Available online at www.sciencedirect.com
JOURNAL OF
PURE AND
APPLIED ALGEBRA

Set theoretic complete intersection for curves in a smooth affine algebra

Ze Min Zeng*
Department of Mathematics, Washington University in St. Louis, One Brookings Dr., Campus Box 1146, St. Louis, MO 63130, USA

Received 25 June 2005; received in revised form 10 August 2005
Available online 17 November 2005
Communicated by R. Parimala

Abstract

Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k. Let n be an integer such that $2 n \geq d+3$. Let I be an ideal in A of height n and P be a projective A-module of rank n. Suppose $P \oplus A \approx A^{n+1}$ and there is a surjection $\alpha: P \rightarrow I$. It is proved in this note that I is a set theoretic complete intersection ideal. As a consequence, a smooth curve in a smooth affine \mathbb{C}-algebra with trivial conormal bundle is a set theoretic complete intersection if its corresponding class in the Grothendieck group is torsion.

(C) 2005 Elsevier B.V. All rights reserved.

MSC: primary 13C10, 13C40
Keywords: Set theoretic complete intersection; Euler Class group

1. Introduction

Let A be a commutative Noetherian ring of dimension d ($d \geq 3$). Let J be a local complete intersection ideal in A of height $d-1$. Then by the well known Ferrand-Szpiro construction [15], there exists a local complete intersection ideal I which is contained in

[^0]0022-4049/\$ - see front matter (C) 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2005.09.010
J, such that $\sqrt{I}=\sqrt{J}$ and I / I^{2} is free A / I-module of rank n. One can ask when such an ideal I is a set theoretic complete intersection. Taking inspiration in part from the results in $[5,6,12]$ and [13], it is conceivable that the property of an ideal being a set theoretic complete intersection is related to its class in the Chow group or Grothendieck group being a torsion element; thus it is natural to ask the following question:

Question 1.1. Let A be a commutative Noetherian ring of dimension d ($d \geq 3$). Let I be a local complete intersection ideal in A of height $n=d-1$ such that I / I^{2} is a free A/I-module of rank n. Suppose (A / I) is torsion in $K_{0}(A)$. Is I a set theoretic complete intersection in A ?

When $n \geq 5$ and odd, the above Question has an affirmative answer (for example, see the proof of [17, Theorem 3.2]). For the case when n is even, the author gave an affirmative answer to the above Question too in [17, Theorem 3.6] if A is a polynomial algebra containing \mathbb{Q}. This note is another attempt by the author to settle the above Question.

In this note, we shall give an affirmative answer to Question 1.1 in the case when A is a smooth affine \mathbb{C}-algebra (see Corollary 2.15).

Theorem 1.2. Let A be a smooth affine \mathbb{C}-algebra of dimension $n+1$, where $n \geq 4$ and even. Let I be a local complete intersection ideal of height n such that I / I^{2} is a free A / I module of rank n. Suppose (A / I) is torsion in $K_{0}(A)$. Then I is a set theoretic complete intersection in A.

All rings in this paper are assumed to be commutative and Noetherian. All modules considered are assumed to be finitely generated. We denote by $K_{0}(A)$ the Grothendieck group of projective modules over the ring A.

2. Main theorem

Let A be a commutative Noetherian ring of dimension n, and $I \subseteq A$ be a local complete intersection of height $r(r \leq n)$. Suppose I / I^{2} is A / I-free with base $\bar{f}_{1}, \ldots, \bar{f}_{r}, f_{i} \in I, \bar{f}_{i}$ is the class of f_{i} in I / I^{2}. Let $J=I^{(r-1)!}+\left(f_{1}, \ldots, f_{r-1}\right)$. Then, by a result of Murthy [12, Theorem 2.2], there exists a surjection $P \rightarrow J$ with P a projective A-module of rank r, such that $(P)-\left(A^{r}\right)=-(A / I)$ in $K_{0}(A)$. Therefore to show that Question 1.1 has an affirmative answer in the case when A is a smooth affine \mathbb{C}-algebra, it suffices to answer the following much more general question positively:

Question 2.1. Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k. Let n be an integer such that $2 n \geq d+3$. Let I be an ideal in A of height n and P be a projective A-module of rank n. Suppose $P \oplus A \approx A^{n+1}$ and there is a surjection α : $P \rightarrow$ I. Is I a set theoretic complete intersection ideal in A ?

