The Heat Kernel on the Two-Sphere

Hans R. Fischer, Jerry J. Jungster, and Floyd L. Williams
Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
Submitted by G.-C. Rota

An explicit full solution to the heat equation on the two-sphere is given. 1985 Academic Press, Inc.

Introduction

In this paper we give an explicit solution, $E(t, g H)$, for the heat equation (with initial data concentrated at a point) on S^{2} regarded as the homogeneous space $G / H=S U(2) / U(1)$. For initial data concentrated at the identity coset our solution is

$$
\begin{equation*}
E(t, g H)=\sum_{n=0}^{\infty}(2 n+1) e^{n(n+1) / 2} P_{n}\left(\frac{1}{2}\left\{(\operatorname{tr} g)^{2}+\left(\operatorname{tr} i_{0} g\right)^{2}\right\}-1\right) \tag{1}
\end{equation*}
$$

where $P_{n}(x)$ are the Legendre polynomials, "tr" means trace, and $i_{0} \in S U(2)$ is the matrix $\binom{i}{-i}$ where $i=\sqrt{-1}$.

Previously solutions have been computed (1) on S^{2}, but only at the identity coset, i.e., only $E(t, H)$ was computed (Benabdallah [1], Cahn and Wolf [2]); (2) fully, but only for compact semi-simple Lie groups (Fegan [5]); or (3) for other types of homogeneous spaces (Eskin [4]).

1. The Method

Our principal tool is the following formula of Benabdallah [1] which holds for an arbitrary compact homogeneous space G / H :

$$
\begin{equation*}
E_{G / H}(t, g H)=\sum_{x \in \mathcal{A}_{H}} d_{x} e^{-i_{\alpha} t} \phi_{\alpha}(g H) \tag{2}
\end{equation*}
$$

where (1) Λ_{H} is an index set for the (equivalence) classes of irreducible unitary representations π_{α} of G which are Class 1 with respect to H (see Section 3 for the definition), (2) d_{x} is the dimension of the representation
space of π_{α}, (3) $\left\{\lambda_{\alpha}\right\}$ is a subset of the eigenvalues (with multiplicity) of the Laplacian on G (we make this more precise in Section 3), and (4) $\phi_{\alpha}(g H)=\int_{H} \chi_{\alpha}(g H) d h$ where χ_{α} is the character of π_{α} and $d h$ is normalized Haar measure on H.

For $G=S U(2)$ the data (1), (2), and (3) are well known (see Section 3 below). Our contribution is to compute (4).
In speaking of a "heat equation" on a manifold one must specify which heat equation, i.e., what choice of Laplacian is being made. We specify that the Laplacian on $S^{2} \approx S U(2) / U(1)$ is the Laplace-Beltrami operator associated to the left-invariant Riemannian structure inherited from that Riemannian structure on $S U(2)$ derived from the negative of the Car-tan-Killing form on $s u(2)$, the Lie algebra of $S U(2)$.

The form of the heat equation considered is

$$
\begin{align*}
& \Delta E(t, g H)+\frac{\partial}{\partial t} E(t, g H)=0 \\
& \lim _{t \rightarrow 0^{+}} \int_{G / H=S^{2}} E(t, g H) f(g H)=f(e H), \quad \text { for all } f \in C^{\infty}(G / H) . \tag{3}
\end{align*}
$$

The usual heat equation over Euclidean domains has the form $" \Delta-\partial / \partial t "=0$. The reason for the discrepancy in sign is that, in our case, the Laplacian, by construction, will have positive eigenvalues; whereas in the Euclidean case, the usual Δ has, strictly speaking, eigenvalues that are negative. Our solution (1) may be regarded as an extension, involving special functions, of the method of separation of variables to a nonEuclidean domain.

