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a b s t r a c t

In this paper, we study a scheduling model with the consideration of both the learning
effect and the setup time. Under the proposed model, the learning effect is a general
function of the processing time of jobs already processed and its scheduled position, and
the setup time is past-sequence-dependent. We then derive the optimal sequences for
two single-machine problems, which are the makespan and the total completion time.
Moreover, we showed that the weighted completion time, the maximum lateness, the
maximum tardiness, and the total tardiness problems remain polynomially solvable under
agreeable conditions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In classical scheduling problems, job processing times are assumed to be a constant. Recent studies in many industries
showed that unit costs decline as firms producemore of a product and gain knowledge or experience. For instance, Biskup [1]
pointed out that repeated processing of similar tasks improves the worker skills; workers are able to perform setup, to deal
with machine operations or software, or to handle raw materials and components at a greater pace. This phenomenon is
known as ‘‘learning effect’’ in the literature.

Gawiejnowicz [2], Biskup [1], and Cheng and Wang [3] were among the pioneers who brought the concept of learning
effect into scheduling problems. Many researchers have devoted lots of efforts on this new area since then. For instance,
Mosheiov [4] presented several examples to demonstrate that the optimal schedules for the classical problems are no longer
valid when the learning effect is taken into consideration. Lee et al. [5] considered a bi-criteria single-machine scheduling
problem to minimize the sum of the total completion time and the maximum tardiness. Koulamas and Kyparisis [6]
introduced a sum-of-job-processing-time-based learning effect scheduling model in which employees learn more if they
perform a jobwith longer processing time. They showed that two single-machine problems remain polynomially solvable. In
addition, they proved that two two-machine flowshop problems are polynomially solvable under the assumption of ordered
or proportional job processing times. Wang [7] and Wang et al. [8] derived the optimal solutions for some single-machine
problems when the learning effect is expressed as a function of the sum of processing times of jobs already processed.
Recently, Biskup [9] reviewed the scheduling problems with learning effects. Moreover, Janiak and Rudek [10] brought a
new learning effect model into the scheduling field where the existing approach is generalized in two ways. First, they
relaxed one of the rigorous constraints, and thus each job can provide different experience to the processor in their model.
Second, they formulated the job processing time as a non-increasing k-stepwise function that in general is not restricted
to a certain learning curve, thereby it can accurately fit every possible shape of a learning function. Janiak and Rudek [11]
introduced and analyzed a new learning effect model in which the learning curve is S-shaped. The authors provided the
NP-hard proofs of the makespan problem for two cases. Cheng et al. [12], Sun [13] and Zhang and Yan [14] presented
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models with both the learning and deterioration effects. They then provided the optimal solutions for some scheduling
problems. Eren [15] proposed a nonlinear mathematical programming model for a single-machine scheduling problem
with unequal release dates and learning effects. Janiak and Rudek [16] brought into scheduling a new approach called
multi-abilities learning that generalizes the existing ones and models more precisely real-life settings. On this basis, they
focused on the makespan problem with the proposed learning model and provide optimal polynomial time algorithms for
its special cases. Lee et al. [17] investigated a single-machine problem with the learning effect and release times where
the objective is to minimize the makespan. Huang et al. [18] considered the single-machine scheduling problems with
time-dependent deterioration and exponential learning effect. They provided the optimal solutions for some single-machine
problems. Cheng et al. [19] introduced a new scheduling model in which job deterioration and learning, and setup times
are considered simultaneously. They showed some single-machine problems remain polynomially solvable. Rudek [20]
analyzed themakespanproblemon two-machine flowshopwith learning effects. First, he showed that an optimal solution of
this problemdoes not have to be the ‘permutation’ schedule if the learning effect is taken into consideration. Furthermore, he
proved that the permutation and non-permutation versions of this problem are NP-hard even if the learning effect, in a form
of a step learning curve, characterizes only one machine. However, if both machines have learning ability and the learning
curves are stepwise, then the permutation version of this problem is strongly NP-hard. Janiak and Rudek [21] pointed out
that the learning effects take place in multi-agent optimization. They showed that the minimization of a total transmission
cost of packets in a computer network that uses a reinforcement learning routing algorithm can be expressed as the single-
machine makespan minimization scheduling problem with the learning effect. On this basis, they proved the problem is at
least NP-hard.

