
Theoretical Computer Science 289 (2002) 137–163
www.elsevier.com/locate/tcs

Canonical derivatives, partial derivatives and #nite
automaton constructions

J.-M. Champarnaud, D. Ziadi
Universit	e de Rouen, LIFAR, Place E Blondel, F-76821 Mont-Saint-Aignan Cedex, France

Received July 1999; received in revised form April 2001; accepted May 2001
Communicated by M. Nivat

En hommage 2a Valentin Antimirov

Abstract

Let E be a regular expression. Our aim is to establish a theoretical relation between two
well-known automata recognizing the language of E, namely the position automaton PE con-
structed by Glushkov or McNaughton and Yamada, and the equation automaton EE constructed
by Mirkin or Antimirov. We de#ne the notion of c-derivative (for canonical derivative) of a
regular expression E and show that if E is linear then two Brzozowski’s derivatives of E are
aci-similar if and only if the corresponding c-derivatives are identical. It allows us to repre-
sent the Berry–Sethi’s set of continuations of a position by a unique c-derivative, called the
c-continuation of the position. Hence the de#nition of CE , the c-continuation automaton of E,
whose states are pairs made of a position of E and of the associated c-continuation. If states
are viewed as positions, CE is isomorphic to PE . On the other hand, a partial derivative, as
de#ned by Antimirov, is a class of c-derivatives for some equivalence relation, thus CE reduces
to EE . Finally CE makes it possible to go from PE to EE , while this cannot be achieved directly
(from the state graphs). These theoretical results lead to an O(|E|2) space and time algorithm to
compute the equation automaton, where |E| is the size of the expression. This is the complexity
of the most eBcient constructions yielding the position automaton, while the size of the equation
automaton is not greater and generally much smaller than the size of the position automaton.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Regular expressions; Finite automata; Derivatives

1. Introduction

This work #rst enlightens the relation between two fundamental automata, both non-
deterministic and obtained from a regular expression:

E-mail addresses: champarnaud@dir.univ-rouen.fr (J.-M. Champarnaud), ziadi@dir.univ-rouen.fr
(D. Ziadi).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00267 -5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82429319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

138 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

(1) the position automaton, which is constructed by the classical algorithms of
Glushkov [8] and of McNaughton and Yamada [11],

(2) the equation automaton, which is the result of the method of Mirkin [12] based on
the notion of prebase, and of the algorithm of Antimirov [2] based on the notion
of partial derivative.

Our theoretical contribution is the de#nition and the construction of a third automa-
ton, which is both isomorphic to the position automaton by a natural projection and
isomorphic to the equation automaton by a quotient construction. Let us point out
that there is no state equivalence (in terms of graphs) leading to the latter isomor-
phism.

We extend the study of Berry and Sethi [4] who have characterized the Brzozowski’s
derivatives [5] of a linear expression. We introduce the notion of canonical derivative,
c-derivative for short, of a regular expression E, in order to compute canonical repre-
sentatives of the sets of the aci-similar Brzozowski’s derivatives of a linear expression.
Thus the Berry–Sethi’s set of continuations of a position is represented by a unique
c-derivative, called the c-continuation of the position.

We give a constructive de#nition of c-derivatives and prove several facts, in partic-
ular: (1) the Brzozowski’s derivatives of a linear expression w.r.t. two words u and
v are aci-similar if and only if the c-derivatives w.r.t. u and v are identical; (2) any
non-zero c-derivative of E is either 1 or a subexpression of E or a concatenation of
several subexpressions; (3) there exists a surjective mapping from the set of the non-
zero c-derivatives of the linearized version of a regular expression E onto the set of
the partial derivatives of E.

These theoretical results lead to the de#nition of the c-continuation automaton, whose
states are pairs made of a position added with the associated c-continuation, and they
allow us to prove that this automaton can be viewed as the position automaton and
that it reduces to the equation automaton.

This work secondly yields the following algorithmic result: the equation automaton of
a regular expression E can be computed with an O(|E|2) space and time complexity. Let
us recall the O(‖E‖2|E|2) worst-case time complexity 1 of the algorithm described by
Antimirov in [2]. It is well known that the number of states of the equation automaton
is less than or equal to the number of states of the position automaton (and can be
much smaller). Hence the interest of the new algorithm we present here: (1) it has the
same complexity as the most eBcient constructions of the position automaton, and (2)
its result has at worst as many states as the position automaton.

Section 2 recalls some useful notations, de#nitions and classical results of automaton
theory.

In Section 3 we give the de#nition of the c-derivative of a regular expression and
we present the properties of the c-derivatives of linear expressions, in relation with the

1 Actually, this complexity only covers the computation of the set of states. As explained in Section 7,
the whole Antimirov construction is in O(‖E‖3|E|2) time complexity.

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 139

Brzozowski’s derivatives and the Berry–Sethi’s continuations. As a result we provide
the de#nition of the c-continuation automaton of a regular expression.

