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INTRODUCTION 

In this paper we give an explicit solution, E(t, gH), for the heat equation 
(with initial data concentrated at a point) on S* regarded as the 
homogeneous space G/H = SU(Z)/U( 1). For initial data concentrated at 
the identity coset our solution is 

E(t, gH)= f (2n+ 1) e “(“+ ‘)‘;*Pn { (tr g)’ + (tr i,g)*} - 1 (1) 
,I = 0 

where P,(x) are the Legendre pol nomials, “tr” means trace, and i, E SU(2) 
is the matrix (’ ;) where i = 8 - 1. 

Previously solutions have been computed (1) on S*, but only at the iden- 
tity coset, i.e., only E(t, H) was computed (Benabdallah [ 11, Cahn and 
Wolf [2]); (2) fully, but only for compact semi-simple Lie groups 
(Fegan [S]); or (3) for other types of homogeneous spaces (Eskin [4]). 

1. THE METHOD 

Our principal tool is the following formula of Benabdallah [l] which 
holds for an arbitrary compact homogeneous space G/H: 

E&f, gW = c d,e- “y’4,(gH) (2) atAH 
where (1) AH is an index set for the (equivalence) classes of irreducible 
unitary representations ‘IL, of G which are Class 1 with respect to H (see 
Section 3 for the definition), (2) d, is the dimension of the representation 
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space of n,, (3) (k) is a subset of the eigenvalues (with multiplicity) of the 
Laplacian on G (we make this more precise in Section 3), and (4) 
4,(gH) = jHXa( gH) dh where xX is the character of 71, and dh is normalized 
Haar measure on H. 

For G = SU(2) the data (l), (2), and (3) are well known (see Section 3 
below). Our contribution is to compute (4). 

In speaking of a “heat equation” on a manifold one must specify which 
heat equation, i.e., what choice of Laplacian is being made. We specify that 
the Laplacian on S2 2 SU(2)/U( 1) is the Laplace-Beltrami operator 
associated to the left-invariant Riemannian structure inherited from that 
Riemannian structure on SU(2) derived from the negative of the Car- 
tan-Killing form on su(2), the Lie algebra of SU(2). 

The form of the heat equation considered is 

AE(f,gH)+-&,gH)=O 

(3) 

lim 
r-o+ J E(h gff) .fW) = f(eW> for allfE C”(G/H). 

GIH = S= 

The usual heat equation over Euclidean domains has the form 
“d - d/X’ = 0. The reason for the discrepancy in sign is that, in our case, 
the Laplacian, by construction, will have positive eigenvalues; whereas in 
the Euclidean case, the usual A has, strictly speaking, eigenvalues that are 
negative. Our solution (1) may be regarded as an extension, involving 
special functions, of the method of separation of variables to a non- 
Euclidean domain. 

2. THE COMPACT HOMOGENEOUS CASE 

Assume that a manifold M comes equipped with a Laplacian. The heat 
kernel on A4 is a function satisfying the two equations 

A.J,(c x, y) +; E,(f; x, Y) = 0 

and 
(4) 

Then E,(t; ., y) is the solution to the heat equation with initial concen- 
tration at point y. 
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When M is a homogeneous space G/H with G compact, then there is a 
natural &-invariant Riemannian metric on G. By left translation on the 
quotient, one obtains a left-invariant Riemannian structure on M. With 
such a choice, Benabdallah [ 1 ] 

(a) shows that EGjH is left invariant (i.e., EGIH(t; zH, wH) = 
EGIH(t; gzH, gwH), so that E,,,(t; zH, wH) = EGIH(t; wp’zH, H)) and we 
may thus write E,!,(t; gH, H) = EG,‘H(r, gH); and 

(b) obtains his formula, (2). 

When, in addition, G is semi-simple we may make a canonical choice of 
such a bi-invariant Riemannian structure on G, namely, that deriving from 
the negative of the CartanKilling form of the Lie algebra of G. (The 
“negative” is there in order to have a positive definite form.) This choice is 
particularly useful; for then we can regard A as the Casimir operator and 
compute eigenvalues of A-which appear in the formula (2)-as eigen- 
values of the Casimir, via the representation theory of G. 

EGIH(t, gH, g, H) represents the value at point gH and time t of the 
solution to the heat equation with initial concentration at g, H. By left 
invariance, E,:,( t; gH, g, H) = I?,;,( t; g; ‘gH, H) = EGIH( t, g; ‘gH); i.e., 
the “initial data at g, H” solution are the “initial data at identity coset” 
solution translated by g; ‘. 

3. RESULTS FROM THE REPRESENTATION THEORY OF W(2) 

Any g E SU(2) can be expressed as g = (; ;fl), where cx, /I are complex 
numbers such that /z/’ + I/I]’ = 1. We regard U( 1 )z:S’ as imbedded in 
N(2) under the map 

An irreducible representation ?I: G --+ Aut( V) of G is called Class 1 with 
respect to a closed subgroup H of G if the subrepresentation of rt obtained 
by restriction to H leaves fixed a non-zero vector of V, i.e., if there exists 
UE V, u#O, such that n(h)u=u for all heH. 

We now assemble the facts that we need from the representation theory 
of SU(2): 

(a) For each integer m > 0, there is an irreducible representation rc, 
of SU(2) with representation space of dimension m + 1. 