In addition, Koulamas and Kyparisis [22] presented the concept of ‘‘past-sequence-dependent’’ (p-s-d) setup times.
They provided an example in high-tech manufacturing that the setup time is proportional to the processing times of jobs
already processed. In addition, Biskup and Herrmann [23] provided another example of wear-out of equipment in which
the sum of the processing times of the prior jobs adds to the processing time of the actual job. In the examples above,
the worker skills might improve during the manufacturing process. Recently, several researchers have started to consider
both the learning effect and past-sequence-dependent setup times simultaneously. For instance,Wang et al. [24] studied the
exponential time-dependent learning effect.Wang et al. [25] considered the Biskup [1] position-based learning effect model
and provided the optimal solutions for some single-machine problems. Yin et al. [26] andWang and Li [27] considered both
the position-based and sum-of-processing-time-based learning effect model, and showed some single-machine problems
remain polynomially solvable. Moreover, Dutton and Thomas [28] pointed out that the learning rates show considerable
variation within industries or firms after a study of more than 200 learning curves. The variation extends not only across
firms at a given time, but also within firms over time. Thus, it is worth considering the general learning curve. Motivated
by this, we consider a past-sequence-dependent scheduling model where the actual job processing time is expressed as a
general function of the normal processing time of jobs already processed and its scheduled position at the same time.

2. Some single-machine problems

There are n jobs ready to be processed on a single machine. For each job j, there is a normal processing time pj, a weight
wj and a due date dj. Due to the learning effect, the actual processing time of job j is

pA
[r] = pjf


r−1−
k=1

αkp[k], r


(1)

for r = 1, 2, . . . , n, if it is scheduled in the rth position in a sequence where p[k] denote the processing time of the job
scheduled in the kth position in a sequence and α1 ≤ α2 ≤ · · · ≤ αn. It is assumed that f : (0, +∞) × [1, +∞) → (0, 1] is
a differentiable non-increasing function with respect to both variables x and y, fx(x, y0) =

∂
∂x f (x, y0) is non-decreasing with

respect to x for every fixed y0 and f (0, 1) = 1. In addition, as in [22], the p-s-d setup time of job j if it is scheduled in the rth
position of a sequence is

sj[1] = 0 and sAj[r] = b
r−1−
l=1

pA
[l], (2)

where b is a normalizing constant number with 0 < b < 1 and pA
[k] denote the actual job processing time scheduled in the

kth position in a sequence. It can be seen that it is theWang [29]model if pA
[r] = pjf

∑r−1
k=1 αkp[k], r


= pj


1 +

∑r−1
k=1 p[k]

a
,

the Wang et al. [24] model if pA
[r] = pjf

∑r−1
k=1 αkp[k], r


= pj


Aa

∑r−1
k=1 p[k] + B


, the Wang et al. [25] model if pA

[r] =

pjf
∑r−1

k=1 αkp[k], r


= pjra. Throughout the paper, let Cj, Lj = Cj − dj and Tj = max{0, Cj − dj} denote the completion
time, the lateness and the tardiness of job j.

Before presenting the main results, we first state some lemmas that will be used in the proofs in the sequel.
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Lemma 1. (1 − θ)(1 + c)f (x1, y1) + θ f (x1 + λt, y2) − f (x1 + λθ t, y2) ≤ 0 for θ ≥ 1, λ ≥ 0, c > 0, t ≥ 0, x1 > 0, and
0 < y1 ≤ y2.

Proof. Let F(t) = (1− θ)(1+ c)f (x1, y1)+ θ f (x1 +λt, y2)− f (x1 +λθ t, y2). Taking the first derivative of F(t)with respect
to t , we have

F ′(t) = λθ
∂

∂x
f (x1 + λt, y2) − λθ

∂

∂x
f (x1 + λθ t, y2) ≤ 0

since fx(x, y0) is a non-decreasing function of x and θ ≥ 1. It implies that F(t) is a non-increasing function. Thus,

F(t) ≤ F(0) = (1 − θ)[(1 + c)f (x1, y1) − f (x1, y2)] ≤ 0.