Remark 2.2. If n is odd, we have the following proposition:
Proposition 2.3. Let A be a ring of dimension $d(d \geq 3)$ and n be an odd integer such that $2 n \geq d+3$. Let I be a local complete intersection ideal in A of height n and P be a projective A-module of rank n. Suppose $P \oplus A \approx A^{n+1}$ and there is a surjection α : $P \rightarrow I$. Then I is a set theoretic complete intersection ideal in A.

Proof. Since n is odd, P has a free summand of rank 1 by Bass [1], say $P \approx Q \oplus A$. Let x be the image of $(0,1)$ under α and J be the image of Q under α; then $I=(J, x)$. By some suitable elementary transformations on P, we may assume ht $J=n-1.2 n \geq d+3$ implies $\operatorname{rank}(Q / J Q) \geq \operatorname{dim}(A / J)+1$. By Bass cancellation [2], $Q / J Q$ is a free A / J-module of rank $n-1$. By [11, Lemma 1], I is generated by n elements. In particular, I is a set theoretic complete intersection ideal in A. The proof of the proposition is complete.

Therefore, if n is odd, Question 2.1 has an affirmative answer.
In order to give a complete answer to the Question 2.1, we need a few lemmas.
First, let us restate a lemma of Van der Kallen [7, Lemma 4.9]:
Lemma 2.4. Let A be a commutative ring. Let $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ be a unimodular row over A and P be the cokernel of the natural map:

$$
A \xrightarrow{\left(a_{0}^{2}, a_{1}, \ldots, a_{n}\right)} A^{n+1}
$$

Then the projective A-module P has a free summand of rank 1.
Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k. Let n be an integer such that $2 n \geq d+3$. Let $\left[a_{0}, a_{1}, \ldots, a_{n}\right] \in U m_{n+1}(A)$, and $P=$ $A^{n+1} / \sum_{0 \leq i \leq n} a_{i} e_{i}$. The Euler Class group of A is defined by Bhatwadekar and Sridharan in [3], and is denoted by $E^{n}(A)$. And they also attached to P an element $e\left(\left[a_{0}, a_{1}, \ldots, a_{n}\right]\right)$ in $E^{n}(A)$.

The following is an easy corollary to the above lemma:
Corollary 2.5. Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k. Let n be an integer such that $2 n \geq d+3$. Suppose $\left[a_{0}, a_{1}, \ldots, a_{n}\right] \in U m_{n+1}(A)$. Then $e\left(\left[a_{0}^{2}, a_{1}, \ldots, a_{n}\right]\right)=0$ in $E^{n}(A)$.

Proof. By [3, Theorem 5.4] and the above lemma, we are done.
Let B be a ring and M be a finitely generated B-module. We use the following convention throughout the rest of this note for simplicity:

Convention. Let $m_{1}, \ldots, m_{n} \in M$. We say a map: $B^{n} \rightarrow M$ is given by $\left(m_{1}, \ldots, m_{n}\right)$ to mean a B-module homomorphism: $B^{n} \rightarrow M$ defined by sending e_{i} to m_{i} for $i=1, \ldots, n$, where $\left(e_{1}, \ldots, e_{n}\right)$ is a standard basis of B^{n}.

Lemma 2.6. Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k and n be an even integer such that $2 n \geq d+3$. Let $I=\left(f_{1}, \ldots, f_{n}\right)$ be an ideal of height n and $u \in A$ such that $1-u v \in I$. Let $u^{2} \omega$ be the surjection: $(A / I)^{n} \rightarrow I / I^{2}$ given by $\left(\overline{u^{2} f_{1}}, \overline{f_{2}}, \ldots, \overline{f_{n}}\right)$, where bar denotes reduction modulo I. Then $\left(I, u^{2} \omega\right)=0$ in $E^{n}(A)$.

Proof. Applying Lemma 5.6 in [3], we have $e\left(\left[v^{2}, f_{1}, \ldots, f_{n}\right]\right)=\left(I, u^{2} \omega\right)$ in $E^{n}(A)$. By Corollary 2.5, we are done.

The proof of the following lemma is analogous to the proof of Lemma 5.4 in [4].

