the older names, and the result for 
wq is wq' = Nqxl'x 2' "" x r' (note that statement (4) applies to this notation), 
where r ~< n and r ~ q. It  is now possible to estimate the length of wq': 

(8) I%' l=l~q[+lx( l+lx~ ' l+ '"+lx /[ .  
(9) The  first D'-ancestor of each letter of x 1' is in wq-1 ; so 

I Xl' [ ~ 1 "  ] ~_11.  

By the same argument, ] xz'[ ~ K 2 ' [  aTq_ 2 [,..., ] xr' [ ~ K ~ "I wa-¢ [" 
Now apply (6), (7), and (9) to (8): 

(10) [w~'I~[%I+K.I~_,I+KZ.I%_2I+...+K~.I~q_~I 

~<(1 + K + . . . - i - K ~ ) I ~ q l  

~ ( 1  + K + ... + K ~ ) ! w l  
K ~+1 - -  1 

~ ( l + K + " ' + K ~ ) ] w l - -  K - - 1  Iw[" 

By putting C a = ( K  ~+1 - -  1)/(K-- 1), we obtain [wq'[ ~ C a "l.w [, 
which is of the required form. 

4.9. THEOREM The OL-languages are context-sensitive. 

Proof. As it is known [Kuroda] that the class of context-sensitive languages 
coincides with the class of languages accepted by linear bounded automata, 
it is sufficient to show that, for every 0L-language, there is an lba accepting it. 

Although it is by no means difficult to describe the actual machine accepting 
a given 0L-language, the construction is at tile same time straightforward and 
uninteresting, and we think an informal description will be enough. The 
"track" technique we use follows that of Hopcroft and Ullman. 

Let G = (2J, P, @ be a 0L-system. As shown in 4.8, there is a C such that 
every w eL(G)  possesses a derivation ~ * w with the property that no word 

G 
in that derivation is longer than C • I w [. Of course, we are free to take 2C - /  1 
instead of C. 
Figure 1 illustrates an lba accepting L(G). It  uses a tape containing 2C + 1 
tracks (which can be easily coded into the required one-track tape) as follows: 
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t - - 1  

finite i control 

t (C tracks) 

_~ } (1 tt'ack ) 

FIC.  1. 

The word in question w is written on the central track, and, in the initial 
configuration (illustrated), the axiom a is written in the lower half of the tape; 
the rest of the tape is empty (¢ may, of course, be longer than w; but the whole 
lower half of the tape is available, and a is never longer than C • I w I). 

The  machine first compares a and w. If  a = w, then of course w ~L(G),  
and the machine stops. I f  a :/= w, then the machine derives a word from 
(nondeterministically, if G is nondeterministic) and writes it in the upper half 
of the tape, meanwhile erasing ~ from the lower half. This word is again 
compared with w and, if the result is negative, the machine produces a new 
word from it, writing the new one in the lower half and erasing the old one. 

This procedure is repeated until either some comparison yields a positive 
result or the length of a word exceeds the available space. Note that, if a word 
runs off the tape, this does not mean that w q~L(G); w may have other deriva- 
tions which stay within the limits. 

For economy of operation, the machine could be instructed to compare w 
with a newly produced word only if this word has the correct length (i.e., 
occupies precisely one track of the available tape). 

In  previous proofs in this paper, all examples of non-0L-languages were 
context-sensitive. Together with the statement we just proved, this means 
that, for any Z', (9~ C ~cFcs. 

4.10. We can now roughly locate the 0L-languages within Chomsky's 
hierarchy. Let 2J be a fixed alphabet. 
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l( !l 
FIG. 2. FIG. 3. 

Figure 2 combines the contents of Theorems 4.1, 4.7, and 4.9. Figure 3 does 
not contain much extra information but merely illustrates the situation for 
a one-letter alphabet {a}. 

CONCLUDING REMARKS 

The  results so far obtained raise some new problems. Of course, the classi- 
fication of 0L-languages with respect to Chomsky's  hierarchy is open to 
refinement. There  is also the arithmetical characterization of 0L-languages. 
We found one for (d~ if # Z  ~- 1, but this is a rather restricted class; it 
should be extended to (Yz with # Z  = l, and perhaps even to all 0L-languages. 
The  latter problem seems to be difficult. 

As Theorem 2.1 shows, 0L-languages display an extraordinary resistance 
to the usual Boolean and related operations. Whether  this has to do with their 
biological origin is perhaps difficult to say; but there certainly is a need to 
devise operations better suited to these languages and/or their biological 
applications. 

SUMMARY 

In 0L-languages, words are produced from each other by the simultaneous 
transition of all letters according to a set of production rules; the context is 
ignored. 
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(i) 0L-languages are no t  closed u n d e r  the  operat ions usually con-  

sidered. 

(ii) 0L-languages over a one-let ter  a lphabet  are discussed separately; 
a characterization is given of a subclass. 

(iii) 0L-languages are incomparable  with regular sets, incomparable  
wi th  context-free languages, and  strictly inc luded in context-sensi t ive 

languages. 

RECEIVED: August 15, 1970 
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