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INTRODUCTION

OL-, 1L- and 2L-languages are together called L-languages and were
introduced by Lindenmayer (1968), originally as a tool for certain problems
in theoretical biology. Herman and Van Dalen have discussed the strength
of 1L- and 2L-systermns (or, rather, their canonical extensions). Doucet did
some work on deterministic OL-systems, and Rozenberg investigated some
properties of L-languages and their generalizations. In this paper we are only
concerned with OL-languages; we shall present some results characterizing
this family, and then make a comparison with the “classical” Chomsky
hierarchy. We shall assume the reader to be familiar with the main facts
about the Chomsky-languages.

1. PRELIMINARIES

1.1 If 4 and B are two sets, then 4 C B denotes inclusion of 4 in B.
A C B denotes strict inclusion, and 4 € B denotes the negation of 4 C B;
A and B are called incomparable if AL B and BT 4.

The number of elements of 4 is written as #A. 24 denotes the family
of all subsets of 4. @ is the empty set.

Let 2/ be a finite set. Any sequence of elements of X is called a word over 2.
If x and y are two words over Z, then their concatenation is written as xy.

A denotes the empty word. If ae 2, then @* means aa, 4® means aaaq,
etc; a® = /.

If L,, L, are sets of words over X, then L, - L, = {xy : x €L, &y € L,}.
2* is the (Kleenean) closure of X under concatenation; it means that 2* =
Ui 2%, where 0= {A},and Z¢ = Zi-1 - Zfori = 1,2, 3,... . 2+ = Z% — {A}.

If x is a word over 2, then the length of x is denoted by | x |. If 2 and 4 are
two nonempty sets and % is a mapping, A : 2 — 4% which is extended
to 2* by defining #(A4) = Aand (e, - a,) = k(a,) - k(a,) for aq ,...,a, € 2,
then & is called a homomorphism.
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Let XCX* YCA4* and h:ZXZ—4* be a homomorphism. Then
H(X) = {3 = @x)s (h(x) = 3).

AL, defined by A~Y(Y) = {x : A(x) € Y} is called an inverse homomorphism.

1.2. For definitions of context-sensitive, context-free, and regular
grammars, we refer the reader to an appropriate textbook, e.g., Ginsburg [4].

As regards the use of different kinds of letters, we shall usually denote
terminal symbols by &, b, c,...; terminal words by ...w, x, ¥, #; nonterminal
symbols by A4, B, C....; nonterminal words by ..X, Y, Z; and arbitrary
words by «, B, vye.. -

In describing derivations, we shall use o — 8 for a production rule, « = j
for a derivation of length one, and « % B for any derivation of length zero
or more. If there is no risk of confusion, the G is omitted.

For a fixed, finite alphabet 2’ one can define the following three families of
languages:

DErFINITION. #§° = {M : M C Z* and there exists a context-sensitive
grammar such that L(G) = M}.
FEF = {M : MC 2* and there exists a context-free grammar G such that
L(G) = M).
PR={M:MCZX* and there exists a regular grammar G such that
LG) = M),

For purposes of classification, we also define £55 = {M : M — {4} e £S5},
A set M C X* is called a context-sensitive (contexi-free, regular) language if it is
an element of LE5(FSF, £X).

It has been proved [cf. Ginsburg] that ¥ C £SFC £S5 U {4} for any
alphabet 2 with #ZX > 1. It has also been proved [cf. Ginsburg] that
PR = PCFif #3 = 1.

DEFINITION. A linear bounded automaton is a system B = (K, X §, q, , F>,
where K and X are disjoint, finite, nonempty sets, 8 is a mapping of K x 2
into the subsets of K X 2 X {—1,0, 1}, g€ K, and F C K — {g,}.

For arbitrary elements # and v of 2* and ¢ in X write
(1) wucpav — ugebv if 8(p, a) contains (g, &, —1)

(if) upav +— ugbv if 8(p, a) contains (g, b, 0)

(i) upav — ubgo if 8(p, a) contains (g, b, 1).

For each « in Z*KZ* write « ¥~ o. For « and B in Z*KX* write o =
if there exist « == oy ,..., & = B such that o; — ;. for each 7 < A.

Let T(B) = {we 2% : qyw ™ B for some Be X*F}. A we X* is accepted
by B if and only if we T(B).
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The class of languages accepted by linear bounded automata is identical
with the class of context-sensitive languages [Kuroda].