Lemma 2.7. Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k and n be an even integer such that $2 n \geq d+3$. Let I be an ideal of height n and $u \in A$ such that $1-u v \in I$. Suppose $I=\left(f_{1}, f_{2}, \ldots, f_{n}\right)+I^{2}$. Let ω be the surjection: $(A / I)^{n} \rightarrow I / I^{2}$ given by $\left(\overline{f_{1}}, \overline{f_{2}}, \ldots, \overline{f_{n}}\right)$ and let $u^{2} \omega$ be the surjection: $(A / I)^{n} \rightarrow I / I^{2}$ given by $\left(\overline{u^{2} f_{1}}, \overline{f_{2}}, \ldots, \overline{f_{n}}\right)$. Then $(I, \omega)=\left(I, u^{2} \omega\right)$ in $E^{n}(A)$.
Proof. If $(I, \omega)=0$ in $E^{n}(A)$, then we are done by Lemma 2.6. So we may assume $(I, \omega) \neq 0$; then by corollary 2.4 in [3] we can find an ideal J of height n such that $I+J=A, J \cap I=\left(f_{1}, \ldots, f_{n}\right)$ and $J=\left(f_{1}, \ldots, f_{n}\right)+J^{2}$. Let ω_{J} be the surjection: $(A / J)^{n} \rightarrow J / J^{2}$ given by $\left(\overline{f_{1}}, \overline{f_{2}}, \ldots, \overline{f_{n}}\right)$; then $(I, \omega)+\left(J, \omega_{J}\right)=0$ in $E^{n}(A)$. Since $I+J=A$, we can write $1-u=x+y$ for some $x \in I, y \in J$. Let $b=1-y$; then $b=1$ modulo J and $b=u$ modulo I. By Lemma 2.6 above and Theorem 4.2 in [3], we see that there exists a surjection $\phi: A^{n} \rightarrow I \cap J$, such that $\phi \otimes A / I$ is given by $\left(\overline{u^{2} f_{1}}, \overline{f_{2}}, \ldots, \overline{f_{n}}\right)$ and $\phi \otimes A / J$ is given by $\left(\overline{f_{1}}, \overline{f_{2}}, \ldots, \overline{f_{n}}\right)$. From the surjection ϕ, we have $\left(I, u^{2} \omega\right)+\left(J, \omega_{J}\right)=0$ in $E^{n}(A)$. Combining the relation $(I, \omega)+\left(J, \omega_{J}\right)=0$, we have $(I, \omega)=\left(I, u^{2} \omega\right)$ in $E^{n}(A)$.

Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k and n be an integer such that $2 n \geq d+3$. By a theorem of Van der Kallen [8, Theorem 4.1], the universal weak Mennicke symbol

$$
w m s: U m_{n+1}(A) / E_{n+1}(A) \rightarrow W M S_{n}(A)
$$

is a bijection with an abelian target, which provides $U m_{n+1}(A) / E_{n+1}(A)$ with the desired structure of an abelian group. In [3, Theorem 5.7], Bhatwadekar and Sridharan showed that the natural map

$$
e: U m_{n+1}(A) / E_{n+1}(A) \rightarrow E^{n}(A)
$$

is a group homomorphism, where the group structure of $U m_{n+1}(A) / E_{n+1}(A)$ is the one defined above by Van der Kallen.

Let $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ be a unimodular row over A and let

$$
P=A^{n+1} / \sum_{0 \leq i \leq n} a_{i} e_{i},
$$

where $\left(e_{0}, \ldots, e_{n}\right)$ is a standard basis of A^{n+1}. Let p_{i} denote the image of e_{i} in P; then $P=\sum_{0 \leq i \leq n} A p_{i}$ and $\sum_{0 \leq i \leq n} a_{i} p_{i}=0$. Suppose there is a surjection $\alpha: P \rightarrow I$, where I is an ideal of height n. Let f_{i} be the image of p_{i} under the surjection α. Since $n+1 \geq$ $\operatorname{dim}(A / I)+2,\left[\overline{a_{0}}, \overline{a_{1}}, \ldots, \overline{a_{n}}\right]$ is completable to an elementary matrix in $E_{n+1}(A / I)$. So we may assume $\left[a_{0}, a_{1}, \ldots, a_{n}\right] \equiv[1,0, \ldots, 0]$ modulo $I .2 n \geq d+3$ implies $P / I P$ is a free A / I-module of rank n by Bass cancellation. Since $\sum_{0 \leq i \leq n} a_{i} p_{i}=0$, we can write $I=\left(f_{1}, \ldots, f_{n}\right)+I^{2}$. So if we let $\omega:(A / I)^{n} \rightarrow I / I^{2}$ denote the surjection given by $\left(\overline{f_{1}}, \ldots, \overline{f_{n-1}}, \overline{f_{n}}\right)$, then $e\left(\left[a_{0}, a_{1}, \ldots, a_{n}\right]\right)=(I, \omega)$ in $E^{n}(A)$. Let $-\omega:(A / I)^{n} \rightarrow I / I^{2}$ denote the surjection given by $\left(\overline{f_{1}}, \ldots, \overline{f_{n-1}},-\overline{f_{n}}\right)$. Then we have the following proposition:

Proposition 2.8. Let A, P, I, α, ω and $-\omega$ be as above. Then $(I, \omega)+(I,-\omega)=0$ in $E^{n}(A)$.