In Section 4 we show that the c-continuation automaton is isomorphic to the position
automaton, as far as its states, which are pairs made of a position added with the
corresponding c-continuation, are viewed as positions.

Section 5 recalls the de#nition and properties of partial derivatives and the de#ni-
tion of the equation automaton as constructed by the partial derivative algorithm. The
relation between c-derivatives and partial derivatives is established.

In Section 6 we show that the c-continuation automaton reduces to the equation
automaton, two states being equivalent if and only if the associated c-continuations
(de#ned over the position alphabet) are identical on the initial alphabet.

Section 7 presents the sketch of the Algorithm CtoE3 which builds the c-continuation
automaton with an O(‖E‖ · |E|2) space and time complexity. It is based on speci#c
procedures which compute (1) the list of the c-continuations associated to positions,
(2) the equivalence classes on the set of c-continuations, and (3) the set of transitions of
the c-continuation automaton. Some re#nements leading to an O(|E|2) space and time
complexity construction of the equation automaton are also provided. These algorithmic
results are compared to previous ones and discussed.

2. Preliminaries

We #rst recall some de#nitions, basic notions and terminology concerning regular
languages, regular expressions, #nite automata and derivatives. For further details about
these topics, we refer to classical books [3, 9] or handbooks [14].

2.1. Regular expressions and languages

Let � be a non-empty #nite set of symbols, called the alphabet. The set of all the
words over � is denoted by �∗. The empty word is denoted by �. A language over �
is a subset of �∗.
Regular expressions over an alphabet � and regular languages they denote are

inductively de#ned as follows:
(1) 0 is a regular expression denoting the language L(0) = ∅.
(2) 1 is a regular expression denoting the language L(1) = {�}.
(3) a, for all a∈�, is a regular expression denoting the language L(a) = {a}.
Let F (resp. G) be a regular expression denoting the language L(F) (resp. L(G)). Then
we have:
(4) (F + G) is a regular expression denoting the language L(F + G) =L(F)∪L(G).
(5) (F ·G) is a regular expression denoting the language L(F ·G) =L(F)L(G).
(6) (F∗) is a regular expression denoting the language L(F∗) = (L(F))∗.
A regular expression over the alphabet � is a term of the algebra de#ned over the set
�∪{0; 1}, with the symbols of function ∗;+; · , where ∗ is unary and + and · are

140 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

binary. Properties of the constants 0 and 1, and of the operators ∗, + and · lead to iden-
tities on this algebra. The following equations are classically used: 0 + E=E=E + 0,
1 ·E=E=E · 1, 0 ·E= 0 =E · 0. Associativity, commutativity and idempotency prop-
erties of the + operation, called aci-rules, are captured by the notion of similarity of
two expressions introduced by Brzozowski [5]: two regular expressions F and G are
said to be aci-similar (F ∼aci G) if and only if they reduce to the same expression
by applying aci-rules. We shall write: F ≡G if two regular expressions are identical
(following Mirkin [12], E and F “graphically coincide”).

We shall use the following de#nition:

�(E) =
{

1 if �∈L(E);
0 otherwise:

2.2. Finite automata and recognizable languages

Let � be a #nite alphabet. A 9nite automaton over � is a 5-tuple M= (Q;�; I; T; E)
where Q is a set of states, I is a subset of Q whose elements are the initial states, T
is a subset of Q whose elements are the 9nal states, and E is a subset of the Cartesian
product Q×�×Q whose elements are the edges.

Let M= (Q;�; I; T; E) be an automaton. The automaton M is deterministic if there
is only one initial state and if for all (q; a)∈Q×� there is at most one state q′ such
that (q; a; q′)∈E. M is said to be a DFA if it is deterministic and a NFA otherwise.
We shall write M= (Q;�; i; T; E) for an automaton with a unique initial state i. Edges
are also called transitions and can be represented by a transition function � from Q×�
to Q when M is a DFA, and from Q×� to 2Q when M is a NFA.

A path of M is a sequence (qi; ai; qi+1), i= 1; : : : ; n, of consecutive edges. Its label
is the word w= a1a2 : : : an. A word w= a1a2 : : : an is recognized by the automaton
M if there exists a path with label w such that q1 ∈ I and qn+1 ∈T . The language
recognized by the automaton M is the set of words which it recognizes. A language
L is recognizable if and only if there exists a #nite automaton whose language is L.
Kleene’s theorem [10] states that the set Rat(�∗) of regular languages over � and the
set Reg(�∗) of recognizable languages over � are equal.

2.3. Linear expressions

Let E be a regular expression over the alphabet �E . The alphabetic width of E,
denoted by ‖E‖, is the number of occurrences of symbols in E. E is said to be linear
over �E if and only if every symbol of �E occurs (at most) one time in E. For all j
in [1; ‖E‖], if x is the jth occurrence of symbol in E, then the pair (x; j) is called a
position of E. By abuse of notation (x; j) is written xj. The set of positions of E is
denoted by PosE : PosE = {xj | x∈�E; j∈ [1; ‖E‖]}.

