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Abstract Chitin is a key component in mollusk nacre forma-
tion. However, the enzyme complex responsible for chitin depo-
sition in the mollusk shell remained unknown. We cloned and
characterized the chitin synthase of the marine bivalve mollusk
Atrina rigida. We present here the first chitin synthase sequence
from invertebrates containing an unconventional myosin motor
head domain. We further show that a homologous gene for chitin
synthase is expressed in the shell forming tissue of larval Mytilus
galloprovincialis even in early embryonic stages. The new data
presented here are the first clear-cut indication for a functional
role of cytoskeletal forces in the precisely controlled mineral
deposition process of mollusk shell biogenesis.

© 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The mollusk shell and nacre are among the most fascinating
biomaterials [1]. Recently, new concepts have arisen for under-
standing the mechanisms of their formation and the interac-
tion of organic macromolecular components with the various
inorganic phases [2-4]. Chitin is well-known to be a key com-
ponent in mollusk shell and nacre formation [5-10]. Chitin
forms the framework for other macromolecular components
that obviously guide the mineralization process, even in the re-
gime of crystal polymorphism [11]. It has been shown that cer-
tain crystallographic axes of calcium carbonate or apatite are
aligned with chitin fibers in extracellular composite biominer-
als [12-14]. Despite the importance of the chitin, no attention
was payed so far to the enzyme complex responsible for chitin
formation in the mollusk shell. Chitin synthesis has been pri-
marily studied in fungi, nematodes, and arthropods [15-19].
The first enzymatic synthesis of chitin was performed using
cell-free extracts of Neurospora crassa [20]. Only recently, light
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Le, Lucilia cuprina; Mg, Mpytilus galloprovincialis; Po, Pyricularia
oryzae; Tc, Tribolium castaneum

was shed on the complexity of chitin synthesis and its regula-
tory network based on the yeast genome data [21]. The first
chitin synthases from invertebrates were discovered in arthro-
pods [22], the major source for commercially produced chitin.
No relationship with motor proteins, like in the case of cellu-
lose synthesis [23-25], was found. A functional role for cyto-
skeletal interaction and chitin deposition was found for the
first time in fungi [26-29].

Here, we present the complete cDNA of the first chitin syn-
thase (CS, CHS) sequence from invertebrates (the calcium car-
bonate crystallizing Atrina rigida) containing a myosin motor
head domain. The CS domain of this enzyme (4r-CS) shows
highest similarity to 7¢cCHS1 and Tc¢CHS?2 of the insect Tribo-
lium castaneum [30], especially with respect to transmembrane
architecture. We further show that a homologous gene (Mg-
CS1) is specifically expressed in the shell forming tissue of lar-
val Mytilus galloprovincialis as early as in the veliger stage.
Therefore, we propose that the mollusk chitin synthase partic-
ipates in the complex network of regulation of mollusk shell
formation, which likely includes interactions of the unconven-
tional myosin head domain with cytoskeletal components.

2. Materials and methods

All procedures were performed according to established protocols of
molecular cloning [31], or according to the manufacturers recommen-
dations. Polymerase chain reaction (PCR) products were cloned into
the pGEM-T Easy vector (Promega, Madison, WI, USA) prior to
sequencing (MWG, Ebersberg, Germany). The following computer re-
sources were used: BCM [32]; BioEdit (Tom Hall, NCSU Raleigh, NC,
USA); Boxshade (www.ch.EMBnet.org); CDD [33] ; ExPASy [34];
GCG (WI, USA); NCBI-BLAST [35]; NetNGlyc (www.cbs.dtu.dk);
pDraw (AcaClone Software); TMHMM [36].

2.1. ¢DNA library

The cDNA library made from mantle tissue of A. rigida in the adult
stage was a generous gift of Weiner, Tuross, and Addadi, and is de-
scribed in detail elsewhere [37]. The cDNA was cloned into a AZAPII
vector system (Stratagene, Amsterdam, The Netherlands) with an in-
sert size of >0.4 kb, yielding 12.3 x 10® primary plaques. Escherichia
coli XL1-Blue MRF” cells were used for processing of the Ar-AZAPII
library.