Proof. We first show there is a unimodular row over A which represents $(I,-\omega)$ in $E^{n}(A)$. Notice that the $\sum_{0 \leq i \leq n} a_{i} p_{i}=0$ implies $\sum_{0 \leq i \leq n} a_{i} f_{i}=0$. Let ϕ be the surjection: $A^{n+1} \rightarrow I$ given by $\left(f_{0}, \ldots, f_{n-1},-f_{n}\right)$. Let Q be the projective A-module of rank n defined by

$$
Q=A^{n+1} /\left(a_{0} e_{0}+\cdots+a_{n-1} e_{n-1}-a_{n} e_{n}\right) .
$$

Since $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ is a unimodular row over A, there exist b_{i} 's $\in A$ such that $a_{0} b_{0}+a_{1} b_{1}+\cdots+a_{n} b_{n}=1$. Let $q_{n}=e_{n}-\left(-b_{n}\right)\left(a_{0} e_{0}+\cdots+a_{n-1} e_{n-1}-a_{n} e_{n}\right)$ and $q_{i}=e_{i}-\left(b_{i}\right)\left(a_{0} e_{0}+\cdots+a_{n-1} e_{n-1}-a_{n} e_{n}\right)$ for $i=0, \ldots, n-1$; then $Q=\sum_{0 \leq i \leq n} A q_{i}$, $\phi\left(q_{n}\right)=-f_{n}$ and $\phi\left(q_{i}\right)=f_{i}$ for $i=0, \ldots, n-1$. Thus the restriction of ϕ to \bar{Q} gives us a surjection: $Q \rightarrow I$; call it β. Then it is rather obvious that $e\left(\left[a_{0}, \ldots, a_{n-1},-a_{n}\right]\right)=$ $(I,-\omega)$ in $E^{n}(A)$ via the surjection β and the projective A-module Q.

Next, we show the image of $\left[a_{0}, \ldots, a_{n-1}, a_{n}\right] *\left[a_{0}, \ldots, a_{n-1},-a_{n}\right]$ under the group homomorphism e is zero, where $*$ is the group operation on

$$
U m_{n+1}(A) / E_{n+1}(A)
$$

which is defined in [8] by Van der Kallen. Applying [8, Lemma 3.5(i)], we have

$$
\left[a_{0}, \ldots, a_{n-1}, a_{n}\right] *\left[a_{0}, \ldots, a_{n-1},-b_{n}\right]=0
$$

in $U m_{n+1}(A) / E_{n+1}(A)$. Also by [8, Lemma 3.5(v)],

$$
\left[a_{0}, \ldots, a_{n-1},-a_{n}\right] *\left[a_{0}, \ldots, a_{n-1}, b_{n}^{2}\right]=\left[a_{0}, \ldots, a_{n-1},-a_{n} b_{n}^{2}\right]
$$

But $\left[a_{0}, \ldots, a_{n-1},-a_{n} b_{n}^{2}\right]=\left[a_{0}, \ldots, a_{n-1},-b_{n}\right]$ in $U m_{n+1}(A) / E_{n+1}(A)$. Taking the image in $E^{n}(A)$ under the group homomorphism e and applying Corollary 2.5 , it follows that $(I, \omega)+(I,-\omega)+0=0$ in $E^{n}(A)$. The proof of the proposition is complete.

From Lemma 2.7 and Proposition 2.8, we have the following interesting corollary:
Corollary 2.9. Let A be a smooth affine \mathbb{C}-algebra of dimension $n+1$ ($n \geq 4$, even). Let $\left[a_{0}, \ldots, a_{n}\right] \in U m_{n+1}(A)$. Then $e\left(\left[a_{0}, \ldots, a_{n}\right]\right)$ is 2-torsion in $E^{n}(A)$.

Proof. Let P denote the projective A-module defined by $\left[a_{0}, \ldots, a_{n}\right]$. Choose a general section of the dual of P, say α; then α gives us a surjection: $P \rightarrow I$, where I is a local complete intersection ideal of height n. From this surjection, we can write $e\left(\left[a_{0}, \ldots, a_{n}\right]\right)=(I, \omega)$ in $E^{n}(A)$, where ω is some surjection: $A / I^{n} \rightarrow I / I^{2}$. By Lemma 2.7, we have $(I, \omega)=(I,-\omega)$ since -1 is a square in A / I. By Proposition 2.8, we have $2 e\left(\left[a_{0}, \ldots, a_{n}\right]\right)=0$ in $E^{n}(A)$. The proof of the corollary is complete.