Let �′ be an alphabet of size ‖E‖, and ��′ a one-to-one mapping from PosE onto �′.
The expression E′ over �′ obtained from E by replacing symbol x of rank j by ��′(xj),
for all j in [1; ‖E‖], is called a linearization of E. Any linearization E′ is linear over

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 141

�′. The linearized version of E, denoted by QE, is its linearization over PosE . Let us
take for example E= a · (a+b)+(a+b) · (1+b). We have: PosE = {a1; a2; b3; a4; b5; b6},
and QE= a1 · (a2 + b3) + (a4 + b5) · (1 + b6).

Let hE be the alphabetic mapping from PosE to �E such that hE(xi) = x, ∀i∈ [1; ‖E‖],
and hE(QE)≡E. Then, for every linearization E′ over �′, hE′ = hE ◦ �−1

�′ is a mapping
from �′ to �E such that hE′(E′)≡E. In our current example, we have: hE(a1) = hE
(a2) = hE(a4) = a and hE(b3) = hE(b5) = hE(b6) = b.

For subexpressions F of E, we shall consider the two following linearizations. The
#rst one is the linearized version of the expression F whose alphabet is �F ⊆�E . In
our current example, F = (a+b)·(1+b) is a subexpression of E. The linearized version
of F is the expression QF = (a1 + b2) · (1 + b3) over the alphabet PosF = {a1; b2; b3}.
The alphabetic mapping hF is such that hF(a1) = a; hF(b2) = hF(b3) = b and hF(QF) =
(a+ b) · (1 + b) =F .

The second one is the subexpression of QE which corresponds to F . Let us denote
by PosE(F) the set of positions of E which occur in F . The subexpression FE of QE
whose set of symbols is PosE(F) is a linearization of F . More formally, FE is derived
from F as follows, where H is a subexpression of E:

F = 0 ⇒ FE = 0;

F = 1 ⇒ FE = 1;

F = a; PosE(F) = {ai} ⇒ FE = ai;

H = F + G ⇒ HE = FE + GE;

H = F · G ⇒ HE = FE · GE;
H = F∗ ⇒ HE = FE

∗
:

The mapping hE maps PosE(F) onto �F and is such that: hE(FE) =F . In our current
example, if F = (a + b) · (1 + b), then FE = (a4 + b5) · (1 + b6) over the alphabet
PosE(F) = {a4; b5; b6}. The mapping hE is such that hE(a4) = a, hE(b5) = hE(b6) = b
and hE(FE) = (a+ b) · (1 + b) =F .

Let PosF = {xj | x∈�E; j∈ [1; ||F ||]}. Let yk+1 be the #rst position of E occurring
in F . We have PosE(F) = {yk+j |y∈�E; j∈ [1; ||F ||]} and y= hE(yk+j) = hF(xj) = x;
∀j∈ [1; ||F ||]. The one-to-one mapping �F from PosE(F) onto PosF is de#ned by
�F(yk+j) = xj; ∀j∈ [1; ||F ||]. We have: �F(FE) = QF . In our current example, �F(FE) =
�F((a4 + b5) · (1 + b6)) = (a1 + b2) · (1 + b3) = QF .

2.4. Word derivatives

Word derivatives of regular expressions have been introduced by Brzozowski in [5].

De�nition 1 (symbol derivative). Given a regular expression E and a symbol a, the
derivative of E w.r.t. a, written a−1E, is recursively de#ned on the structure of E as

142 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

follows: 2

a−10 = 0; (1)

a−11 = 0; (2)

a−1x = 1 if a = x 0 otherwise; (3)

a−1(F + G) = a−1F + a−1G; (4)

a−1(F · G) =
{
a−1F · G if �(F) = 0;
a−1F · G + a−1G otherwise;

(5)

a−1(F∗) = a−1F · F∗: (6)

De�nition 2 (word derivative). Derivatives w.r.t. a symbol can be extended to deriva-
tives w.r.t. a word u= u1 : : : un in the following way:

�−1E = E; (7)

(u1 : : : un)−1E = (u2 : : : un)−1(u−1
1 E): (8)

More generally, we shall use the equation

(ps)−1E = s−1(p−1E); (9)

which holds for every factorization u=ps.
Let D(E) be the quotient of the set of all derivatives of a regular expression E

modulo the aci-equivalence relation.

Theorem 1 (Brzozowski [5]). Let E be a regular expression. The set D(E) of deriva-
tives modulo aci-equivalence is 9nite.

This result leads to the de#nition of the Brzozowski deterministic automaton BE ,
whose states are the derivatives of E modulo aci-equivalence. This automaton recog-
nizes L(E) [5].