2.2. PCR screening using degenerate primers

Purified Ar-2ZAPII DNA (100 ng/ul) was used for PCR screening of
the library with the Expand High Fidelity system (Roche, Mannheim,
Germany) in a Mastercycler gradient (Eppendorf, Hamburg, Germany)
using standard PCR programs (4 min 94 °C, 30x [1 min 94 °C, 2 min
Ta=5°C, 3min 72°C], 7min 72 °C). T represents the optimum
annealing temperature of the degenerate primers (pf0724_1, 5'-
AATTTRGGIGCIGCITGTGGIAGRATWCATCC; pr0724_5, 5'-
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CAICGRTCTTCICCTTGITCRTAYTG). Two independent overlap-
ping clones yielded a 257 bp fragment of the Ar-CS1 containing the
GHWLQKA motif of Le-CS1 [22].

2.3. ¢DNA library screening

The 257 bp fragment of Ar-CS1 was used for PCR labeling of a
DIG-dUTP probe for screening of the cDNA library with chemolumi-
nescent CSPD signal detection (Roche). Two overlapping clones
yielded 6119 bp of the complete Ar-CS1 cDNA (7882 bp).

2.4. Nested PCR for 5'-terminal sequence determination

Ar-AZAPII mass excision DNA (100 ng/ul) was used for nested PCR
screening (2 min 94 °C, 35x [1558 94 °C, 15s T4 £ 4 °C, 1-4 min 72 °C],
7 min 72 °C). Both, the first reverse primer and the respective nested
primer were combined with temperature-adjusted T7 or T3 primers.
Cloned PCR products were screened by colony PCR using an Ar-CS
fragment specific forward primer and the nested reverse primer. Se-
quence overlaps of particular Ar-CS fragments were >220 nucleotides.
15 different overlapping clones yielded 2574 bp of the complete Ar-CS1
cDNA (7882 bp).

2.5. Genomic DNA isolation

Adult M. galloprovincialis were maintained as described [38]. Geno-
mic DNA (gDNA) was isolated from homogenized, liquid nitrogen
frozen tissue [39].

2.6. Cloning of Mg-gDNA sequence fragments

Partially degenerate primers were designed based on the Ar-CSl
cDNA sequence. Gradient hot-start (75 °C) touchdown PCR reac-
tions (2min 94 °C, 29x [15s 94°C, 15s Ta £4°C - 0.4 °Clcycle,
1 min 72°C], 5x [15s 94°C, 158 T £4°C — 11.6 °C, 1 min 72 °C],
7 min 72 °C) were performed using 1-5 pg of Mg-gDNA as a tem-
plate. Specific primers were used to generate PCR fragments of the
partial Mg-CS1 of desirable length for in vitro transcription. A
Mg-actin cDNA fragment of comparable length was cloned and used
as a control.

2.7. FITC-labeled RNA probes

The Spel or Ncol digested pPGEM-T Easy plasmids that contained
exon fragments of Mg-CS1 and Mg-actin were used as templates for
the in vitro transcription of FITC-labeled RNA probes [40]. Reactions
were performed in the presence of RNAguard (Amersham, Freiburg,
Germany), using the Fluorescein RNA labeling mix (Roche) and T7
or Sp6 RNA polymerases, respectively.