1.3. We shall now define OL-systemns and the languages generated by
them.

DerintTION. A OL-system is a system G = (X, P, o), where 2 (the
alphabet) is a finite, nonempty set, ¢ (the axiom) is an element of 2+, and
P (the set of productions) is a finite subset of 2 x 2*, such that

(Va)s () (@, @ € P).

As in the grammars defined in 1.1, @ — « shall mean the same as {q, o) € P.
The relation = in 0L-systems differs from the corresponding relation in
the grammars of 1.1:

DeriNiTION. Let G = (X, P, o) be a0L-system; letx e 2t x = a, - a,,
with m 2= 1land ¢, € 2 forj = 1,..., m; let y € 2*. Then « Zy if and only if

@P1seees Prde (Vs (B5 =<5, 00 &Y = 0 "+ ).
In the usual way, % is defined as the transitive and reflexive closure of =
DeriNiTION.  Let G = (X, P, o) be a OL-system. The language generated
by G is defined as L(G) = {x : ¢ % xh

DeriNITION.  Let 2 be a fixed alphabet.
Oy ={M : M C Z* & there exists a OL-system G such that L(G) = M}.

A set M C 2* s called a OL-language if it is an element of @ . A special class
of OL-languages is defined by 04 ={M : Me Oz & A e M}.

The difference in definition of OL-languages and context-free languages,
for example, can be summed up in three points:

(i) There is no terminal alphabet; every string derived in the system
(sentential form) is an element of its language.
(ii) 'The axiom of a OL-system is a word of length one or more.

(iii) Productions are always applied simultancously; in other words,
if a word derives another word, productions are applied to all the letters in it.
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2. CLOSURE PROPERTIES

0L-languages are remarkable by their nearly complete lack of closure
properties under the usually considered operations. We shall show this.

THEOREM 2.1. OL-languages are not closed with respect to
(1) Union
(ii) Complement
(i) Intersection
(iv) The star operator (or Kleenean closure)
(v) The + operator
(vi) Homomorphisms
(vii) Inverse homomorphisms
(viii) Intersection with regular sets.
Proof. We shall make use of the following OL-languages to provide
counterexamples for the different sections:
K, = {a? a* ab, a®, a0 ,...},
generated by {{a}, {a — a, a — 43}, a®).
K, ={d% a*, a5 a5, a’,..},
generated by {({a}, {a — a, a - d?}, a®).
K, ={4, a, a? &, a*},
generated by {{a}, {a > 4, a — a}, a*>.
K, = {d%, 4% a'?, a%, a%,...},
generated by ({a}, {a — a2}, a®>.
K = {a, @ da*, a° a*, aV,..., a'%, a¥, a®,...},
generated by {{a}, {a — &®, a— a%}, a).
K, = {ba, ba?, ba®, ba',...},
generated by {{a, b}, {a — a, b — b, b — ba}, ba>.
K, = {b, a5 a*%},
generated by {{a, b}, {a — a, b — a5, b — a5}, b).
K, = {aa} U {b*" 1 k =2},
generated by ({a, b}, {a — bb, b — bb}, aa).

We shall also make use of the fact that two-element subsets of {a}*, such
as {a%, @}, are not OL-languages (in 3.1 (iii) we shall prove this for any finite
subset M of {a}*+ for which #M = 2).
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(1) A trivial counterexample is {a} U {a?}; the component sets are in
Oy , but their union is not. Less trivial is K} U K, = {a?, a5, a%, af, a5,...}.
There is no OL-system H = {{a}, P, o) such that L(H) = K; U K,; for it is
clear that ¢ — / cannot be in P, so ¢ = a2; also a® = 43, which means that
both @ — a and a — @* must be in P; with these rules, however, a* = 4,
and a®¢ K, U K, .

(ii) Trivial non-OL-languages are the complements of 2* (the empty
set) and of X+t (the set containing only A). The complement of K,
{a}* — Ky ={4, a,a’, a5 a°,...},is also not in Oy, . For, if H = {{a}, P, o) is
such that L(H) = {a}* — K, , then both ¢ — /1 and some a —> a™ must be
in P. This, however, enables one to produce words of even length (take any
word of {a}* — K, apply the second rule to two of its letters, and the first
rule to the others), which do not belong in {a}* — K; . The statement still
holds for complements with respect to X+ instead of 2* : {a}* — K, =
{cl, 42} ¢ (O{a} .

