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TO THE EDITOR
Paraneoplastic pemphigus (PNP) is a
frequently lethal autoimmune bullous
disease characterized by severe poly-
morphous mucocutaneous lesions and
is commonly associated with hemato-
logic malignancies, particularly non-Hodg-
kin lymphomas, chronic lymphatic
leukemia, and Castleman’s disease
(Anhalt, 2004). The autoantibody pro-
file of PNP is less restricted and
includes recognition of the autoanti-
gens of pemphigus vulgaris (PV), pem-
phigus foliaceus (PF), and bullous
pemphigoid (BP). Whereas the sera of
patients with PV, PF, and BP nearly
selectively recognize the desmogleins
(Dsg) or bullous pemphigoid antigens
1 (BP230) and 2 (BP180), respectively,
PNP sera exhibit IgG (and IgA) reactiv-
ity against an array of intracellular and
transmembrane adhesion proteins in-
cluding plakins (desmoplakin I and II,
BP230, envoplakin, periplakin), desmo-
somal cadherins such as Dsg3, Dsg1,
desmocollins (Dsc) 1–3, as well as

plakophilin 3, and a 170-kDa protein,
which was recently identified as a
a-macroglobulin-like 1 protease inhibi-
tor (Oursler et al., 1992; Nagata et al.,
2001; Lambert et al., 2010; Schepens
et al., 2010).

As PNP is clinically heterogeneous
and may mimic a variety of inflamma-
tory skin disorders, such as PV, BP,
graft-versus-host disease, or lichen pla-
nus (Anhalt, 2004), more detailed
knowledge about the fine specificity of
the autoantibody profile may help
identify PNP more readily.

In this study, a total of 39 sera from
15 patients with the clinical diagnosis
of PNP (Table 1) along with 24 patients
with acute-onset PV were studied.
The clinical diagnosis of PNP was
confirmed by histopathology, direct
immunofluorescence, and, addition-
ally, proven by positive immunoreac-
tivity with the 190-kDa antigen peri-
plakin and the 210-kDa antigen envo-
plakin. The study was conducted in
accordance with the Declaration of

Helsinki Principles, approved by the
local ethics committees of the partici-
pating institutions, and all patients gave
written informed consent.

Initially, total IgG and IgA reactivites
of the PNP and PV sera were tested by
ELISA against Dsg3, Dsg1, and Dsc1–3
proteins as described previously (Muller
et al., 2008, 2009). As expected, all
PNP and PV sera showed IgG reactivity
against Dsg3, which is in line with
previous findings (Amagai et al., 1998;
Futei et al., 2003; Mentink et al., 2007).
In contrast, only 2 out of 15 (13.3%)
PNP sera exhibited IgG reactivity
against Dsg1 (Figure 1a), whereas 13
out of 24 (54.2%) PV sera reacted with
Dsg1 (Figure 1b). In addition, PNP
(Figure 1a), but not PV sera (Figure 1b)
contained IgG, and in one case IgA
autoantibodies (Figure 1c), directed
against Dsc, of which Dsc3 (8/15) was
the most common antigen. In addition,
five PNP sera showed IgA against Dsg3,
and three PNP sera exhibited IgA
reactivity against Dsg1 (Figure 1c).

In light of these findings, we sought to
identify potential differences in epitope
recognition of the Dsg3 ectodomain

Abbreviations: BP, bullous pemphigoid; Dsc, desmocollin; Dsg, desmoglein; EC, extracellular;
PF, pemphigus foliaceus; PNP, paraneoplastic pemphigus; PV, pemphigus vulgaris
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by IgG autoantibodies from PV and PNP
sera. Using recombinant forms of the
Dsg3 extracellular (EC) subdomains 1–5,
IgA and IgG autoantibodies from the
PNP sera were found to preferentially
recognize the COOH-terminal EC4 and
EC5 domains of Dsg3 (Figures 1d and e),
whereas the PV sera preferentially
showed IgG reactivity directed against
the NH2 terminus of Dsg3 (EC1 and EC2;
Figure 1f). These findings are in contrast
to previous observations that identified
the NH2-terminal EC domains of Dsg3
(EC1 and EC2) as the primary targets for
both PNP and PV sera (Futei et al.,
2003). The reason for this discrepancy
may be that the authors of the previous
study used domain-swapped molecules
of Dsg3 and Dsg1 in a competition
ELISA, whereas we used Dsg3 recombi-
nants that represented only distinct Dsg3
subdomains (Muller et al., 2008).

Several PNP sera also recognized the
EC domain of Dsc3 (Figure 1a). This
observation is of particular interest as
several authors recently demonstrated
the importance of the adhesive function
of Dsc for the integrity of the epidermis,
and reported that loss of Dsc function

results in impaired cell–cell adhesion
leading to intraepidermal blistering
(Spindler et al., 2009; Rafei et al.,
2011). Furthermore, these results con-
firm previously published data of our
group and others showing that Dsc-
specific IgG or IgA autoantibodies are
exclusively detected in paraneoplastic,
atypical, and IgA pemphigus (Hisamatsu
et al., 2004; Muller et al., 2009).