De�nition 3 (Brzozowski automaton). The Brzozowski automaton of a regular expres-
sion E; BE = (Q;�; i; T; �), is de#ned by
• Q=D(E),
• i= [E],
• T = {[d]∈D(E) | �(d) = 1},
• �([d]; a) = [a−1(d)]; ∀[d]∈Q and ∀a∈�.

2 Eq. (5) takes into account the remark of Antimirov [2] about original equations.

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 143

3. From word derivatives to c-derivatives

We #rst recall speci#c properties of word derivatives of linear expressions leading
to the de#nition of Berry–Sethi’s continuations. We then introduce the notion of c-
derivative which makes it possible to compute a canonical representative from a set of
continuations.

3.1. Word derivatives of a linear expression

As far as linear expressions are concerned, subexpressions F and G have disjoint
alphabets, hence a speci#c computation of word derivatives in the case when E is a
sum or a concatenation.

Proposition 1. For a linear expression E; the derivative of E by a symbol a can be
computed by the following equations:

a−10 = 0; (10)

a−11 = 0; (11)

a−1x = 1 if a = x 0 otherwise; (12)

a−1(F + G) =

a−1F if a ∈ �F;
a−1G if a ∈ �G;
0 otherwise;

(13)

a−1(F · G) =

a−1F · G if a ∈ �F;
�(F) · a−1G if a ∈ �G;
0 otherwise;

(14)

a−1(F∗) = a−1F · F∗: (15)

Proposition 2 (Berry and Sethi [4]). The derivative u−1E of a linear regular expres-
sion E w.r.t. a word u of �+ is such that

u−10 = 0; (16)

u−11 = 0; (17)

u−1a =

{
1 if u = a;

0 otherwise;
(18)

u−1(F + G) =

u−1F if u ∈ �+

F ;
u−1G if u ∈ �+

G;
0 otherwise;

(19)

144 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

u−1(F · G) =

u−1F · G if u ∈ �+

F ;∑
u=ps; s �=� �(p

−1F) · s−1G otherwise;
(20)

u−1(F∗) =
∑

u=ps; s �=�
(s · s−1F · F∗ where (s ∈ {0; 1}: (21)

3.2. Continuations in a linear expression

For every symbol a of a linear expression E, the non-zero expressions (ua)−1E,
where u is any word of �∗, are called continuations of a in E. We denote by Ca(E)
the set of the continuations of a in E.

Theorem 2 (Berry and Sethi [4]). For every symbol a of a linear expression E; the
continuations of a in E are aci-similar.

This result leads to the de#nition of the Berry–Sethi nondeterministic automaton
BSE of a regular expression E. Its set of states is PosE ∪{0}, where 0 is not in
PosE . Its transitions are produced by the computation of the (sets of) continuations
Cx(QE). This automaton recognizes L(E). In the following we shall use the notation
C0(QE) = {�−1 QE}= { QE}.

De�nition 4 (Berry–Sethi automaton). The Berry–Sethi automaton of a regular ex-
pression E, BSE = (Q;�; i; T; �), is de#ned by
• Q=PosE ∪{0},
• i= 0,
• T = {x |C ∈Cx(QE)⇒ �(C) = 1},
• �(x; a) = {y | h(y) = a and C ∈Cx(QE)⇒y−1C ∈Cy(QE)}; ∀x∈Q and ∀a∈�.

Notice the number of states of the automaton B QE is less than or equal to the number
of states of BS QE , since the continuations of a given symbol in QE may be similar to
E or=and to the continuations of other symbols.

Notice that the above de#nition involves sets of continuations Cx(QE). The reason
is that Berry and Sethi do not associate a speci#c continuation to a state: they say
that the continuation of a in E refers to some expression in the equivalence class.
We make this point more explicit in the next section by actually computing canonical
representatives of the continuation sets, which allows us to substitute identity tests to
similarity tests.

3.3. De9nition of c-derivatives

De�nition 5 (c-derivative w.r.t. a symbol). Given a regular expression E and a sym-
bol a, the c-derivative of E w.r.t. a, written daE, is de#ned by

da(0) = 0; (22)

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 145

da(1) = 0; (23)

da(x) =
{

1 if a = x;
0 otherwise;

(24)

da(F + G) =
{
da(F) if da(F) �= 0;
da(G) otherwise;

(25)

da(F · G) =
{
da(F) · G if da(F) �= 0;
�(F) · da(G) otherwise;

(26)

da(F∗) = da(F) · F∗: (27)

Proposition 3. Let E be a linear expression. Then for all a∈�; one has
da(E) ≡ a−1E:

Proof. The proof directly derives from Proposition 1.

De�nition 6 (c-derivative w.r.t. a word). C-derivatives w.r.t. a symbol can be
extended to c-derivatives w.r.t. a word u= u1 : : : un as follows:

d�(E) = E; (28)

du1 :::un(E) = du2 :::un(du1 (E)): (29)

More generally, we shall use the equation

dps(E) = ds(dp(E)) (30)

which holds for every factorization u=ps.