(1ii) Again, all those intersections containing either no element or only
A can serve as counterexamples. Also, K; N Ky = {@?, a*} is not in Oy, .
Less trivial is K, N K = {45, a*, &%, a'%, a',...}. By an argument similar to
that in (i) one can easily show that this set is not in @y .

(iv) Consider K*, and assume that there exists a H = {{a, b}, P, o)
such that L(H) = K*. From the two facts that 4 € K* and that all other
words contain both &’s and 8’s, it follows that both ¢ — A and b — 4 must
be in P. But this implies that @ — a™ ¢ P for every m > 1 (otherwise a™
would be in L{H)). So, for any rule ¢ — « in P, either o = A or o = aybos,
for some o; and «, in {a, b}*. But this means that H, which should produce
words of the form ba” for arbitrary large #, is not able to do so.

(v) Obviously, Kgt ={s; -5, : k= 1& (5; = a® V 5, = b*)}. Assume
that there exists a I = {{a, b}, P, ) such that L(H) = Kg*. Then a > 4
and b — A are not in P, since 4 ¢ K. So o = aa, and, as a? = a%, a — &?
isin P (a->ain P and a— 4% in P lead to obvious contradictions). As 5*
is in L(H), either a? = b* or a* = b%. In both cases, the existence of some
P-rule a—b* (£ =1, 2, or 3) is necessary. But with such a rule, a* = a%*
with £ = 1, 2 or 3, and such a word is not in Kg+. So the required H does not
exist, and Kt is no OL-language.

(vi) A trivial counterexample is the erasing homomorphism defined
by h{a) = A, applied to any OL-language over {a}. A more interesting case
is the homomorphism %, :{a}* —{a}* defined by A (a) = a%; 1 (K;) =
{4, a3, a'®, a'%, @}, which is not in 0y, , as the reader will easily see.
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(vil) Again, {4} and @ can be used as a proof: if A, :{a}* — {a}*
maps a into @, then MY (K;) = {A}; and A (K,) = . Less trivial is
hY(K) = {a?, a3 &b,...}. By a similar argument as used in (i), one can readily
show that this set is not in @, . Still another counterexample is provided by

MK = {a, a® ¢ O,y -

(viii) Let R denote the regular language {a? a* a5 45,...}; then
K;NR={aa'¢0y . Both @ and {4} are regular sets; so intersecting
them with an appropriate OL-language again provides two counterexamples.

CoroOLLARY 2.2. (L-languages are not closed with vrespect to either gsm-
mappings or inverse gsm-mappings.t

3. OL-LLANGUAGES OVER A ONE-LETTER ALPHABET

Among the OL-languages a special place is taken by those over a one-letter
alphabet. We shall first say something about their closure properties. Looking
at the counterexamples used in the proof of Theorem 2.1, one can see that it
holds also for this special class, with one exception.

3.1. Tueorem The OL-languages over a one-letter alphabet are closed with

respect to the Kleenean closure.

Proof. Let G = {{a}, P, a") be an arbitrary OL-system over {a}. First,
we shall exclude the special case of L(G) = {a}. It is clear that &* is a
0L-language. Second, if L(G) is a finite set (different from {a}), then the proof
follows from Remark 3.2. So we assume that L{G) is infinite. Given i < 7, if
there are any words in L(G) of the form a*7+ for some k& 2= 0, then we shall
denote the shortest among them by @, . Together with a”, the different @,
form the set 7". The set of immediate successors of words in T together with
a" is denoted by T; more formally, T = {ye{a}* : (Fx)y(x = y)} U {a}
Of course T is finite. Now take the OL-system H = ({a}, Q a™y with
O ={a— Ay U{a—t:te T} We shall show that L(H) = (L(G))*.

(i) Let xeL(H). Either x =4, or x = a", or x is something else.

L A generalized sequential machine (gsm) is a sextuple S = (K, 2, 4, 8, A, ¢;>, where
K is a finite nonempty set (of states), 2 and 4 are (input and output) alphabets, 8 is a
mapping of K X X into K, A is a mapping of K X X into 4%, and ¢, is an element of
K. 8 and A are extended to K X Z* 1n the usual way. If X € Z*, then the gsm-mapping
of X by S is defined by S(X) = {A(gy, x): x € X}. If Y C A%, then the inverse gsm-
mapping of Y by S is defined by S~ V) = {x € X : Mgy, x) € Y}.