2.8. Whole mount in situ hybridization of M. galloprovincialis larvae
It was not possible to obtain larvae of Atrina rigida for functional
studies. Larvae of the closely related species M. galloprovincialis
were obtained as described elsewhere [38]. The procedure for whole
mount in situ hybridization (WISH) of marine bivalve larvae of var-
ious age was developed based on Drosophila protocols (S.
Schneuwly, Universitit Regensburg, personal communication). As
recommended by B. Ruthensteiner (Zoologische Staatssammlung
Miinchen, personal communication), larvae were concentrated in a
nylon mesh, washed several times with filtered artificial seawater
and transferred into precooled embryo dishes for slow reduction
of motility. Artificial sea water was replaced by 3.57% MgCl, solu-
tion in order to avoid the closure of the valves during the fixation
procedure [41]. Main fixative (4% paraformaldehyde in 0.1 M phos-
phate buffer, pH 7.3) was added in portions, and the solution was
exchanged quickly several times. The fixed larvae were processed
immediately or stored for several days at 4 °C in main fixative.
All samples were irradiated with UV-light (350-400 nm) for 1h
prior to probe hybridization in order to reduce autofluorescence
of the fixed tissue. After washing (0.1% Tween 20 in PBS, PBT),
dehydration (100% methanol), and rehydration (methanol/PBT), a
4 min proteinaseK digest was performed. Specimens were transferred
into hybridization solution (50% formamide, 100 pg/ml fish sperm
DNA, 150 pg/ml tRNA, 1 mg/ml heparin, 5x PBS, 40 U/ml RNAse
inhibitor) and preincubated for 1h at 50 °C prior to hybridization
with 3 ng/ul RNA probe for 48 h at 50 °C. Specimens were washed
several times with hybridization solution and/or PBT at 55 °C, and
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subjected to confocal laser scanning microscopy. The cell nuclei of
the specimens were stained using 2.5 pg/ml propidium iodide in
PBT for 10 min at 20 °C and subsequent washing with PBT for
20 min. Signal detection was performed using a LSM510 Confocal
laser scanning microscope (Carl Zeiss, Jena, Germany) equipped
with a Plan-Neofluar 40x/1.30il Ph3 objective. FITC fluorescence
(excitation 488, Ar laser) was detected in single channel PMT mode
using a band-pass 505-530 nm emission filter. Propidium iodide
fluorescence was detected in a separate channel using a 560—
615 nm band-pass filter. Imaging parameters were optimized for
working in the range of significant signals. Data were routinely col-
lected in various focal planes. The Zeiss LSMS5 imaging software
was used for image processing.

3. Results

The full-length cDNA sequence of the chitin synthase of A.
rigida, a marine bivalve model organism for the biominerali-
zation of nacre, was cloned (4r-CS1, GenBank Accession
No. DQO081727) from an Ar-cDNA library using a 257 bp
degenerate primer PCR fragment coding for the GHWLQKA
motif characteristic for invertebrate metazoan chitin syn-
thases [22]. A 6119 bp fragment corresponding to 1754 amino
acids and 857 bp 3’-UTR of the Ar-CS1 was obtained by
conventional screening. A nested primer PCR approach was
chosen in order to verify the start codon of the obtained se-
quence fragment. It was deduced from 15 independent over-
lapping clones that a continuation of another 1763 bp
occured in the 5’ direction of the cDNA sequence. The final
sequence revealed a start codon at position 168. The N-termi-
nus (732 amino acid residues) of the translated 6858 bp open
reading frame (ORF) sequence corresponding to 2286 amino
acid residues (Fig. 1) showed significant similarity (up to 39%
identical amino acid residues, Expect =e¢ '*’) to conserved
N-terminal domains including the ATP binding sites of the
myosin protein family [33], whereas the C-terminus (1554
amino acid residues) of the Ar-CS1 was homologous (up to
36% identical amino acid residues, Expect = 0.0) to insect chi-
tin synthases [19,22,30]. Multiple sequence alignments (Fig. 2)
showed that apart from two conserved motifs, there was no
overall homology to En-CsmA or Po-Csml, two fungal chitin
synthases with myosin domains [26,27]. According to se-
quence alignments, the presence of a myosin motor head do-
main with all sequence features necessary for its function as a
force transducing element is therefore currently a unique find-
ing among all the chitin synthases with complex transmem-
brane architectures.