Lemma 2.10. Let A be a commutative Noetherian ring containing a field k. Let I be a proper ideal of height n which is a local complete intersection in A, such that I / I^{2} is a free A / I-module of rank n. Then there exists a regular sequence f_{1}, \ldots, f_{n} in A and $s_{1} \in I^{2}$ such that
(1) $I=\left(f_{1}, \ldots, f_{n}, s_{1}\right), s_{1}\left(1-s_{1}\right) \in\left(f_{1}, \ldots, f_{n}\right), I=\left(f_{1}, \ldots, f_{n}\right)+I^{2}$, and
(2) $\left\{f_{1}, \ldots, f_{n-1}, f_{n}-s_{1}^{2}\right\}$ is a regular sequence in A.

Proof. As in the proof of Lemma 2.3 in [10], we can find a regular sequence f_{1}, \ldots, f_{n} in A such that $I=\left(f_{1}, \ldots, f_{n}\right)+I^{2}$. By [11, Lemma 1], there exists $s \in I$ such that $s(1-s) \in\left(f_{1}, \ldots, f_{n}\right)$ and $I=\left(f_{1}, \ldots, f_{n}, s\right)$. Since $s(1-s) \in\left(f_{1}, \ldots, f_{n}\right)$, we may further assume that $s \in I^{2}$. Notice that we can change s to $\prod_{i=1}^{m}\left(s-b_{i} f_{n}\right)$ for any positive integer m and $b_{i} \in I$. If p_{1}, \ldots, p_{t} are the maximal elements in $\operatorname{Ass}\left(A /\left(f_{1}, \ldots, f_{n-1}\right)\right)$, then $f_{n} \notin p_{1}, \ldots, p_{t}$.

If $s \in p_{1}, \ldots, p_{t}$, then $f_{n}-s^{2} \notin p_{1}, \ldots, p_{t}$, and we are through.
If, say for example, $s \notin p_{1}$, but $s+b f_{n} \in p_{1}$ for some $b \in I$, we replace s by $s\left(s+b f_{n}\right)$ and assume $s \in p_{1}$. Repeating this procedure (that is, replacing s by $\prod_{i=1}^{m}\left(s-b_{i} f_{n}\right)$) and reordering p_{i} where $i \in\{1, \ldots, t\}$ if necessary, we may assume that $s \in p_{1}, \ldots, p_{r}$, $s-b f_{n} \notin p_{k}$ for $k>r$ and any $b \in I$.

Since $s \in p_{1}, \ldots, p_{r}, f_{n}-s^{2} \notin p_{1}, \ldots, p_{r}$. If $f_{n}-s^{2} \notin p_{r+1}, \ldots, p_{t}$, then we are done. So by reordering p_{r+1}, \ldots, p_{t}, we may assume $f_{n}-s^{2} \notin p_{r+1}, \ldots, p_{r+l}$ and $f_{n}-s^{2} \in p_{r+l+1}, \ldots, p_{t}$. Let $\lambda \in I \cap\left(\cap_{i=1}^{r+l} p_{i}\right) \backslash \cup_{j=r+l+1}^{t} p_{j}$ (such a λ does exist), and $s_{1}=s+\lambda f_{n}$. Then $f_{n}-s_{1}^{2}=f_{n}-s^{2}-\lambda f_{n}\left(2 s+\lambda f_{n}\right)$, and $f_{n}-s_{1}^{2} \notin p_{1}, \ldots, p_{r+l}$ by our choice of λ.

Now we claim that $f_{n}-s_{1}^{2} \notin p_{r+l+1}, \ldots, p_{t}$. If $f_{n}-s_{1}^{2} \in p_{j}$ for some $j \in$ $\{r+l+1, \ldots, t\}$, then $2 s+\lambda f_{n} \in p_{j}$. Notice that since A is a commutative ring containing a field k, either 2 is invertible in A or 2 is zero in A. If 2 is zero in A, then $\lambda f_{n} \in p_{j}$, which is impossible. If 2 is invertible in A, then $s+(1 / 2) \lambda f_{n} \in p_{j}$, which contradicts that $s-b f_{n} \notin p_{k}$ for $k>r$ and any $b \in I$. So the claim follows.