643/19/4-3
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In the first two cases, x € (L(G))*. In the third case x must have an immediate
predecessor, y, in L(H) (meaning that y = x), of the form a™. This means that
x itself is of the form x; -~ x,, with all x; taken from {4} U T and, con-
sequently, words from L{G) (if they are not equal to /). So x is a concatenation
of words from L(G), and x € (L(G))*.

(i) Now it must be proved that y e (L(G))* implies y e L(H). It is,
however, sufficient to prove that x € L(G) implies x e L(H). For let
Yy = x; - %, with all x, in L(G). a” & a*" for every k, in particular ar ";{ amr,
If ar = % implies a” = %, for all 7, then also a” % = A = 3. The
argument fails only if ¥ = /, but in that case y s in L(H) anyhow

So let x be in L(G). Either x = a" (and then x € L(H)), or x has a direct prede-~
cessor in L(G) : v = ». Then, v is of the form 4%, with u > 1. According to the
construction of the set T, a* (being an element of L(G)) can always be divided
into elements of T'; to be more precise, if g% = g (with 1 <7 <7) and
w, = "™, then v = a* = a” -+~ a"w; (with 4" repeated k — [ times, and
k — I never negative). As v is now written as a concatenation of £ — /4 1
elements of 7T :v =wv -~v,_;,;, the corresponding division of «,
& =% " ¥4, (determined by v, = % for each 7) has the property that
all x; are in 7.

The remainder of the proof is now easy; ; =%, for O contains both ¢ —ux,

and a — 4 (to be applied once and | ; | — I times, respectively). Similarly,
Y2 37 Xaoee Vi1 37 X So v % *

By induction, v % x implies @ % x; so x€L(G) implies x e L(H). As
mentioned before, it follows that (L{G))* C L(H).

3.2. Remark One can also prove that, for any nonempty finite set S C {a}*,
with S* =% {4}, S* is a OL-language; for, if S = {x; ,..., %,}, then S* is
generated by the OL-system H = {{a},{a — 4, a — xy ,..., a — x,}, %,>.

3.3. Theorem 3.1 suggests an “‘arithmetical’” characterization of certain
OL-languages.

Let N denote the set of natural numbers. Given a one-letter alphabet

= {a}, we can represent the natural numbers in terms of X* in an obvious
manner, a” representing n forn = 0, 1, 2,... .

Given a set M C N, we shall denote by Add(M) the smallest subset of N
that contains M and is closed under addition. Then Theorem 3.1 and
Remark 3.2 state that, if M is representable by a OL-language (or finite), then
Add(M) is representable by a OL-language. We shall show that, using the
same representation, one can characterize, for any one-letter alphabet 2

the family 0% .
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For a finite F = {m, ,..., mi} CN — {0} and a natural number z (# 5= 0),
we define S(F, n) by

‘g,(F) n) = {P eN: (akl LEALH] ks)N(p - klml + k2m2 + + ksms)} Y {ﬂ}

34. Lemma Let 2 = {a}, and K C 2%, K infinite. If K € 04, then there
exist a natural number n > 0 and a nonempty finite set F C N — {0} such that
K ={a':je S(F, n)}.

Proof. Let G =<{a}, P,c> be a OL-system such that L(G) = K. Let
o =a™, and P = {a— a*: ke B} for some B CN. We claim that L(G) =
{@ : j € S(B, my)}, where B = B — {0}.

(i) Let xeL(G). If x = o, then x = a™ and m, € (B, m,). If x #~ o,
then there exists a y € L(G) with y = x. Let ¥ = a”. Then obviously there
exist Ry ,..,k,eN (with &k + - + &k, =7) and my ,...,m;e B such that
x = a* with g = kymy + kymy + - + kgn, (intuitively speaking, a — a™
is applied to %, occurrences of a in y, a — a™2 to k, occurrences, and so
on, thus obtaining x from y). So g € &(B, m,). Hence, if x € L(G), then
xe{a 1 je L (B, my)}.