2. The Compact Homogeneous Case

Assume that a manifold M comes equipped with a Laplacian. The heat kernel on M is a function satisfying the two equations

$$
A_{x} E_{M}(t ; x, y)+\frac{\partial}{\partial t} E_{M}(t ; x, y)=0
$$

and

$$
\begin{equation*}
\phi(y)=\lim _{t \rightarrow 0^{+}} \int_{M} E_{M}(t ; x, y) \phi(x) . \tag{4}
\end{equation*}
$$

Then $E_{M}(t ;, y)$ is the solution to the heat equation with initial concentration at point y.

When M is a homogeneous space G / H with G compact, then there is a natural $b i$-invariant Riemannian metric on G. By left translation on the quotient, one obtains a left-invariant Riemannian structure on M. With such a choice, Benabdallah [1]
(a) shows that $E_{G / H}$ is left invariant (i.e., $E_{G / H}(t ; z H, w H)$ $E_{G / H}(t ; g z H, g w H)$, so that $\left.E_{G / H}(t ; z H, w H)=E_{G / H}\left(t ; w^{-1} z H, H\right)\right)$ and we may thus write $E_{G / H}(t ; g H, H)=E_{G / H}(t, g H)$; and
(b) obtains his formula, (2).

When, in addition, G is semi-simple we may make a canonical choice of such a bi-invariant Riemannian structure on G, namely, that deriving from the negative of the Cartan-Killing form of the Lie algebra of G. (The "negative" is there in order to have a positive definite form.) This choice is particularly useful; for then we can regard Δ as the Casimir operator and compute eigenvalues of Δ-which appear in the formula (2)-as eigenvalues of the Casimir, via the representation theory of G.
$E_{G / H}\left(t, g H, g_{1} H\right)$ represents the value at point $g H$ and time t of the solution to the heat equation with initial concentration at $g_{1} H$. By left invariance, $E_{G / I I}\left(t ; g H, g_{1} H\right)=E_{G / / I}\left(t ; g_{1}^{-1} g H, H\right)=E_{G / I t}\left(t, g_{1}^{-1} g H\right)$; i.e., the "initial data at $g_{1} H$ " solution are the "initial data at identity coset" solution translated by g_{1}^{-1}.

3. Results from the Representation Theory of $S U(2)$

Any $g \in S U(2)$ can be expressed as $g=\left(\begin{array}{cc}\alpha & -\bar{\beta} \\ \beta & \bar{\alpha}\end{array}\right)$, where α, β are complex numbers such that $|\alpha|^{2}+|\beta|^{2}=1$. We regard $U(1) \approx S^{1}$ as imbedded in $S U(2)$ under the map

$$
e^{i \theta} \mapsto h_{\theta}-\left(\begin{array}{ll}
e^{i \theta} & \\
& e^{-i \theta}
\end{array}\right) .
$$

An irreducible representation $\pi: G \rightarrow \operatorname{Aut}(V)$ of G is called Class 1 with respect to a closed subgroup H of G if the subrepresentation of π obtained by restriction to H leaves fixed a non-zero vector of V, i.e., if there exists $v \in V, v \neq 0$, such that $\pi(h) v=v$ for all $h \in H$.

We now assemble the facts that we need from the representation theory of $S U(2)$:
(a) For each integer $m \geqslant 0$, there is an irreducible representation π_{m} of $S U(2)$ with representation space of dimension $m+1$.
(b) These are, up to equivalence, all of the irreducible unitary representations of $S U(2)$.
(c) Let χ_{m} be the character of π_{m}. Then

$$
\begin{align*}
\chi_{m}\left(h_{\phi}\right) & =\frac{e^{i(m+1) \phi}-e^{-i(m+1) \phi}}{e^{i \phi}-e^{-i \phi}} \\
& =e^{i m \phi}+e^{i(m-2) \phi}+\cdots+e^{-i m \phi} . \tag{5}
\end{align*}
$$