This completes the proof. �

Lemma 2. f (x1, y1)(1 + cδ2) + δ2λt ∂
∂x f (x1 + λθ t, y2) − δ1f (x1 + λt, y2) ≥ 0 for x1 > 0, 0 < y1 ≤ y2, t > 0,

θ ≥ 1, λ ≥ 0, c ≥ 0 and 0 < δ1 < δ2 < 1.

Proof. Let F(θ) = f (x1, y1) + cδ2λ + δ2λt ∂
∂x f (x1 + λθ t, y2) − δ1f (x1 + λt, y2).

Then, we have

F(θ) ≥ δ1[f (x1, y2) − f (x1 + λt, y2)] + λδ2t
∂

∂x
f (x1 + λt, y2)

since δ1 < 1, f is nonnegative, and non-increasing with respect to y. By Mean Value Theorem, there exists ξ (0 < ξ < 1)
such that

F(θ) ≥ δ1

[
∂

∂x
f (x1 + λξ t, y2)

]
(−λt) + λδ2t

∂

∂x
f (x1 + λt, y2)

≥ δ2λt
[

∂

∂x
f (x1 + λt, y2) −

∂

∂x
f (x1 + λξ t, y2)

]
≥ 0

since 0 < δ1 < δ2 < 1, λ ≥ 0, t > 0, and ∂
∂x f (x, y0) is non-decreasing with respect to x for every fixed y0. This completes

the proof. �

Lemma 3. δ2[f (x1+λθ t, y2)+cu/t]−δ1[θ f (x1+λt, y2)+cu/t]+(δ2cθ−δ1c+θ−1)f (x1, y1) ≥ 0 for x1 > 0, θ ≥ 1, u ≥ 0,
0 ≤ y1 ≤ y2, λ ≥ 0, t > 0, c ≥ 0 and 0 < δ1 < δ2 < 1.

Proof. Let G(θ) = δ2[f (x1 + λθ t, y2) + cu/t] − δ1[θ f (x1 + λt, y2) + cu/t] + (δ2cθ − δ1c + θ − 1)f (x1, y1). Taking the first
derivative of G(θ) with respect to θ , we have from Lemma 2 that G′(θ) ≥ 0. Thus, we have

G(θ) ≥ G(1)
= (δ2 − δ1)[f (x1 + λt, y2) + cf (x1, y1) + cu/t] ≥ 0

since 0 < δ1 < δ2 < 1. This completed the proof. �

We will prove the following properties using the pairwise interchange technique. Suppose that S and S ′ are two job
schedules and the difference between S and S ′ is a pairwise interchange of two adjacent jobs i and j. That is, S = (π, i, j, π ′)
and S ′

= (π, j, i, π ′), where π and π ′ each denote a partial sequence. Furthermore, we assume that there are r − 1 jobs
in π . In addition, let A denote the completion time of the last job in π . Under the proposed model, the completion times of
jobsi and j in S and S ′ are

Ci(S) = A + b
r−1−
k=1

pA
[k] + pif


r−1−
k=1

αkp[k], r


, (3)

Cj(S) = A + b
r−1−
k=1

pA
[k] + pif


r−1−
k=1

αkp[k], r


+ b


r−1−
k=1

pA
[k] + pif


r−1−
k=1

αkp[k], r



+ pjf


r−1−
k=1

αkp[k] + αrpi, r + 1


, (4)

Cj(S ′) = A + b
r−1−
k=1

pA
[k] + pjf


r−1−
k=1

αkp[k], r


, (5)
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and

Ci(S ′) = A + b
r−1−
k=1

pA
[k] + pjf


r−1−
k=1

αkp[k], r


+ b


r−1−
k=1

pA
[k] + pjf


r−1−
k=1

αkp[k], r



+ pif


r−1−
k=1

αkp[k] + αrpj, r + 1


. (6)

Property 1. The optimal schedule is obtained by the shortest processing time (SPT) rule for the 1|pA
[r] = pjf

∑r−1
k=1 αkp[k], r


,

spsd|Cmax problem.