(ii) Let je S(B, my). If j = my, then, of course, o/ = ¢ € L(G). If
J # m, , then there exist &, ,..., &, € N such that j = kym; + ke, - kan,
(where B = {m, ..., m;}). Note that, because L(G) is infinite, there exists
a word a? € L(G) such that g > & - --- 4 &, . Now, if j == 0, then obviously
@’ e L(G), and if j 5= 0, then a¢ = a’ (apply @ — @™ to k; occurrences of a
in a% a—d™ to k, occurrences, and so on; to the remaining
g — (kR + -+ + ko) occurrences, apply a— A). So je (B, my) implies
a’ e L(G).

Combining (i) and (ii), one obtains

K =LG) ={d :je F(B, my)}.

3.5. Lemva  Let ne N — {0} and F be a nonempty finite subset of N — {0}.
Then there exists a OL-language K C {a}* such that K = {a’ : j € S(F, n)}.

Proof. Take G = {{a}, {a— o : feFU{0}},a”>. In a similar way to
the previous proof, one can show that L(G) = {a’ : j € F(F, n)}.
3.6. We can now give a characterization of 0L-languages containing A

over a one-letter alphabet.

TueoreM 3.6. Let X = {a}, and K € 0%
(1) K is finite if and only if either K = {4, a™} for some m >0 or K
is prefix-closed (meaning that K = {d, a, &,..., a™} for some m > 0).
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(i) Kis infinite if and only if there exist an n € N, n > 0, and a nonempty
finite set F C N — {0} such that K = {&’ : j € F(F, n)}.

Proof. (i) Let G =<{a}, P, a™) be a OL-system such that L{G) is finite
and L(G) € 4. Then obviously @ — A is in P. If P contains nothing else,
L(G) = {4, a™}. If, on the other hand, P contains some a — 47, then r = 1
(otherwise L(G) would be infinite); but then L(G) is prefix-closed. Conversely,
for an arbitrary m >0, both {4, a™} and {4, 4, @%,..., @™} are obviously
elements of 02.

(i) For infinite K, the theorem follows directly from lemmas 3.4
and 3.5.

3.7. CoroLLARY If K is an infinite set in Oy, then there exist a finite
set I and positive integers M and d such that K = F U {M + kd : k == 0}.

Proof. The statement follows from Lemma 3.4 if one takes for d the
greatest common divisor of my ,..., m, (in the same notation of Lemma 3.4).
The reader will be familiar with the fact that the set {k;m, + kymy 4 -+
+ kgng 2 ky ..., By > 0} can be written as F U {M - kd : k > O} for some
integer M and some finite set F.

Now if k, is the smallest integer for which M 4 kd > n, then put
M = M + kyd. This completes the proof.

4. OL-Lancuaces aND Cromsky’s HIERARCHY

In this section we shall discuss the connections between context-free and
context-sensitive languages and the 0L-languages.

4.1. TuroreM For any alphabet X, O, and F% are incomparable, but not
disjoint.

Proof. (i) The OL-languages K, , K, , K; , Kg, K;, as used in the proof
of 2.1, are all regular sets. So 0, N ¥% +« .

(ii) The OL-language K, is not regular, since it is not ultimately
periodic [4]. So 0, ¢ FX.

(iii) All finite sets are regular, but many of them are not in 05, . In fact,
every finite subset M of {a}* which has two or more elements is not a OL-
language. To see this, assume the contrary. Then there exists a OL-system
G = {{a}, P, a*) such that L(G) = M. Now all possible assumptions on P
lead to contradictions: if P contains any @ — a™ with m > 1, then M is
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infinite; if P contains a — /, then A€ M; and in the only remaining case
(namely, P consisting of nothing but a — a), #M = 1. Hence M ¢ 05,
Trivial examples of sets in £% but not in U are {4} and .

Remark. The following example shows that the regular sets outside 0
are not all finite. Let My = {a®" : n > 1} U {a®}. Then M, ¢ O, for any 2.
"T'0 see this, try to construct a0L-system G = ({a}, P, o) such that L(G) = M.
First, note that @ — A is not in P (or else 4 would be in Mj). Consequently,
the shortest word of M, , a?, must be the axiom. Hence a2 %5 a3, and even
a® = a*. The latter statement implies that 2 — a and @ — a? are both in P.
But then a® = ¢, which is contradictory, since a° ¢ M, .

4.2. Tueorem? If G =<V, 2, P, S) is a context-free grammar, then there
exists a OL-system H such that L(H) N 2* = L(G).

Proof. DefineQ = PU{a—>a:acV}, and then H =V, 0, 5.