(d) The Class 1 representations are precisely those for which $m=2 n$ is even, hence have representation spaces of dimension $2 n+1$. And thus when $m=2 n$, (5) says that

$$
\begin{equation*}
\chi_{m}\left(h_{\phi}\right)=1+\sum_{k=1}^{n}\left(e^{i 2 k \phi}+e^{-i 2 k \phi}\right)=1+2 \sum_{k=1}^{n} \cos 2 k \phi . \tag{6}
\end{equation*}
$$

(e) Because of our choice of Riemannian structure on $G=S U(2), \Delta_{G}$ can be regarded as the Casimir operator on G. On a compact Lie group, the characters of the irreducible unitary representations are eigenfunctions of the Casimir. For $G=S U(2)$ the eigenvalue λ_{m} of the character χ_{m} is known to be $m(m+2) / 8$.
Thus when π_{m} is Class 1 with respect to $H=U(1)$, so that $m=2 n$, then $\lambda_{m}=\lambda_{2 n}=n(n+1) / 2$. That is, $\left\{\lambda_{2 n}\right\}$ is the subset of those eigenvalues of the Laplacian on $G=S U(2)$ that constitute the eigenvalues of the Laplacian on $G / H=S^{2}$.

Given (a)-(e) formula (2) becomes

$$
\begin{equation*}
E_{S^{2}}(t, g H)=\sum_{n=0}^{\infty}(2 n+1) e^{-n(n+1) t / 2} \phi_{2 n}(g H) ; \tag{7}
\end{equation*}
$$

and it remains to compute $\phi_{2 n}(g H)$, which is done in Sections 4-6.

4. Reduction to Definite Integrals

Let $m=2 n$. Now $\phi_{m}(g H)=\int_{H} \chi_{m}(g H) d h=1 / 2 \pi \int_{\phi=0}^{2 \pi} \chi_{m}\left(g h_{\phi}\right) d \phi$, as the normalized Haar measure $d H$ on $U(1) \approx S^{1}$ is given by $1 / 2 \pi d \phi$. Since $H=U(1)$ is a maximal torus of $S U(2)$ we can always find $a \in S U(2)$ (depending on g and ϕ) such that $a^{-1} g h_{\phi} a \in U(1)$, i.e., $a^{-1} g h_{\phi} a=h_{\eta}$ for some η. Thus h_{η} is the diagonalization of $g h_{\phi}$. This is useful as $\chi_{m}\left(h_{\eta}\right)=$ $\chi_{m}\left(a^{-1} g h_{\phi} a\right)=\chi_{m}\left(g h_{\phi}\right)$, and χ_{m} is more easily computed on torus elements. In fact (from (6))

$$
\begin{equation*}
\chi_{m}\left(h_{\eta}\right)=1+2 \sum_{k=1}^{n} \cos 2 k \eta=1+2 \sum_{k=1}^{n} Q_{k}\left(\cos ^{2} \eta\right) \tag{8}
\end{equation*}
$$

as $\cos 2 k \eta$ may be expressed as some polynomial expression Q_{k} in the argument $\cos ^{2} \eta$. Thus we can integrate $\chi_{m}\left(g h_{\phi}\right)$ if we can relate η to ϕ.

Lemma. Let $g=\left(\begin{array}{cc}\alpha & -\bar{\beta} \\ \beta & \alpha\end{array}\right) \in S U(2)$ and write $\cos \eta=\operatorname{Re}(\alpha)$; then the eigenvalues of g are $e^{ \pm i \eta}$. In particular g diagonalizes as the matrix h_{η}.

Proof. This is obtained by solving for λ in the equation $\operatorname{det}(g-\lambda I)=0$, recognizing that $|\alpha|^{2}+|\beta|^{2}=1$.