Proposition 4. The c-derivative du(E) of a linear expression E w.r.t. a word u of �+

is either 0 or such that

du(u) = 1; (31)

du(F + G) =

{
du(F) if du(F) �= 0;

du(G) otherwise;
(32)

du(F · G) =

{
du(F) · G if du(F) �= 0;

ds(G) otherwise (s �= � is some suffix of u);
(33)

du(F∗) = ds(F) · F∗(s �= � is some suffix of u): (34)

Proof. The proof is by induction on the length of u and on the structure of E. The
proposition is true for the c-derivative of every linear expression E w.r.t. every symbol
a, by Proposition 3. We suppose that the proposition is satis#ed for the c-derivative of

146 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

every linear expression w.r.t. every word u of length less than n; n¿1, and we prove
it is satis#ed for words of length less than n+ 1.
Case E=F + G. By inductive hypothesis, we have

du(F + G) =

{
du(F) if du(F) �= 0;

du(G) otherwise:

By de#nition (30), it implies

dua(F + G) =

{
dua(F) if du(F) �= 0;

dua(G) otherwise:

Since �F ∩�G = ∅, it implies that dua(F + G) is either 0 or such that:

dua(F + G) =
{
dua(F) if dua(F) �= 0;
dua(G) otherwise:

Proof is similar in the case when E=F ·G or E=F∗.

Proposition 5. Let E be a linear expression. Then for all u∈�∗; one has

du(E) ∼aci u−1E:

Proof. It is easy to proof that du(E) = 0 if and only if u−1E∼aci 0. In the following we
assume that du(E) �= 0. The proof is by induction on the structure of E. Let u= u1 : : : un.
For the base cases where |E|= 1; du(E) and u−1E are simultaneously equal to 0 or 1.
Thus the proposition is true for base cases. For the induction step, we must examine
three cases and make use of Eqs. (16)–(21) and (31)–(34).
Case 1: E=F +G. If du(F) �= 0, then we have du(E) =du(F) and du(G) = 0. From

the inductive hypothesis du(F)∼aci u−1F . Hence du(E)∼aci u−1E. The proof is similar
in the case when du(F) = 0.
Case 2: E=F ·G. If du(F) �=0, then we have du(E) =du(F) ·G and u−1E= u−1F ·G.

From the inductive hypothesis, du(F)∼aci u−1F . Hence du(E)∼aci u−1E. If du(F) = 0,
then there exists a suBx s of u such that du(E) =ds(G). From the inductive hypothesis,
ds(G)∼aci s−1G. It implies that u−1E is a non-zero sum: it contains s−1G and possibly
expressions equivalent to s−1G. Hence du(E)∼aci u−1E.
Case 3: E=F∗. There exists a suBx s of u such that du(E) =ds(F) ·F∗. From the

inductive hypothesis, ds(F)∼aci s−1F . Thus ds(F) ·F∗ ∼aci s−1F ·F∗. It implies that
u−1E is a non-zero sum: it contains s−1F ·F∗ and possibly expressions equivalent to
s−1F ·F∗. Hence du(E)∼aci u−1E.

Example 1. Consider the linear expression E= (a∗ + b)∗. In this example we can see
that da(E) = a−1E and that daa(E)∼aci (aa)−1E.

da((a∗ + b)∗) = da(a∗ + b)(a∗ + b)∗ = da(a∗)(a∗ + b)∗

= da(a)a∗(a∗ + b)∗ = a∗(a∗ + b)∗;

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 147

a−1(a∗ + b)∗ = (a−1(a∗ + b))(a∗ + b)∗ = (a−1a∗)(a∗ + b)∗

= (a−1a)a∗(a∗ + b)∗ = a∗(a∗ + b)∗;

daa((a∗ + b)∗) = da(a∗(a∗ + b)∗) = da(a∗)(a∗ + b)∗

= da(a)a∗(a∗ + b)∗ = a∗(a∗ + b)∗;

(aa)−1(a∗ + b)∗ = a−1(a∗(a∗ + b)∗)

= (a−1a∗)(a∗ + b)∗ + a−1(a∗ + b)∗

= (a−1a)a∗(a∗ + b)∗ + a∗(a∗ + b)∗

= a∗(a∗ + b)∗ + a∗(a∗ + b)∗:

Theorem 3. Let E be a linear expression over an alphabet �. For all u; v∈�∗; one
has

u−1E ∼aci v−1E ⇔ du(E) ≡ dv(E):

Proof. (⇐) The proof is obvious.
(⇒) The proof is by induction on the number of operators in E. Let us #rst consider

the case of zero derivatives. Let u; v in �∗ be such that u−1E∼aci 0 and u−1E∼aci v−1E.
It implies v−1E∼aci 0 and du(E)≡ 0≡dv(E). Thus we shall assume now that E �= 0 and
we shall only consider cases when u−1E �= 0. The base cases are E= 1 and a for some
a in �.
Case E= 1: Let u; v in �∗ be such that u−11∼aci v−11. By (17) u−11 �= 0 and

v−11 �= 0 imply that u= v= � and u−11 = v−11 = 1. Since u= v= � implies du(1) =dv
(1) = 1, we get: u−11∼aci v−11⇒du(1)≡dv(1).
Case E= a; a in �: Let u; v in �∗ be such that u−1a∼aci v−1a. By (18) it im-

plies that either u−1a= v−1a= a if u= v= �, or u−1a= v−1a= 1 if u= v= a. By
(31) we have du(a) =dv(a) = a if u= v= �, or du(a) =dv(a) = 1 if u= v= a. Thus
u−1a∼aci v−1a⇒du(a)≡dv(a).