(i) Suppose that S ’% x. We shall prove by induction on the number
of derivation steps that .S % x.1f S = x, then obviously S = x. Now suppose
that the statement is valid for all derivations of & steps. Let S Wy = Wy
= Wy T X Then w, — w'Aw”", and x = w'ow”, and 4 — « is in P. Since
a—aisinQ forevery aeV, o' = o’ and @” = "3 Since PCO, 4 = o
So w0, = x. From the induction hypothesis it follows that .S ’% w;, implies
S £ w, ; hence S & w;, = x.

H = a

(i) For the proof that L(H) N Z* CL(G), assume that x € Vt, ye V*

and x =9 Let x = a, *- a,, with each g; in 2. There exist productions

@y —> Oy ooy G —> Oy, in P such that oy = ot = 3. Now?
a 7 :I> ’ ’

i d s a ol e o

1 m G 142 mos 123 m oS & 12 m

holds in G. So, if x = y, then x %> y.

Again using induction, it follows that S % y implies .S % 3. By (i) and (ii)
we have now proved that S *:g x if and only if S % x, for every xe V*.
Hence L(G) = 5* N L(H). In fact, L(H) = {x : $ & x}.

43. Tueorem® Let H = (Z, P, o> be a OL-system with the property that
a— ais in P for every ac Z.

2 Theorems 4.2 and 4.3 have also been found, independently, by A. Lindenmayer
{10]. Theorem 4.3 is also stated in [Van Dalen].
3Ifx = a; *** ap and a, :g w, for each a, , then clearly x T; Wyt W

4Deﬁnex%yifandonlyifx:gyorxzy.
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Then L(H) is a context-free language.

The proof is quite similar to the proof of Theorem 4.2 and can be omitted.

4.4. CoroLLarY If H =<2, P, o) is a OL-system, then any subsystem of
H containing the identity production for each of its letters generates a
context-free language. More formally: if X Cf{a: ac X & {a, a) € P},
P={¢a,a>eP:a ef’}, G 15 any axiom over S and H = <Z~', P, 6>, then L(FI)
is context-free.

4.5. CoroLLARY A OL-language M C X* is context-free if and only if
there exists a OL-system G = (V, P, o) with the properties

(@) (Va)y({a, xy € P),
(i) L(GYnZ* =M.
The “if”’ follows from Theorem 4.3, the “only if”’ from Theorem 4.2.

4.6. Theorem 4.3 also holds for a larger class of languages, obtained
by extending the notion of OL-languages.

A system G = (2, P, ©) will be called a O0L-system with context-free root
if % and P are defined as in OL-systems, and @ is a context-free language
over X, serving as a set of axioms. The relations = and % are defined as

in OL-systems, and the only difference lies in the definition of the language
generated by G : L(G) = {x € 2* : (Jo)4(o ’% x)}.

4.6. TuroreM Let G =X, P, @) be a OL-system with context-free
root. If a — a € P for every a € X, then L(G) is contexi-free.

Proof. Let ©® = L(C) for some context-free grammar C = (U, I, Q, S>.
Obviously, (U—-IYNn2X = g. Now take the context-free grammar
H=<V,%R,S), with V=2U(U—-T)uZX (where X ={a:acX))
and R ={a, & :{a, 0 eQ}u{@ a>:{a,apeP}U{{G@ a):acld} In
much the same way as in 4.2 and 4.4 one can prove that L(G) = L(H).

4.7. TueoreM For every alphabet Z, 05 and LEF are incomparable, but
not disjoint.

Proof. (i) Theorem 4.3 shows that 05 N LEF 5= o,
(i) Oz € FEF, as is shown by the OL-system
G = {{a, b, ¢}, {{a, aay, <b, bb>, {c, cc>}, abc).



ON QL-LANGUAGES 313

Clearly, L(G) = {a®"b*"c®" : n > 0}. That L(G) is not context-free can be
easily shown analogously to the proof (by Bar-Hillel, Perles and Shamir, and
by others) that {a"h"c" : n > 1} is not context-free.

The statement still holds for the special case that #X = 1; the example
mentioned in 4.1 (ii) showed that 0{,1}@3@}, and, as mentioned in 1.1,
PR, = L.