The molecular weight of the Ar-CS1 protein was predicted
to be 264 kDa, including a 84 kDa myosin head. A low com-
plexity region was identified to separate the myosin head and
the CS domain of the Ar-CS1. The transmembrane architec-
ture of the CS domain of 4r-CS1 showed very high similarity
with the Lc¢-CS [22], as calculated by TMHMM [36]. Fig. 3
shows a preliminary model of the Ar-CS1 protein with se-
quence features highlighted as in Fig. 1. According to this
model, the myosin head domain is located intracellularly.
The characteristic NQRRRW motif of the Ar-CS1 active site
is also located intracellularly. Three potential glycosylation
sites (marked by an asterisk in Fig. 1) indicated extracellular
posttranslational modifications. Three low complexity-regions
were located in two C-terminal, extracellular domains of 20.4
and 22.9 kDa, respectively. The 22.9 kDa domain did not
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MKPDDLSDLEVLDENTIVQALRTRFNKEKFYTYIGDILVAVNPCKPLNLFDLKYHGEYENLVSRTQKAPHLFWTADNAYRSLCETGRNQCILVSGESGAG 100
KTESTKYMIQHLMKISPSDDSLLLDKIVQINPLLEAFGNAATFMNKNSSRFGKFIELHYSEYGQLLGAKIDDYILEKSRVVHRSNGEKNFHVFYALFAGM 200
I-Region
SRERLLYYFLEDPDCHRIMREDDVQRGVFQDAEEYQHYKSMFSDLTVIMSHIGFSDEHIQVIFLILAATLHLANIVFMPIDSTDGVSVADEY PLHAVAKL 300
LGIEDEVELTEALISNVNTIKGEKIQSWKSLREANDSRDALAKDLYSRLFGWIVGQINRNIWGKRQNKNKMTRGSSIGLLDMSGFENFKVNGFDQLLINT 400
gion
SNEKLQQYFMDYIFPRERREYELEGIEWRDIVYHCNDEVLEVLFKRPDGVLSLLDEESHFPQSNDSSLVQKLNKYCHDSTRYVAQMGNRVCFGIRHYAEQ 500
VTYNADGFLEGNRDSLSSDLVGCLLNSNNEF IKDLFTASMSPTGTISDFASKCASRPRLPSVWPSTINPEKLRVSLSGKASIRIKKKSFRNLSGESSGST 600
LYARSSPTVTKHFKRSLSDLMTKLSQAQPLFVRCVKPNLHLSSGKFDSDLVRRQLLCNGLMEIAELRRDGYPIRIKFEDFAARYKDICDFGNTNSDDLGK 700
CLDILKTERIEGFKVGRSKIFLKDYQKDMLEDTLREALRQKELERRRKAEEEMLQAMREISDVDKHRQSTPLHGSADSGLVEDTDIYSQELHEMEHRIPI 800

low-complexity

VDVDLSRDLESTADTIDIGDSVSVPKRSVYQGSADDGKSTNTTFIDQEVDSMQWRPYDIFQVAEREFEDQDYIFKEILKGIRLFLYVFFVIMILGSIVAS 900
1 in-out

KMSLLLLTSGINKDENSRGEHLVTLLFCMCGPMLWNWFMAFMRILFGGKEWPSMKTFLILLLFENVQTFGMCLLLFRVLPSTDFFRGLITTFAICQVPSL 1000

2 out-in 3 in-out 4 out-in
LKVIVHEKRPNPSVSEIVAIIMNISAFLVQVSAIPFFSIGEFMLQGNYSIVEGYNATTVTRTTVKLDSTCEWELPVSLILLSIGWWENYVSGEWTVFGRI 1100
5 in-out * * 7nn

TIPFKQWRSILODVRETSYFLIAPFKIGLAVLMARLLTNNTPFVVPATGEFNATTSQYSSKAEEVGVAYSLMFIQIGSGITICSYLAGLACKLHMQRTAFA 1200
6 out-in 7 in-out

LPLTLAPPVSLLFVYMQCEYNFLPSYWHMGGWFCPERDIISLLIPLICAVLLWLSYSITVSHIWFPQSERMAKIEKLFITPHTDGILPDFTLSLRRRRND 1300
nn 8 out-in

KEVKLTGFDTFRYVGEDTYYMDDIYSSSGVTPQVYACATMWHETRQEMTQLLKSLFRLDYVHCASRLAQEKFRIHDPDYYDLELHITFDDAFELDDKVDK 1400

YVPNSFVRQLIECMEDAARSVVKGPISIQPPEKIPTPYGGRLVWTMPGHTKLNVHMKDKNKMRHRKRWSQCMYLYYLLGYKLFGAREADRYMAEDAESSM 1500

TKVKNRKKSKSKKCORSRPLRSLFMRMTPDQYEQAENTFMLTLDGDVDFRPDSVKLLIDRMKKNKKVGAVCGRIHPIGSGPMVIWY QQFEYAVGHWLQKAA 1600
low-complexity