Therefore $f_{n}-s_{1}^{2}$ is a nonzero divisor in $A /\left(f_{1}, \ldots, f_{n-1}\right)$. By our choice of s_{1}, we have that $I=\left(f_{1}, \ldots, f_{n}, s_{1}\right), s_{1}\left(1-s_{1}\right) \in\left(f_{1}, \ldots, f_{n}\right), s_{1} \in I^{2}, I=\left(f_{1}, \ldots, f_{n}\right)+I^{2}$, and $\left\{f_{1}, \ldots, f_{n-1}, f_{n}-s_{1}^{2}\right\}$ is a regular sequence in I.

The proof of the following lemma is a generalization of [16, Proposition 4.3] which is inspired by the statements of Bhatwadekar, Das, and Mandal in [9, Lemma 6.1 and Proposition 6.2].

Lemma 2.11. Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k and n be an even integer such that $2 n \geq d+3$. Let I be an ideal of height n such that $I=\left(f_{1}, \ldots, f_{n-1}, f_{n}\right)+I^{2}$, where $f_{1}, \ldots, f_{n-1}, f_{n}$ form a regular sequence in A. Let ω_{I} be the surjection: $(A / I)^{n} \rightarrow I / I^{2}$ given by $\left(\overline{f_{1}}, \ldots, \overline{f_{n-1}}, \overline{f_{n}}\right)$ and $-\omega_{I}$ be the surjection: $(A / I)^{n} \rightarrow I / I^{2}$ given by $\left(\overline{f_{1}}, \ldots, \overline{f_{n-1}},-\overline{f_{n}}\right)$. Define $J=I^{(2)}=$ $\left(f_{1}, \ldots, f_{n-1}\right)+I^{2}$. Then there exists a surjection $\omega:(A / J)^{n} \rightarrow J / J^{2}$, such that $\left(I^{(2)}, \omega\right)=\left(I, \omega_{I}\right)+\left(I,-\omega_{I}\right)$ in $E^{n}(A)$.
Proof. Applying Lemma 2.10, we can find $s \in A$ such that the image of $f_{n}-s^{2}$ in $A /\left(f_{1}, \ldots, f_{n-1}\right)$ is a nonzero divisor, $I=\left(f_{1}, \ldots, f_{n}, s\right)$ and $s(1-s) \in\left(f_{1}, \ldots, f_{n}\right)$. Let $K_{1}=\left(f_{1}, \ldots, f_{n}, 1-s\right)$; then $K_{1} \cap I=\left(f_{1}, \ldots, f_{n}\right)$. Since $\left\{f_{1}, \ldots, f_{n-1}, f_{n}-\right.$ $\left.s^{2}\right\}$ is a regular sequence and $I=\left(f_{1}, \ldots, f_{n-1}, f_{n}-s^{2}\right)+I^{2}$, we can write $\left(f_{1}, \ldots, f_{n-1}, f_{n}-s^{2}\right)=I \cap K_{2}$ for some K_{2} in A, which is comaximal with I. If $K_{1}=A$, or $K_{2}=A$, then the conclusion of the lemma clearly holds. So we may assume that K_{1}, K_{2} are ideals of height n. Let $g=f_{n}-s^{2}$; then $g A+K_{1}=A$, and hence I, K_{1}, K_{2} are pairwise comaximal. It is clear that $g=-s^{2}$ is a unit modulo K_{1} and $f_{n}=s^{2}$ is a unit modulo K_{2}. Since $I^{(2)}=\left(f_{1}, \ldots, f_{n-1}\right)+I^{2}, I^{(2)} \cap K_{1} \cap K_{2}=\left(f_{1}, \ldots, f_{n-1}, g f_{n}\right)$. So
we have the surjective homomorphisms

$$
\begin{aligned}
& A^{n} \xrightarrow{\alpha} I \cap K_{1} \\
& A^{n} \xrightarrow{\alpha^{\prime}} I \cap K_{1}
\end{aligned}
$$

given by $\left(f_{1}, \ldots, f_{n-1}, f_{n}\right)$ and $\left(f_{1}, \ldots, f_{n-1},-f_{n}\right)$ respectively. Then $\omega_{I}=\alpha \otimes A / I$, $-\omega_{I}=\alpha^{\prime} \otimes A / I$. Let $\omega_{K_{1}}=\alpha \otimes A / K_{1}$ and $-\omega_{K_{1}}=\alpha^{\prime} \otimes A / K_{1}$. Then we have $\left(I,-\omega_{I}\right)+\left(K_{1},-\omega_{K_{1}}\right)=0$ in $E^{n}(A)$.
$I^{(2)} \cap K_{1} \cap K_{2}=\left(f_{1}, \ldots, f_{n-1}, g f_{n}\right)$. So we also have two natural surjective homomorphisms