For the induction step there are three cases depending on the structure of E.
Case 1: E=F + G. Let u; v in �∗ be such that u−1(F + G)∼aci v−1(F + G). By
Proposition 5, we have: du(F + G)∼aci dv(F + G). We consider four sub-cases: (a)
du(F) �= 0; dv(F) �= 0, (b) du(F) �= 0; dv(F) = 0, (c) du(F) = 0; dv(F) �= 0, and (d)
du(F) = 0; dv(F) = 0. We limit ourselves to the sub-cases (a) and (b); proof for (c)
and (d) can be done in a similar way. In the sub-case (a), du(F + G) =du(F) and
dv(F + G) =dv(F). By Proposition 5 we have du(F)∼aci u−1F and dv(F)∼aci v−1F .
Since du(F + G)∼aci dv(F + G), we get u−1F ∼aci v−1F and by the inductive hypoth-
esis du(F)≡dv(F).

In the sub-case (b), by a similar way we get that u−1F ∼aci v−1G. Since �F ∩�G = ∅;
u−1F ∼aci v−1G implies u−1F = 1 = v−1G. Consequently du(F) = 1 =dv(G).

148 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

Case 2: E=F ·G. Let u; v in �∗ be such that u−1(F ·G)∼aci v−1(F ·G). By Propo-
sition 5 we have: du(F ·G)∼aci dv(F ·G).

We must consider the same four sub-cases as in Case 1. We limit ourself to the
sub-cases (a) and (b); proofs for (c) and (d) can be done in a similar way.

In the sub-case (a), we have du(F ·G) =du(F) ·G and dv(F ·G) =dv(F) ·G. Thus
we get that du(F) ·G∼aci dv(F) ·G, which implies by Proposition 5 that u−1F ·G∼aci

v−1F ·G. Hence u−1F ∼aci v−1F . Applying the inductive hypothesis on F we get
du(F)≡dv(F). Thus du(F) ·G≡dv(F) ·G.

In the sub-case (b), by a similar way we get that there exists a suBx s of v
such that u−1F ·G∼aci s−1G. Since �F ∩�G = ∅, we have u−1F ∼aci 1, which implies
that du(F)≡ 1 and s−1G∼aci G. Since we have �−1G=G, it comes ds(G)≡G. Hence
du(F) ·G≡ds(G).
Case 3: E=F∗. Using Proposition 5 and Eq. (34) we get u−1F∗ ∼aci du(F∗) =ds(F)·

F∗ ∼aci s−1F ·F∗ and v−1F∗ ∼aci du(F∗) =dt(F) ·F∗ ∼aci t−1F ·F∗ for some suBxes s
of u and t of v. Then u−1F∗ ∼aci v−1F∗ is equivalent to s−1F ·F∗ ∼aci t−1F ·F∗. From
the inductive hypothesis on F we get ds(F) ·F∗ ∼aci dt(F) ·F∗. Thus du(F∗)≡dv(F∗).

Theorem 4. If E is linear; for every symbol a and every word u; the c-derivative
dua(E) of E w.r.t. the word ua is either 0 or unique.

Proof. This theorem is a straightforward consequence of Theorems 2 and 3.

Theorem 4 allows us to de#ne ca(E), the c-continuation of a in E, which is the
unique value of the non-zero c-derivatives dua(E). From Proposition 4, we get the
following equations:

Proposition 6. For every symbol a of a linear expression E; the c-continuation ca(E)
is such that

ca(a) = 1; (35)

ca(F + G) =

{
ca(F) if ca(F) �= 0;

ca(G) otherwise;
(36)

ca(F · G) =

{
ca(F) · G if ca(F) �= 0;

ca(G) otherwise;
(37)

ca(F∗) = ca(F) · F∗: (38)

Corollary 5. For every symbol a of a linear expression E; the c-continuation ca(E)
is either 1 or a subexpression of E or a product of subexpressions.

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 149

3.4. De9nition of the c-continuation automaton

Let E be a regular expression over �, QE the linearized version of E over PosE and
h the mapping from PosE onto �. We assume that 0 is a symbol not in PosE . Let
c0(QE) =d�(QE) = QE.

Theorem 4 leads to the de#nition of the non-deterministic automaton CE , called the
c-continuation automaton of E. The states are pairs (x; cx(QE)) with x in PosE ∪{0}.
The transitions are produced by the computation of c-continuations.