(b) These are, up to equivalence, all of the irreducible unitary 
representations of SU( 2). 
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(c) Let xrn be the character of rc,. Then 

Xm(~~) = 

ei(m+l)~-eei(m+ll~ 

e”-e-‘b 

=eW+ei(m-2M+ . . . +e i4, (5) 

(d) The Class 1 representations are precisely those for which m = 2n 
is even, hence have representation spaces of dimension 2n + 1. And thus 
when m=2n, (5) says that 

I, = 1 + f (e’*@ + e-12!@) = 1 + 2 i cos 2kq?i (6) 
k=l k=l 

(e) Because of our choice of Riemannian structure on G = N(2), A, 
can be regarded as the Casimir operator on G. On a compact Lie group, 
the characters of the irreducible unitary representations are eigenjiinctions 
of the Casimir. For G= SU(2) the eigenvalue E,, of the character x,, is 
known to be m(m + 2)/8. 

Thus when rc, is Class 1 with respect to H = U(l), so that m = 2n, then 
1, = A2,, = n(n + 1)/2. That is, {A,,,} is the subset of those eigenvalues of the 
Laplacian on G = SU(2) that constitute the eigenvalues of the Laplacian on 
G/H= S2. 

Given (a)-(e) formula (2) becomes 

E&r,gH)= f (2n+ 1) e-“‘“+““2~2,(gH); (7) 
n=O 

and it remains to compute cj2JgH), which is done in Sections 4-6. 

4. REDUCTION TO DEFINITE INTEGRALS 

Let m = 2n. Now d,(gH) = j”X,,,(gH) dh = 1/27r @=,X,(gh,) d& as 
the normalized Haar measure dH on U( 1 )Z S’ is given by l/271 d4. Since 
H= U(1) is a maximal torus of W(2) we can always find aE SU(2) 
(depending on g and 4) such that a-‘gh,ae U(l), i.e., a-‘ghda = h, for 
some q. Thus h, is the diagonalization of g/z,. This is useful as x,(/z,) = 
X,(a-‘ghta) = x,( g/z,), and x,,, is more easily computed on torus elements. 
In fact (from (6)) 

X,(h,) = 1+ 2 2 COS 2kq = 1 + 2 i Qk(COS2q) (8) 
k=l k=l 

as cos 2kv may be expressed as some polynomial expression Qk in the 
argument cos2y. Thus we can integrate X,(gh,) if we can relate r] to 4. 
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LEMMA. Let g = (; -;“) E SU(2) and write cos q = Re(a); then the eigen- 
values of g are e* iq. In particular g diagonalizes as the matrix h,. 

ProoJ This is obtained by solving for jL in the equation det( g - AZ) = 0, 
recognizing that Ial*+ lpi*= 1. 

Write LY = Lyle”; then gh, = ( Icrlc”yt”’ :). Thus by the lemma applied to 
gh,, q is related to 4 by cos r~ = Re( lale’(i+O’) = (al cos(d + 0). So 

Since the integrand in (9) is 2n-periodic while the integration is over a 
full period we may make the invariant transformation #++d - H, thus 
getting 

an integral in the argument 4 alone. 
Consulting Gradshteyn and Ryzhik [6], we find a formula for Qk (p. 27, 

No. 1.331.3, 2”d form) and a formula for the definite integrals of even 
powers of cos (p. 369, No. 3.621.3). Using these plus a slight rearrangement 
of factorial expressions appearing in the binomial coefficients involved in 
these formulae one arrives at 

where, when k = j, ( il) is taken to mean the value i. In Section 5 below we 
simplify this expression. 

5. COMBINATORIAL REDUCTION 

In (11) collect terms involving like powers of Jc(/, substituting p = k-j. 
Equation ( 11) becomes 

x (A)“-” $--(:‘;I;)} laIZP. (12) 
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In (12) note that 

and make the substitution r = k - p. Then the coefficient of lcll 2p (1 d p d n) 
in (12) becomes 

( 1-i y 1 +nCP(-l)r 
r=l 

y (r+zp- 1)) 
(13) 

We focus now just on that part of (13) that involves the sum of the 
binomial coefficients that appear there. By rearranging factorials we have 

(14) 

Summing the right side of (14) from r = 1 to r = n - p, to form the sum- 
mation appearing in (13), while substituting s for r - 1 in the sum of the 
second of the two binomial terms appearing on the right side of (14) we 
can observe a telescopic cancellation: the summation appearing in (13) 
reduces to ( - I)“- “(;T ;) - 1. Consequently the coefficient in (12) of 1011 2p, 
expressed as (13) becomes simply 

Then (12) and (15) together yield 

f$,(gH)= f (-l)“-” 
p-o (:)(I:;) 142p 

which can be rewritten in equivalent form as 

dmkW=(-1)” t p=“~)(n;p) (-b12Y. 

(15) 

(16) 

6. ORTHOGONAL POLYNOMIALS 

The Jacobi polynomials P, (0*b)(x) are defined (compare with Erdelyi et al. 
[3, Vol. 2, p. 170, (16), and Vol 1, p. 101, (l)]; then rearrange factors), for 
a, b> -1, as 

p’d+) = n 
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Hence when a=b=O and x= 1-21~1~ (it is clear from (16) and (17) that 
~,(gH)=(-1)“pjp~“~(l-2~c~2)=P~o~0~(2~a(2-1) (see [3, Vol.2, p. 1701). 
In the special case of indices (0, 0), PLO,O)(x) = P,,(x), the nlh Legendre 
polynomial (see [6, p. 1036, No. 8.962.21). Thus 4,(gH) = P,,(2jrl’- 1). 

It remains to express Ic(( ’ as a function of g. Let 

i 
i, = i 1 -i 

E SU(2). 

Then it is easy to check that tr g = 2 Re(cx) and tr i,g = -2 Im(cc), so that 
21~1~ - 1 = ${tr g)‘+ (tr iog)2} - 1. Hence 

qS,( gH) = P,(f{ tr g)2 + (tr jog)‘} - 1). (18) 

Putting this into (7) finally, we obtain our solution (1). 
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