Proof. Suppose pj ≥ pi. To show that S dominates S ′, it suffices to show that Cj(S) ≤ Ci(S ′). Taking the difference between
Eqs. (4) and (6), we have

Ci(S ′) − Cj(S) = (pj − pi)(1 + b)f


r−1−
k=1

αkp[k], r


+ pif


r−1−
k=1

αkp[k] + αrpj, r + 1



− pjf


r−1−
k=1

αkp[k] + αrpi, r + 1


. (7)

Substituting x1 =
∑r−1

k=1 αkp[k], θ = pj/pi, c = b, t = pi, λ = αr , y1 = r and y2 = r + 1 into Eq. (7), we have from
Lemma 1 that Cj(S ′) ≥ Ci(S). This completes the proof. �

Property 2. The optimal schedule is obtained by the SPT rule for the 1|pA
[r] = pjf

∑r−1
k=1 αkp[k], r


, spsd

∑ Ci problem.

Proof. The proof is omitted since it is similar to that of Property 1. �

We will show that the weighted shortest processing time rule provides the optimal solution for the total weighted
completion time problem if the processing times and the weights are agreeable, i.e., pi ≤ pj implies wi ≥ wj for all jobs i
and j.

Property 3. The optimal schedule is obtained by theweighted shortest processing time rule for the1|pA
[r] = pjf

∑r−1
k=1 αkp[k], r


,

spsd
∑wiCi problem if the processing times and the weights are agreeable.

Proof. Suppose that pi ≤ pj. It implies from Property 1 that Cj(S) ≤ Ci(S ′). Thus, to show that Sdominates S ′, it suffices to
show that wiCi(S) + wjCj(S) ≤ wjCj(S ′) + wiCi(S ′). From Eqs. (3)–(6), we have from wi ≥ wj, pi ≤ pj and Lemma 3 that

[wjCj(S ′) + wiCi(S ′)] − [wiCi(S) + wjCj(S)]

= wi


b

r−1−
k=1

pA
[k] + bpjf


r−1−
k=1

αkp[k], r


+ pif


r−1−
k=1

αkp[k] + αrpj, r + 1



− wj


b

r−1−
k=1

pA
[k] + bpif


r−1−
k=1

αkp[k], r


+ pjf


r−1−
k=1

αkp[k] + αrpi, r + 1



+ f


r−1−
k=1

αkp[k], r


(wi + wj)(pj − pi). (8)

Substituting x1 =
∑r−1

k=1 αkp[k], θ = pj/pi, c = b, t = pi, λ = αr , u =
∑r−1

k=1 p
A
[k], δ1 = wj/(wi + wj), δ2 =

wi/(wi + wj), y1 = r , and y2 = r + 1 into Eq. (8), we have from Lemma 3 that wiCi(S) + wjCj(S) ≤ wjCj(S ′) + wiCi(S ′). This
completes the proof. �

Property 4. The optimal schedule is obtained by the earliest due date rule for the 1|pA
[r] = pjf

∑r−1
k=1 αkp[k], r


, spsd|Lmax

problem if the job processing times and the due dates are agreeable, i.e., di ≤ dj implies pi ≤ pj for all jobs i and j.

Property 5. The optimal schedule is obtained by the earliest due date rule for the 1|pA
[r] = pjf

∑r−1
k=1 αkp[k], r


, spsd|Tmax

problem if the job processing times and the due dates are agreeable, i.e., di ≤ dj implies pi ≤ pj for all jobs i and j.

Property 6. The optimal schedule is obtained by the earliest due date rule for the 1|pA
[r] = pjf

∑r−1
k=1 αkp[k], r


, spsd

∑ Ti
problem if the job processing times and the due dates are agreeable, i.e., di ≤ dj implies pi ≤ pj for all jobs i and j.
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Proof. Suppose that di ≤ dj. It implies pi ≤ pj since they are agreeable. The total tardiness of jobs in π are the same since
they are processed in the same order. By Property 1, the makespan is minimized by the SPT rule, thus, the total tardiness of
partial sequence π ′ in S will not be greater than that of π ′ in S ′. To prove that the total tardiness of S is less than or equal to
that of S ′, it suffices to show that Ti(S) + Tj(S) ≤ Tj(S ′) + Ti(S ′).