De�nition 7 (c-continuation automaton). The c-derivative automaton of E; CE = (Q;
�; i; T; �); is de#ned by
• Q= {(x; cx(QE)) | x∈PosE ∪{0}};
• i= (0; c0(QE));
• T = {(x; cx(QE)) | �(cx(QE)) = 1};
• �((x; cx(QE)); a) = {(y; cy(QE)) | h(y) = a and dy(cx(QE))≡ cy(QE)}; ∀x∈PosE ∪{0} and

∀a∈�.

Example 2. Consider the regular expression E= x∗(xx+y)∗. The linearized version of
E is QE= x∗1 (x2x3 + y4)∗. The states of the c-continuation automaton of E are

d�(QE) = QE = x∗1 (x2x3 + y4)∗ = c0;

dx1 (QE) = dx1 (x
∗
1 (x2x3 + y4)∗) = dx1 (x

∗
1)(x2x3 + y4)∗

= dx1 (x1)x∗1 (x2x3 + y4)∗ = x∗1 (x2x3 + y4)∗ = cx1 ;

dx2 (QE) = dx2 (x
∗
1 (x2x3 + y4)∗) = dx2 ((x2x3 + y4)∗)

= dx2 (x2x3 + y4)(x2x3 + y4)∗ = dx2 (x2x3)(x2x3 + y4)∗

= x3(x2x3 + y4)∗ = cx2 ;

dx3 (QE) = 0;

dy4 (QE) = dy4 (x
∗
1 (x2x3 + y4)∗) = dy4 ((x2x3 + y4)∗)

= dy4 (x2x3 + y4)(x2x3 + y4)∗ = dy4 (y4)(x2x3 + y4)∗

= (x2x3 + y4)∗ = cx4 ;

dx2x3 (QE) = dx3 (x3(x2x3 + y4)∗) = dx3 (x3)(x2x3 + y4)∗

= (x2x3 + y4)∗ = cx3 :

We can produce the transitions in a similar way, and we #nally get the following
automaton (Fig. 1):

The two next sections enlighten the interest of the CE automaton: #rst it coincides
with the position automaton of E as far as its states are viewed as positions, and

150 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

Fig. 1. The c-continuation automaton of x∗(xx + y)∗.

secondly it can be factored into the equation automaton if its states are viewed as
c-continuations.

4. Construction of the position automaton

Let E be a regular expression over �;PosE the set of its positions, QE its linearized
version over PosE , and h the mapping from PosE onto �. Let us consider the following
positions sets:
• First(E), the set of positions that match the #rst symbol of some word in L(QE).
• Last(E), the set of positions that match the last symbol of some word in L(QE).
• Follow(E; x), for all x in PosE : the set of positions that follow the position x in

some word of L(QE).

The position automaton PE of the regular expression E is derived from the above
position sets as follows.

De�nition 8 (position automaton). The position automaton of E; PE = (QP; �; iP; TP;
�P), is de#ned by
• QP =PosE ∪{0},
• iP = 0,

• TP =
{
Last(E) if �(E) = 0;
Last(E)∪{0} otherwise;

• �P(0; a) = {x∈F irst(E) | h(x) = a}; ∀a∈�,
• �P(x; a) = {y |y∈Follow(E; x) and h(y) = a}; ∀x∈PosE; ∀a∈�.

Example 3. Consider the regular expression E= x∗(xx+y)∗. The linearized version of
E is QE= x∗1 (x2x3 + y4)∗. We have
First(E)={x1; x2; y4}; Last(E)={x1; x3; y4}; �(E)=1 and Follow(E; x1)={x1; x2; y4};

Follow(E; x2) = {x3}; Follow(E; x3) =Follow(E; y4) = {x2; y4} (Fig. 2).

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 151

Fig. 2. The position automaton of x∗(xx + y)∗.

Proposition 7. The automaton PE recognizes the language L(E).

Proof is given in [8, 11] where the well-known construction of the position automaton
based on a recursive computation of the sets First, Last and Follow appeared #rst and
independently.

We now show that the computation of the c-continuations leads to a construc-
tion of the position automaton. We consider the automaton CE = (Q;�; i; T; �). Let
p :Q→PosE ∪{0} be such that p(x; cx(QE)) = x. The automaton p(CE) is obtained
from CE by replacing Q by PosE ∪{0}.

Theorem 6. Let E be a regular expression. The automaton p(CE); based on the
c-continuations of QE; and PE; the position automaton; are identical.

Proof. The automata p(CE) and PE have identical sets of states and identical ini-
tial states. As for #nal states and transitions, identity is a direct consequence of the
following proposition.

Proposition 8. Let E be a regular expression. Then the following equalities hold:
(1) F irst(E) = {y∈PosE |dy(QE) �= 0};
(2) Last(E) = {y∈PosE | �(cy(QE)) = 1};
(3) Follow(E; x) = {y∈PosE |dy(cx(QE)) �= 0}.