Write $\alpha=|\alpha| e^{i \theta}$; then $g h_{\phi}=\left({ }^{\left||\alpha| e^{i \phi+\theta \mid}\right.}{ }_{*}^{*}\right)$. Thus by the lemma applied to $g h_{\phi}, \eta$ is related to ϕ by $\cos \eta=\operatorname{Re}\left(|\alpha| e^{i(\phi+\theta)}\right)=|\alpha| \cos (\phi+\theta)$. So

$$
\begin{align*}
\phi_{m}(g H) & =\int_{H} \chi_{m}(g h) d h=\frac{1}{2 \pi} \int_{\phi=0}^{2 \pi}\left\{1+2 \sum_{k=1}^{n} Q_{k}\left(\cos ^{2} \eta\right)\right\} d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+2 \sum_{k=1}^{n} Q_{k}\left(|\alpha|^{2} \cos ^{2}(\phi \mid \theta)\right)\right\} d \phi \tag{9}
\end{align*}
$$

Since the integrand in (9) is 2π-periodic while the integration is over a full period we may make the invariant transformation $\phi \mapsto \phi-\theta$, thus getting

$$
\begin{equation*}
\phi_{m}(g H)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+2 \sum_{k=1}^{n} Q_{k}\left(|\alpha|^{2} \cos ^{2} \phi\right)\right\} d \phi \tag{10}
\end{equation*}
$$

an integral in the argument ϕ alone.
Consulting Gradshteyn and Ryzhik [6], we find a formula for Q_{k} (p.27, No. 1.331.3, $2^{\text {nd }}$ form) and a formula for the definite integrals of even powers of \cos (p. 369, No. 3.621.3). Using these plus a slight rearrangement of factorial expressions appearing in the binomial coefficients involved in these formulae one arrives at

$$
\begin{align*}
\phi_{m}(g H)= & (-1)^{n}+2 \sum_{k=1}^{n}\left\{\binom{2 k-1}{k}|\alpha|^{2 k}\right. \\
& \left.+\sum_{j=1}^{k-1}(-1)^{j} \frac{2 k}{j}\binom{2 k-j-1}{j-1}\binom{2 k-2 j-1}{k-j}|\alpha|^{2 k-2 j}\right) \tag{11}
\end{align*}
$$

where, when $k=j,\binom{-1}{0}$ is taken to mean the value $\frac{1}{2}$. In Section 5 below we simplify this expression.

5. Combinatorial Reduction

In (11) collect terms involving like powers of $|\alpha|$, substituting $p=k-j$. Equation (11) becomes

$$
\begin{align*}
\phi_{m}(g H)= & (-1)^{n}+2 \sum_{p=1}^{n}\binom{2 p-1}{p} \\
& \times\left\{1+\sum_{k=p+1}^{n}(-1)^{k-p} \frac{2 k}{k-p}\binom{k+p-1}{k-p-1}\right\}|\alpha|^{2 p} . \tag{12}
\end{align*}
$$

In (12) note that

$$
\frac{2 k}{k-p}\binom{k+p-1}{k-p-1}=\frac{k}{p}\binom{k+p-1}{k-p}
$$

and make the substitution $r=k-p$. Then the coefficient of $|\alpha|^{2 p}(1 \leqslant p \leqslant n)$ in (12) becomes

$$
\begin{equation*}
\binom{2 p}{p}\left\{1+\sum_{r=1}^{n-p}(-1)^{r} \frac{r+p}{p}\binom{r+2 p-1}{r}\right\} \tag{13}
\end{equation*}
$$

We focus now just on that part of (13) that involves the sum of the binomial coefficients that appear there. By rearranging factorials we have

$$
\begin{equation*}
\frac{r+p}{p}\binom{r+2 p-1}{r}=\binom{r+2 p}{r}+\binom{r+2 p-1}{r-1} \tag{14}
\end{equation*}
$$

Summing the right side of (14) from $r=1$ to $r=n-p$, to form the summation appearing in (13), while substituting s for $r-1$ in the sum of the second of the two binomial terms appearing on the right side of (14), we can observe a telescopic cancellation: the summation appearing in (13) reduces to $(-1)^{n-p}\binom{n+p}{n-p}-1$. Consequently the coefficient in (12) of $|\alpha|^{2 p}$, expressed as (13), becomes simply

$$
\begin{equation*}
(-1)^{n-p}\binom{2 p}{p}\binom{n+p}{n-p} \tag{15}
\end{equation*}
$$