EHVFGCVLCCPGCFSLFRGSAIMDDNVLKMY TTKPTEARHY IQFEQGEDRWLCTLMLQQGHRIDYCAGADALTFAPETFNEFHNORRRWBPSTLANMMDL 1700
Active te
LSSWRDTVRINDNISRPYVLYQFVLMASTILGPSTIILMITGSYHSVLGLNIWQSYLLSILPVMVYLAICMTMKSDHQIFAAAVITATYSVVMMIATVGT 1800
9 in-out 10 out-in 11 in-out
IISIVTENFGSPNVVFLSGLVIIFVIAGILHPQEFFCLIYGVLYFMTVPSTFVLLTVYYLCNLNNVSWGTRETPKKLTKEEEEELKLLOEEKKKKKESKS 1900
out-in 13 in-out * low-complexity

LFNRLGITSLISDARDLLKNILGTARNNERNMVSCAVQTEDTISPPERQLSRHSRRSEENERQKEPEDVVPQGWEPNPDHPYWLTMECFGNGPVSHIEHD 2000

EIDFWNFMIKKYLHPLDEDQOHKQKIKEDLICLKNNVVFIYFMINFLWTIITLOLOSMEDELKNFYIINKYEPLSLVFLSVFATAITLQFLSMF THRWGT 2100
out-in 15 in-out

FLHLMSSTRIDWFKKVHTEEDFVRFVVNEAQRLQRLEPEPDYDDLPPDYDDDGFTSSIETPSEQYDELPSLPASPGATCRKI SRSKSHKERSKNNENKNV 2200
low-complexity

PVLOQIFENRLENIHRKWKOGTLAFRPNYRFDRTESHRFSEKEHIMROKMFKRSFRRINSKEDNKNHSDDFLDHRDMPQSIKIDMH * 2300

Fig. 1. Primary structure of the translated 4r-CS1 ORF. Conserved motifs of the myosin head domain, the orientation of predicted transmembrane
helices, the catalytic sitte (NQRRRW) of the chitin synthase domain, and low-complexity regions are highlighted. Regions indicated by question
marks refer to predicted transmembrane helices beyond the significance threshold. (*) Putative glycosylation sites.

show any significant similarity to current protein database en-
tries.

A 1626 bp fragment of a gene homologous to the Ar-CSl
was identified and cloned from M. galloprovincialis gDNA
(Mg-CS1, GenBank Accession No. DQ358105). Fig. 4
shows a pairwise amino acid alignment of the CS domain
of Ar-CS1 with the partial ORF deduced from the Mg-
CS1 fragment. The chitin synthases of these two bivalve
species are almost completely conserved with respect to
the catalytic domain and certain highly charged, extracellu-
lar C-terminal low complexity-motifs.

We studied the expression of the Mg-CS1 gene in M. gal-
loprovincialis larvae by WISH using RNA probes. The
confocal images presented in Fig. 5 show that mRNA for
Mg-CS1 is present in the early, and as well in late veliger
larval stages. The probe was located only in cells that were
in close contact to the larval shell. In contrast, the Mg-actin
probe displayed signals of significant intensity in all cells
that contained a propidium iodide stained cell nucleus (data
not shown). False positive signals were ruled out by per-
forming the procedure with non-complementary sense strand
probes.
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Fig. 2. Alignment of the chitin synthase domain of A4r-CS1 with 7T¢-CHS1, Tc-CHS2, and En-csmA. Note that the homology between the
invertebrate chitin synthases and the fungal En-csmA is restricted to the PGCF, GEDR, QRRRW, and SWG motifs.

4. Discussion A. rigida to generate the molecular base for understanding
chitin formation in the context of mollusk shell biominerali-

Chitin is proposed to play a major role in calcium carbon- zation.
ate biomineral formation of adult and larval mollusks [4,38]. Chitin synthases belong to the group of glycosyltransferases

We cloned the chitin synthase of the bivalve model organism and comprise a transmembrane protein family with a minimum
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Fig. 3. Current model of the 4r-CS1 based on predicted structural
elements as highlighted in Fig. 1.

of three transmembrane helices. Only the intracellular catalytic
site is highly conserved, whereas N- and C-terminal regions
might vary even in isoforms of one species. The mechanism of
chitin translocation through the cytoplasmic membrane is still
not fully understood.