$$
\begin{aligned}
& A^{n} \xrightarrow{\beta} I \cap K_{2} \\
& A^{n} \xrightarrow{\gamma} I^{(2)} \cap K_{1} \cap K_{2}
\end{aligned}
$$

given by $\left(f_{1}, \ldots, f_{n-1}, g\right)$ and ($f_{1}, \ldots, f_{n-1}, g f_{n}$) respectively.
Let $\omega_{K_{2}}=\beta \otimes A / K_{2}$, and $\omega=\gamma \otimes A / I^{(2)}$. Since $g=-s^{2}$ is a unit modulo K_{1} and $f_{n}=s^{2}$ is a unit modulo K_{2}, from the surjections β and γ and Lemma 2.7, we have: $\beta \otimes A / I=\omega_{I}, \gamma \otimes A / K_{1}=-\bar{s}^{2} \omega_{K_{1}}, \gamma \otimes A / K_{2}=\bar{s}^{2} \omega_{K_{2}}$ and the following relations in $E^{n}(A):\left(I, \omega_{I}\right)+\left(K_{2}, \omega_{K_{2}}\right)=0$, and $\left(I^{(2)}, \omega\right)+\left(K_{1},-\bar{s}^{2} \omega_{K_{1}}\right)+\left(K_{2}, \bar{s}^{2} \omega_{K_{2}}\right)=$ $\left(I^{(2)}, \omega\right)+\left(K_{1},-\omega_{K_{1}}\right)+\left(K_{2}, \omega_{K_{2}}\right)=0$. Hence $\left(I, \omega_{I}\right)+\left(I,-\omega_{I}\right)=\left(I, \omega_{I}\right)+\left(I,-\omega_{I}\right)+$ $\left(I^{(2)}, \omega\right)+\left(K_{1},-\omega_{K_{1}}\right)+\left(K_{2}, \omega_{K_{2}}\right)=\left(I, \omega_{I}\right)+\left(K_{2}, \omega_{K_{2}}\right)+\left(I^{(2)}, \omega\right)+\left(I,-\omega_{I}\right)+$ $\left(K_{1},-\omega_{K_{1}}\right)=0+\left(I^{(2)}, \omega\right)+0=\left(I^{(2)}, \omega\right)$. Thus $\left(I^{(2)}, \omega\right)=\left(I, \omega_{I}\right)+\left(I,-\omega_{I}\right)$ in $E^{n}(A)$.

Now we are ready to state our main theorem which gives an affirmative answer to Question 2.1:
Theorem 2.12. Let A be a regular ring of dimension $d(d \geq 3)$ containing an infinite field k. Let n be an even integer such that $2 n \geq d+3$. Let I be an ideal in A of height n and P be a projective A-module of rank n. Suppose $P \oplus A \approx A^{n+1}$ and there is a surjection α : $P \rightarrow I$. Then I is a set theoretic complete intersection ideal in A.

Proof. Let ω and $-\omega$ be as in Proposition 2.8. Then by Lemma 2.11, there exists a surjection $\omega^{\prime}:(A / J)^{n} \rightarrow J / J^{2}$, where $J=I^{(2)}$, such that $\left(I^{(2)}, \omega^{\prime}\right)=\left(I, \omega_{I}\right)+\left(I,-\omega_{I}\right)$ in $E^{n}(A)$. Using Proposition 2.8, we have $\left(I^{(2)}, \omega^{\prime}\right)=0$ in $E^{n}(A)$. By Theorem 4.2 in [3], $I^{(2)}$ is generated by n elements and hence $I^{(2)}$ is a complete intersection ideal in A. Therefore, I is a set theoretic complete intersection ideal in A.

Corollary 2.13. Let A be a smooth affine \mathbb{C}-algebra of dimension $n+1$, where $n \geq 4$ and even. Let I be an ideal of height n. Suppose I is the image of a stably free A-module of rank n. Then I is a set theoretic complete intersection ideal in A.

Proof. Applying the cancellation theorem of Suslin [14, Theorem 1] and using Theorem 2.12, we see that I is a set theoretic complete intersection ideal in A. The proof of the corollary is complete.