Antibodies of the IgG isotype pre-
dominate in several autoimmune dis-
eases; IgG1 autoantibodies have been
associated with the pathogenesis of BP,
whereas IgG4 is the major autoantibody
isotype in pemphigus (Mihai et al.,
2007). In the studied PNP sera, IgG1
reactive with Dsg3 was detectable in
100% of the sera, whereas IgG2 was
found in 33.3%, IgG3 in 53.3%, and
IgG4 in 26.6% of the sera (Figure 1g).
These results are in line with a previous
study demonstrating a predominance of
IgG1 in PNP and IgG4 autoantibodies
in PV sera (Futei et al., 2003). As IgG1
is a potent recruiter and activator of
leukocytes and possesses a high blister-
inducing capacity, it is tempting to
speculate that the more severe

course seen in PNP compared with PV
may at least in part be explained by
different IgG autoantibody subclasses
involved.

Recently, it has been shown that
autoantibodies of the IgE class are
associated with acute-onset PV and
have been previously also linked to
the pathogenesis of BP (Fairley et al.,
2007). As PNP clinically shares features
of PV and BP, we sought to identify IgE
autoantibodies in the studied PNP sera
(for details see Supplementary Material
online). However, neither IgE reactivity
against Dsg1/3 nor against Dsc1-3 or
BP180/BP230 was detected in the PNP
sera (data not shown).

Finally, we were interested in
whether a correlation between the
clinical manifestation of PNP (Table 1)
and individual autoantibody profiles
exists. However, we were unable to
detect any relationship between clinical
signs and defined autoantibody patterns.

In summary, the present study de-
monstrates that, in PNP, IgG autoanti-
bodies show a distinct autoanti-
body profile that is characterized by
(1) IgG reactivity against the major

Table 1. Clinical features of investigated PNP patients

Mucosal lesions Skin lesions

Patient

no.

Age

(years) Sex Oral Ocular

Flaccid

vesicles Lichenoid Multiforme

Pulmonary

involvement Underlying malignancy

1 43 M + + + � � + Follicular lymphoma

2 56 F + � � � � + Epitheloid leiomyosarkoma

3 49 F + � + + � � Low-grade NHL

4 61 M + + + � � � Malignant fibrohistiocytoma

5 57 M + � + � � � NHL

6 86 M + � + � � � Larynx-Ca

7 70 M + � + + � � Follicular NHL

8 78 M + � + � + � Large B-cell NHL

9 65 M + + + � � � Low-grade B-cell NHL

10 57 F + � + + � � Leukemia

11 42 F + + � � � + Castleman tumor

12 69 M + + + � � � Low-grade B-cell NHL

13 Ø Ø Ø Ø Ø Ø Ø Ø Ø

14 Ø Ø Ø Ø Ø Ø Ø Ø Ø

15 46 F + + + � + � Follicular NHL

Abbreviations: F, female; M, male; NHL, non-Hodgkin lymphoma; PNP, paraneoplastic pemphigus.
Ø, clinical data not available/accessible.
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target antigens of pemphigus, Dsg3 and
Dsg1, (2) preferential recognition of the
COOH terminus of the Dsg3 ectodo-
main (in contrast to PV sera which
preferentially target the NH2-terminus),
(3) occasional recognition of Dsc1, 2,
and 3 (which were not found in PV sera),
and (4) IgG1 as the dominant autoanti-
body subclass. Our findings may help
distinguish PNP from other pemphigus
variants by the autoantibody profile and
may provide new insight into the
relative role of IgG autoantibody profiles
in the pathogenesis of PNP.
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Figure 1. The autoantibody profiles of paraneoplastic pemphigus (PNP) and pemphigus vulgaris (PV)

sera differ fundamentally. Sera of PNP and PV patients with acute disease were analyzed with regard to

IgG and IgA reactivities against desmoglein 3 (Dsg3) and Dsg1 and desmocollins (Dsc) 1–3 (IgG: a, b; IgA:

c, d), IgA and IgG reactivity against Dsg3 subdomains (d, e, f), and IgG autoantibody subclasses (g).