Characteristic extracellular domains of the mollusk chitin
synthases, Ar-CS1 and Mg-CS1, contain low complexity-mo-
tifs with a high number of acidic or basic amino acid residues.
This feature is characteristic for various mollusk shell proteins
[42]. The motifs indeed raise questions on their functionality in
the interplay between chitin synthesis and protein mineral-
interaction. The fact that chitin synthase gene expression takes
place in shell forming tissue sections of the larvae indeed sup-
ports our previous hypothesis that chitin plays a major role in
larval shell formation [38].

In terms of conserved motifs and transmembrane architec-
ture, the CS domain of Ar-CS1 does not differ significantly
from the insect chitin synthases [19,22,30]. A major difference
is the presence of a myosin motor head domain at the intracel-
lular N-terminus that contains all conserved motifs necessary
for a myosin head to act as a force transducer. The motor do-
main of Ar-CSl1 is a strong hint for a regulatory function of the
actin cytoskeleton in chitin deposition. Among the possible
functions are transport, localization, activation, and regulated
pattern formation of CS complexes within the cytoplasmic

L M. Weiss et al. | FEBS Letters 580 (2006) 1846—1852
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Fig. 5. WISH of Mytilus galloprovincialis larvae with Mg-CS1 specific
RNA probes. Note that FITC signals (green) are located only in tissue
sections close to the shell, whereas cell nuclei staining (red) indicates a
well-preserved organism. The focal planes shown here were adjusted
close to the shell edges, but are representative for all focal planes in
each specimen. (A) DIC and fluorescence 3-channel-overlay image of a
6 day old specimen. (B) Fluorescence 2-channel-overlay image of A.
(C) DIC and fluorescence 3-channel-overlay image of a 15 day old
specimen. (D) Fluorescence 2-channel-overlay image of C.

membranes. The tightly packed microvilli surface of mollusk
mantle epithelial cells [43,44] is supportive for such a scenario.
This in turn might not only guide the assembly process of chi-
tin in all dimensions, but furthermore suggests that the miner-
alization process might be actively influenced by the mantle
epithelial cells, for example by creating force fields via the cyto-
skeleton.

The structural organization of the chitin synthesizing com-
plex in mollusks, with its direct link to the cytoskeleton as pre-
sented here, opens the stage for understanding the mantle—shell
relationship as a dynamic transmembrane regulation — in addi-
tion to a pure secretory function of the mantle epithelium prior
to self-assembly of the calcifying extracellular matrix. There-

Ar JEAEHVFGCVLCCPGCFSLFRGSAMMDDNVLEMYTTINPTEARHYIQFEQGEDRWLCTLMLQQGHRIDYCAGI\DALTFAPETF]
Mg JAAEHVFGCVLCCPGCFSLFRGSA\MDDNVLKEMY TT}3

Ar XMINEFFNQRRRWSPSTLANMMDLLESWRDTVRINDNISRPY\YLYQFVLMAST I|fe MILMITGSYHSVIeELINTI|N]SYLL S|
Mg :FINEFFNQRRRWSPSTLANMMDLLINSWRDTVRINDNISRPYULYQFVLMAST Ip#\ ILMITGSYHSVIBNLETIPASYLLS
Ar NN L P VI Y LATCIUTMKSDEQ IIJAAAVITARY MMIATVGTISIVTENFGSPNVVFLEGLAAS IAGILHPQEFFCL}S
Mg PR AL PVAdYLAICATMK SDpQ I AAAAVITA} IMMIATVGT\YISIVTENFGSPNVVF LG Ly IMIAGILHPQEFFCL\Y

Ar 241 LYFMpysVPSTF\Y
Mg 241 TALYFMYVP S TF}S

Mg 321 SRATI|HKVSAE[§OTDENNCLARTVSRN]
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p{YLCNLNNVSWGTRETPKKLTKEEEEEN:$AAE) IMANRLGITELIEDIARDLIA
I3 YLCNLNNVSWGTRETPKKLTKEEEEE[SJIRABE!) )@ANRLGI T)L I)ADIARD LA
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Fig. 4. Pairwise alignment of 4r-CS1 and Mg-CS1 ORF fragments. The two mollusk chitin synthases are nearly identical with respect to the catalytic
domain including a highly charged poly-E/poly-K motif. Note that there is no overall homology towards the C-terminus.
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fore, the interfacial cytoplasmic membranes might play a cru-
cial role in mollusk shell biogenesis.
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