Remark 2.14. For the case when $n=3$ in Corollary 2.13 , let α be the surjection: $P \rightarrow I$, where P is a stably free module of rank 3. By the cancellation theorem of Suslin [14, Theorem 1], we have $P \oplus A \approx A^{4}$. By Bass [1], P has a unimodular element. Then using
the same arguments as in Proposition 2.3 except for applying the cancellation theorem of Suslin instead of applying Bass cancellation, we can conclude that I is a complete intersection ideal in A. Therefore, Corollary 2.13 also holds when $n=3$.

The following corollary gives a positive answer to the Question 1.1 in the case when A is a smooth affine \mathbb{C}-algebra.

Corollary 2.15. Let A be a smooth affine \mathbb{C}-algebra of dimension $n+1$, where $n \geq 4$ and even. Let I be a local complete intersection ideal of height n such that I / I^{2} is a free A / I module of rank n. Suppose (A / I) is torsion in $K_{0}(A)$. Then I is a set theoretic complete intersection in A.

Proof. Let m be the integer such that $m(A / I)=0$ in $K_{0}(A)$. Write $I=$ $\left(f_{1}, \ldots, f_{n-1}, f_{n}\right)+I^{2}$, where $f_{1}, \ldots, f_{n-1}, f_{n}$ form a regular sequence. Let $J=$ $\left(f_{1}, \ldots, f_{n-1}\right)+I^{m}$. By a result of Mandal [10, Lemma 2.3], $(A / J)=m(A / I)$ in $K_{0}(A)$ and hence $(A / J)=0$ in $K_{0}(A)$. By a result of Murthy [12, Theorem 2.2], we see that K is the image of a stably free A-module of rank n, where $K=\left(f_{1}, \ldots, f_{n-1}\right)+J^{(n-1)!}$. By Corollary 2.13, we conclude that K is a set theoretic complete intersection in A and hence so is I.

Remark 2.16. As in Remark 2.14, Corollary 2.15 also holds when $n=3$.

Acknowledgments

I would like to take this opportunity to express my gratitude to my thesis adviser, Professor N. Mohan Kumar, for his guidance. Without his suggestions I would neither have thought of proving nor been able to prove these results in the field of commutative algebra. I also wish to thank Professor S.M. Bhatwadekar for many useful conversations about the Euler Class group, without which this paper would not have taken its present form.

Also, I would like to thank the referee for carefully going through the draft and for making very helpful suggestions.

References

[1] H. Bass, Modules which support non-singular forms, J. Algebra (13) (1969) 246-252.
[2] H. Bass, K-theory and stable algebra, Inst. Hantes Etudes Sci. Publ. Math. 22 (1964) 5-60.
[3] S.M. Bhatwadekar, R. Sridharan, On the Euler classes and stably free projective modules, Tata Inst. Fund. Res. Stud. Math. 16 (2002) 139-158. Tata Inst. Fund. Res., Bombay.
[4] S.M. Bhatwadekar, R. Sridharan, The Euler class group of a Noetherian ring, Compositio Math. 122 (2000) 183-222.
[5] M. Boratynski, On a conormal module of smooth set theoretic complete intersections, Trans. Amer. Math. Soc. (1986) 291-300.
[6] G. Lyubeznik, The number of defining equations of affine algebraic sets, Amer. J. Math. (1992) 413-463.
[7] W. Van der Kallen, From Mennicke symbols to Euler class groups, Tata Inst. Fund. Res. Stud. Math. 16 (2002) 341-354. Tata Inst. Fund. Res., Bombay.
[8] W. Van der Kallen, A module structure on certain sets of unimodular rows, J. Pure Appl. Algebra 57 (1983) 281-316.
[9] S. Mandal, Euler cycles. http://www.math.ku.edu// mandal/talks/talkEuler.pdf, 2005.
[10] S. Mandal, Decomposition of projective modules, K-Theory 22 (2001) 393-400.
[11] N. Mohan Kumar, Complete intersections, J. Math. Kyoto Univ. 17 (1977) 533-538.
[12] M.P. Murthy, Zero cycles and projective modules, Ann. of Math. 140 (1994) 405-434.
[13] M.P. Murthy, Complete intersections, Proc. of Conference on Commutative Algebra, Queen's University, 1975, pp. 197-211.
[14] A.A. Suslin, On stably free modules, Mat. Sb. 102 (1977) 537-550.
[15] L. Szpiro, Equations defining space curves, Tata Institute, Bombay, 1979.
[16] Z.M. Zeng, On the equations defining points, 2005 (preprint).
[17] Z.M. Zeng, On the equations defining points, J. Algebra, in press.

[^0]: * Tel.: +1 314646 1328; fax: +1 3149356839 .

 E-mail address: zmzeng @ math.wustl.edu.