{a} {a}

(i) LEFL O follows from #E ¢ O, which was proved in Theorem
4.1. This says nothing, of course, about the not-regular context-free sets.
That these are not generally in @y is shown, e.g., by the set {a™b" : n = 2},
which is context-free, not regular, and not OL. The last of these three
statements is quite easily proved along the lines of 2.1 (i).

4.8. After Theorems 4.1 and 4.7 which established connections between
OL-languages and regular and context-free languages, we shall now proceed
to prove the strict inclusion of the class of 0L-languages in the class of context-
sensitive languages. The following lemma (which we need for Theorem 4.9)
can be proved in a purely formal way, but this would necessitate the use of
a rather complex formalism to describe a derivation, resulting in an obscure
and tedious proof. Instead, we prefer to give a semiformal proof which is both
reasonably clear and readily translatable into a proof of greater rigour.

Lemma 4.8. Let G be a OL-system. Then theve exists a number Cg such
that for every word w in L(G) there exists a derivation such that | u | < Cq | w |
Jfor every word u in that derivation.

Proof. (i) First we shall define the notions productive and improductive
element, ancestor, and age.

We assume a derivation D :x % y to consist of a sequence of words
beginning with x and ending with y, together with the precise set of produc-
tions used in each step. We shall only consider finite derivations. Within
a one-step derivation D : x = y, one can in an obvious way® for any substring
% of x specify the substring ¥ of y derived (in D) from %. This notion can also
be extended to longer derivations x % y. Of course, such an ¥ may consist
of only one letter. So, given a D:x =a - a, -+ a, % y, the substring
(a;) of y derived from a; is precisely and uniquely defined. We shall call q,
(D-) improductive if and only if this $(a;) is empty. (This simply means that ;
does not contribute to the last word of D). All letters in words of D (or letters
in D, as we shall somewhat loosely call them) which are not D-improductive
we shall call (D-) productive.

5 A similar notion was introduced by Parikh for context-free grammars.
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If, in a certain D : x % y, 7 is a substring of y, y is derived from some
letter a, (so ¥ = j(a;) for some a; in D), and ¥ is any substring of 7(a,), then a;
is called a (D-)ancestor of y. Furthermore, in the derivation & & y, = y,_,
= -+ = 9, =y, ais the k-th ancestor of some ¥ in y if @ is an ancesotr of ¥
and a is in y;, .

It is not difficult to see that, in a given derivation,

(1) except in the first word of the derivation, each letter has one and
only one first (= direct) ancestor;

(2) all ancestors of a productive letter are also productive;

(3) all strings derived from an improductive letter consist wholly
of improductive letters.

The (D-)age of a D-improductive letter is defined as the number of its
D-improductive ancestors - 1. Thus, if an improductive letter has age 1,
this means that all its ancestors are productive; if it has age 4, it means that
its first, second and third ancestors are improductive, all further ancestors
(if they exist) being productive (this follows from (2)).

(ii) With the aid of the newly defined concepts, we can now prove our
lemma.

Let G = (X, P, 0> be a OL-system, with #2 = #, and
max{|a|:<{a, o) e P} = K.

Let- weL(G), and let D :6 = wy = w; = - = w,,_; = w,, = w be some
derivation of =.

Consider an arbitrary word @, in D(1 < ¢ << m — 1). w, can be partitioned
into substrings, as follows : @, contains all D-productive letters of w,,
x; contains all D-improductive letters of D-age 1,..., &, contains all D-impro-
ductive letters of D-age p. Note that

(4) each of these substrings may lie scattered over =, (but this will
not affect the argument).
(5) w, may contain letters of any age p, except that p < gq.
(6) [Ty | <oy | < < a ).
(7) |@,| <|w;lforallf, 0 <<j<m— 1.
Now, still in 2, , consider a letter in some x; for which j > n 4 1. It has
more than # D-improductive ancestors, which implies that, among these, some

letters occur at least twice; in other words, the line of ancestors contains a loop.
This loop can be removed without any effect on = (all letters in the loop being
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improductive). By removing this loop and all similar loops throughout the
derivation, one obtains a new and simplified derivation D', with the properties

*
(a) o> w

’

(b} no D'-improductive letter has a D'-age > #.