Reactivity was measured at an optical density of 405 nm (OD¼ 405 nm); the cutoff value was set at a

protein index value (PIV) of 7.2 (dotted line). For details see Supplementary Materials online.
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TO THE EDITOR
Dominant dystrophic epidermolysis
bullosa (DDEB) is a blistering disease
of the skin and mucosae, in which
mutant type VII collagen monomers
exert dominant-negative interference
on normal a1(VII) chains upon homo-
trimer assembly (Burgeson, 1993). Spe-
cific inhibition of the mutant mRNA has
been achieved recently in other domi-
nant skin disorders, including epidermo-
lysis bullosa simplex and pachyonychia
congenita, using small interfering RNAs
(siRNAs) targeting mutations in the
keratin 5 and the keratin 6A genes,
respectively (Hickerson et al., 2008;
Atkinson et al., 2011). We have inves-
tigated allele-specific RNA interference
as a new therapeutic approach for
DDEB, by targeting in-frame skipping
of exon 87 (D87) of COL7A1 (OMIM
*120120) caused by several intronic or
exonic mutations, some of which are
recurrent mutations, underlying DDEB
pruriginosa (Supplementary Table S1
online; Sakuntabhai et al., 1998; Mel-
lerio et al., 1999; Covaciu et al., 2011).

We developed a fluorescence-based
screen for siRNAs selectively blocking
the mutant mRNA, using cultured cells
transfected with a plasmid vector encod-
ing either the mutant (COL7A1D87) or
wild-type (COL7A1WT) mRNA upstream
of an internal ribosome entry site (IRES)-
firefly luciferase reporter (Figure 1a).

The abnormal exon 86–exon 88 splice
junction was scanned with 21 siRNAs;
some were 50-end modified to increase
efficiency (Grimm, 2009; Figure 1b).
Positive (siwt, targeting COL7A1 exon
22) and negative control (NC) siRNAs
were used in parallel at 1–10 nM with no
observed dose effect (data not shown).
Eleven siRNAs, siCOL7D87mut3, �9 to
�11, �14 to �19, and �21, displayed
over 40% inhibition of COL7A1D87

(Figure 1c).
Best differential inhibition was ob-

served with siCOL7D87mut3, 45%
(1 nM), and siCOL7D87mut18, 55%
(2 nM), versus 14% inhibition of CO-
L7A1WT. High specificity for the mutant
mRNA was confirmed by transfecting
these siRNAs into fibroblasts and kera-
tinocytes from patients carrying a D87
mutation, NM_000094.3:c.6900þ
4A4G (Drera et al., 2006); mRNA
extinction was measured by D87-spe-
cific PCR amplification (Figure 2). The
positive control siRNA achieved 55%
inhibition of COL7A1WT or COL7A1D87

mRNA (Figure 2a and b), whereas the
NC siRNA had no significant effect. In
patient fibroblasts, siCOL7D87mut3
inhibited COL7A1D87 by 38% (1 nM),
36% (2nM), 31% (5nM), and 41% (10nM),
versus 2–8% COL7A1WT inhibition in
healthy control fibroblasts (Figure 2b).
In patient keratinocytes, COL7A1D87

extinction by siCOL7D87mut3 was 38,

58, 45, and 54%, respectively. Conversely,
no depression but enhancement of
COL7A1WT levels was observed in
healthy control keratinocytes, consis-
tent with luciferase assay data (Figure 1).
siCOL7D87mut18 inhibited COL7A1D87

by 47% (1 nM), 58% (2 nM), 54% (5 nM),
and 65% (10 nM) in patient fibroblasts,
and by 53, 41, 35, and 52%, respec-
tively, in patient keratinocytes. Ex-
periments on healthy control cells
showed no significant reduction of
COL7A1WT levels by siCOL7D87-
mut18 (Figure 2c).

siCOL7D87mut18, which shows the
strongest specific COL7A1D87 inhibition,
carries a 50-terminal amine modifica-
tion of the sense strand to promote
antisense strand incorporation into the
RNA-induced silencing complex (RISC).
siRNA duplex thermodynamics deter-
mine which strand enters RISC as the
guide strand, and only the antisense
strand can direct cleavage of the sense
mRNA targets (Khvorova et al., 2003).
Avoidance of off-target effects (Grimm,
2009) is another potential benefit of
sense-strand suppressive modification,
which was not specifically addressed
here.

Earlier studies of allele-specific siR-
NAs targeting keratin or collagen genes
achieved 70–95% inhibition of the
mutant allele (Hickerson et al., 2008;
Lindahl et al., 2008; Atkinson et al.,
2011). The structure of the target mRNA
could explain the difficulty in achieving
similarly high inhibitory activity and
specificity here. First, the G/C content
of the D87 region attains 68–73%,

Abbreviations: COL7A1D87, COL7A1 mRNA with deleted exon 87; COL7A1WT, wild-type COL7A1
mRNA; DDEB, dominant dystrophic epidermolysis bullosa; D87, in-frame skipping of COL7A1 exon 87;
IRES, internal ribosome entry site; NC, negative control siRNA; RISC, RNA-induced silencing complex;
siRNA, small interfering RNA; siwt, positive control siRNA; WT, wild type
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