Then (12) and (15) together yicld

$$
\phi_{m}(g H)=\sum_{p=0}^{n}(-1)^{n-p}\binom{2 p}{p}\binom{n+p}{n-p}|\alpha|^{2 p}
$$

which can be rewritten in equivalent form as

$$
\begin{equation*}
\phi_{m}(g H)=(-1)^{n} \sum_{p=0}^{n}\binom{n}{p}\binom{n+p}{p}\left(-|x|^{2}\right)^{p} \tag{16}
\end{equation*}
$$

6. Orthogonal Polynomials

The Jacobi polynomials $P_{n}^{(a, b)}(x)$ are defined (compare with Erdélyi et al. [3, Vol. 2, p. 170, (16), and Vol 1, p. 101, (1)]; then rearrange factors), for $a, b>-1$, as

$$
\begin{equation*}
P_{n}^{(a, b)}(x)=\binom{n+a}{n} \sum_{p=0}^{n} \frac{\binom{n}{p}\binom{n+a+b+p}{p}}{\binom{a+p}{p}}\left(\frac{x-1}{2}\right)^{p} \tag{17}
\end{equation*}
$$

Hence when $a=b=0$ and $x=1-2|\alpha|^{2}$ (it is clear from (16) and (17) that $\phi_{m}(g H)=(-1)^{n} p_{n}^{(0,0)}\left(1-2|\alpha|^{2}\right)=P_{n}^{(0,0)}\left(2|\alpha|^{2}-1\right)($ see [3, Vol. 2, p. 170] $)$. In the special case of indices $(0,0), P_{n}^{(0,0)}(x)=P_{n}(x)$, the $n^{\text {th }}$ Legendre polynomial (see [6, p. 1036, No. 8.962.2]). Thus $\phi_{m}(g H)=P_{n}\left(2|x|^{2}-1\right)$.

It remains to express $|\alpha|^{2}$ as a function of g. Let

$$
i_{0}=\left(\begin{array}{ll}
i & \\
& -i
\end{array}\right) \in S U(2)
$$

Then it is easy to check that $\operatorname{tr} g=2 \operatorname{Re}(\alpha)$ and $\operatorname{tr} i_{0} g=-2 \operatorname{Im}(\alpha)$, so that $\left.2|\alpha|^{2}-1=\frac{1}{2}\{\operatorname{tr} g)^{2}+\left(\operatorname{tr} i_{0} g\right)^{2}\right\}-1$. Hence

$$
\begin{equation*}
\left.\phi_{m}(g H)=P_{n}\left(\frac{1}{2}\{\operatorname{tr} g)^{2}+\left(\operatorname{tr} i_{0} g\right)^{2}\right\}-1\right) . \tag{18}
\end{equation*}
$$

Putting this into (7), finally, we obtain our solution (1).

References

1. A. Benabdallah, Noyau de Diffusion sur les Espaces Homogènes Compacts, Bull. Sor. Math. France 101 (1973), 265-283.
2. R. S. Cahn and J. A. Wolf, Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one, Comm. Math. Helv. 51 (1976), 1-21.
3. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, "Higher Transcendental Functions (The Bateman Manuscript Project)," Vols. 1 and 2, McGraw-Hill, New York, 1953.
4. L. D. Eskin, The heat equation and the Weierstrass transform on certain symmetric Riemannian spaces, Amer. Math. Soc. Transl. 75 (1968), 239-254.
5. H. D. Fegan, The heat equation on a compact Lie group, Trans. Amer. Math. Soc. 246 (1978), 339-357.
6. I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products," 4th ed., Academic Press, New York, 1965.