Denote the words in D’ by adding ’ to the older names, and the result for
w, 18 w, = Wywy %, -+ x," (note that statement (4) applies to this notation),
where r < 7 and r < ¢. It is now possible to estimate the length of w,":

@) ) | =@+ 1o [+ [+ + %]

(9) The first D’-ancestor of each letter of x," is in @,_4 ; so

Lo | < K- | g |

By the same argument, | &, | < K%« | @y |,y | % | S K7 - | T, |

Now apply (6), (7), and (9) to (8):

(10) o, | <@ |+ K| @y |+ K2+ [ @yg |+ + K7+ [ @, |

i

S+ K+ +K)|a,|
SU+EK 4+ +K)w|

i K+ -1
SU+K++ K9 |w|=——|u].

By putting Cg = (K" — 1)[(K — 1), we obtain |w, | < Cg-|w],
which is of the required form.

4.9. THEOREM The OL-languages are context-sensitive.

Proof. Asitis known [Kuroda] that the class of context-sensitive languages
coincides with the class of languages accepted by linear bounded automata,
it is sufficient to show that, for every OL-language, there is an lba accepting it.

Although it is by no means difficult to describe the actual machine accepting
a given 0L-language, the construction is at the same time straightforward and
uninteresting, and we think an informal description will be enough. The
“track” technique we use follows that of Hopcroft and Ullman.

Let G = (&, P, o) be a OL-system. As shown in 4.8, there is a C such that
every w € L(G) possesses a derivation ¢ > w with the property that no word
in that derivation is longer than C - | w |. Of course, we are free to take 2C 1 1
instead of C.

Figure 1 illustrates an /ba accepting L(G). It uses a tape containing 2C -+ 1
tracks (which can be easily coded into the required one-track tape) as follows:
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\_1# #] )
# #] {
/ (€ tracks)
\ 7 w % } (1 track)
# o # ]
} (C tracks)
21# #_/

finite
control

Fic. 1.

The word in question w is written on the central track, and, in the initial
configuration (illustrated), the axiom o is written in the lower half of the tape;
the rest of the tape is empty (¢ may, of course, be longer than w; but the whole
lower half of the tape is available, and o is never longer than C - | |).

The machine first compares ¢ and w. If o = w, then of course w € L(G),
and the machine stops. If ¢ = w, then the machine derives a word from o
(nondeterministically, if G is nondeterministic) and writes it in the upper half
of the tape, meanwhile erasing ¢ from the lower half. This word is again
compared with @ and, if the result is negative, the machine produces a new
word from it, writing the new one in the lower half and erasing the old one.

This procedure is repeated until either some comparison yields a positive
result or the length of a word exceeds the available space. Note that, if a word
runs off the tape, this does not mean that w ¢ L(G); w may have other deriva-
tions which stay within the limits.

For economy of operation, the machine could be instructed to compare w
with a newly produced word only if this word has the correct length (i.e.,
occupies precisely one track of the available tape).

In previous proofs in this paper, all examples of non-OL-languages were
context-sensitive. Together with the statement we just proved, this means
that, for any X, 05 C £S5,

4.10. We can now roughly locate the OL-languages within Chomsky’s
hierarchy. Let X' be a fixed alphabet.



ON OL-LANGUAGES 317

Fig, 2. Fia. 3.

Figure 2 combines the contents of Theorems 4.1, 4.7, and 4.9. Figure 3 does
not contain much extra information but merely illustrates the situation for
a one-letter alphabet {a}.

CoNCLUDING REMARKS

The results so far obtained raise some new problems. Of course, the classi-
fication of OL-languages with respect to Chomsky’s hierarchy is open to
refinement. There is also the arithmetical characterization of QL-languages.
We found one for €5 if #X =1, but this is a rather restricted class; it
should be extended to @ with #2' = 1, and perhaps even to all 0L-languages.
The latter problem seems to be difficult.

As Theorem 2.1 shows, OL-languages display an extraordinary resistance
to the usual Boolean and related operations. Whether this has to do with their
biological origin is perhaps difficult to say; but there certainly is a need to
devise operations better suited to these languages and/or their biological
applications.

SUMMARY

In OL-languages, words are produced from each other by the simultaneous
transition of all letters according to a set of production rules; the context is
ignored.
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(i) OL-languages are not closed under the operations usually con-

sidered.

(ii) OL-languages over a one-letter alphabet are discussed separately;

a characterization is given of a subclass.

(ii) OL-languages are incomparable with regular sets, incomparable

with context-free languages, and strictly included in context-sensitive
languages.

ReceiveDp: August 15, 1970
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