To compare the total tardiness of jobs i and j in S and in S ′, we divide it into two cases. In the first case thatA+b
∑r−1

k=1 p
A
[k]+

pjf
∑r−1

k=1 αkp[k], r


≤ dj, we have from Eqs. (3)–(6) that the total tardiness of jobs i and j in S and in S ′ are

Ti(S) + Tj(S) = max


A + b

r−1−
k=1

pA
[k] + pif


r−1−
k=1

αkp[k], r


− di, 0


+ max


A + 2b

r−1−
k=1

pA
[k]

+ (1 + b)pif


r−1−
k=1

αkp[k], r


+ pjf


r−1−
k=1

αkp[k] + αrpi, r + 1


− dj, 0


and

Tj(S ′) + Ti(S ′) = max


A + 2b

r−1−
k=1

pA
[k] + (1 + b)pjf


r−1−
k=1

αkp[k], r


+ pif


r−1−
k=1

αkp[k] + αrpj, r + 1


− di, 0


.

Suppose that neither Ti(S) nor Tj(S) is zero. It is the most restrictive case since it comprises the case that either one or
both Ti(S) and Tj(S) are zero. From Property 1 and di ≤ dj, we have

[Tj(S ′) + Ti(S ′)] − [Ti(S) + Tj(S)] = (1 + b)(pj − pi)f


r−1−
k=1

αkp[k], r



+ pif


r−1−
k=1

αkp[k] + αrpj, r + 1


− pjf


r−1−
k=1

αkp[k] + αrpi, r + 1



+ dj − A − b
r−1−
k=1

pA
[k] − pif


r−1−
k=1

αkp[k], r


≥ 0.

Thus, [Tj(S ′)+Ti(S ′)]−[Ti(S)+Tj(S)] ≥ 0 in the first case. In the second case that A+b
∑r−1

k=1 p
A
[k]+pjf

∑r−1
k=1 αkp[k], r


>

dj, the total tardiness of jobs i and j in S and in S ′ are

Ti(S) + Tj(S) = max


A + b

r−1−
k=1

pA
[k] + pif


r−1−
k=1

αkp[k], r


− di, 0


+ max


A + 2b

r−1−
k=1

pA
[k]

+ (1 + b)pif


r−1−
k=1

αkp[k], r


+ pjf


r−1−
k=1

αkp[k] + αrpi, r + 1


− dj, 0


and

Tj(S ′) + Ti(S ′) = 2A + 3b
r−1−
k=1

pA
[k] + (2 + b)pjf


r−1−
k=1

αkp[k], r


+ pif


r−1−
k=1

αkp[k] + αrpj, r + 1



+ pif


r−1−
k=1

αkp[k] + αrpj, r + 1


− di − dj.

Suppose that neither Ti(S) nor Tj(S) is zero. From Property 1, di ≤ dj and pi ≤ pj, we have

[Tj(S ′) + Ti(S ′)] − [Ti(S) + Tj(S)] = (pj − pi)(b + 2)f


r−1−
k=1

αkp[k], r



+ pif


r−1−
k=1

αkp[k] + αrpj, r + 1


− pjf


r−1−
k=1

αkp[k] + αrpi, r + 1


≥ 0.

Thus, [Tj(S ′) + Ti(S ′)] − [Ti(S) + Tj(S)] ≥ 0 in the second case. This completes the proof. �
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3. Conclusions

In this paper, we considered a schedulingmodel with both the learning effect and past-sequence-dependent setup times.
The model under study is the extension of several models in the literature. We showed that the SPT rule yields the optimal
solution for the single-machine makespan and the total completion time problems. We also showed that WSPT rule yields
the optimal solution for the total weighted completion time if theweights and the processing times are agreeable.Moreover,
we proved that the EDD rule yields the optimal solution for the maximum lateness, the maximum tardiness and the total
tardiness problems if the due dates and the processing times are agreeable.
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