Proof. Let u and v be words in Pos∗E . From the de#nition of sets First; Last and
Follow, and from Proposition 5, we obtain

F irst(E) = {y ∈ PosE |yv ∈ L(QE)} = {y ∈ PosE | v ∈ y−1L(QE)}

= {y ∈ PosE | v ∈ L(y−1 QE)} = {y ∈ PosE |L(y−1 QE) �= ∅}

= {y ∈ PosE |L(dy(QE)) �= ∅} = {y ∈ PosE |dy(QE) �= 0};

152 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

Last(E) = {y ∈ PosE | vy ∈ L(QE)} = {y ∈ PosE | � ∈ (vy)−1L(QE)}

= {y ∈ PosE | � ∈ L((vy)−1 QE)} = {y ∈ PosE | � ∈ L(dvy(QE))}

= {y ∈ PosE | �(dvy(QE)) = 1} = {y ∈ PosE | �(cy(QE)) = 1};

Follow(E; x) = {y ∈ PosE | uxyv ∈ L(QE)}

= {y ∈ PosE | (uxy)−1L(QE) �= ∅}

= {y ∈ PosE |L((uxy)−1 QE) �= ∅}

= {y ∈ PosE |L(duxy(QE)) �= ∅}

= {y ∈ PosE |duxy(QE) �= 0}

= {y ∈ PosE |dy(dux QE) �= 0}

= {y ∈ PosE |dy(cx(QE)) �= 0}:

Corollary 7. The automaton CE recognizes the language L(E).

Notice that this result is very close to Berry–Sethi’s one. The notion of c-derivative
is a nice tool to present it. Next results will enlighten the interest of this notion.

5. From c-derivatives to partial derivatives

We #rst recall the de#nition and the properties of partial derivatives of a regular
expression and then compare them to c-derivatives.

5.1. Partial derivatives

Partial derivatives of regular expressions have been introduced by Antimirov in [2].
They are, in a sense, a “non-deterministic generalization” of word derivatives: every
derivative of E can be represented by a #nite set of some partial derivatives of E. For
example, for E= ab+ a∗ and a−1E= b+ a∗, b and a∗ are the two partial derivatives
of E w.r.t. a.

Let us mention that the notion of partial derivative is very close to the notion of
prebase due to Mirkin [12]. A full comparison of these two concepts is given in [7].

De�nition 9 (set of partial derivatives w.r.t. a symbol). Given a regular expression E
and a symbol a, the set of partial derivatives of E w.r.t. a, written @a(E), is recursively
de#ned on the structure of E as follows:

@a(0) = ∅; (39)

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 153

@a(1) = ∅; (40)

@a(x) = {1} if a = x ∅ otherwise; (41)

@a(F + G) = @a(F) ∪ @a(G); (42)

@a(F · G) =

{
@a(F) · G if �(F) = 0;

@a(F) · G ∪ @a(G) otherwise;
(43)

@a(F∗) = @a(F) · F∗: (44)

De�nition 10 (extensions). The symbol a in @a(E) can be replaced by any word u of
�∗ or by any set of words U , and the expression E can be replaced by any set R of
expressions, according to the equations:

@�(E) = {E}; (45)

@ua(E) = @a(@u(E)); (46)

@u(R) =
⋃
E∈R

@u(E); (47)

@U (E) =
⋃
u∈U

@u(E): (48)

Proposition 9 (Antimirov [2]). The set @ua(E) of partial derivatives of a regular ex-
pression E w.r.t. a word ua of �+ is such that

@ua(0) = ∅; (49)

@ua(1) = ∅; (50)

@ua(x) =
{ {1} if u = � and x = a;
∅ otherwise;

(51)

@ua(F + G) = @ua(F) ∪ @ua(G); (52)

@ua(F · G) ⊆ @ua(F) · G ∪ ⋃
ua=psa

@sa(G); (53)

@ua(F∗) ⊆ ⋃
ua=psa

@sa(F) · F∗: (54)

Let PD(E) = @�∗(E) be the set of all partial derivatives of the regular expression E.

Theorem 8 (Antimirov [2]). The cardinality of the set PD(E) of all partial deriva-
tives of a regular expression E is less than or equal to ‖E‖ + 1.

Hence the de#nition of the equation automaton EE of E, whose set of states is the
set of all partial derivatives of E, and which recognizes L(E).

154 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

Fig. 3. The equation automaton of x∗(xx + y)∗.

De�nition 11 (equation automaton). The equation automaton of a regular expression
E; EE = (Q;�; i; T; �), is de#ned by
• Q=PD(E),
• i=E,
• T = {p | �(p) = 1},
• �(p; a) = @a(p); ∀p∈Q and ∀a∈�.

Example 4. In this example we show the computation of states and transitions of the
equation automaton of E= x∗(xx + y)∗ (Fig. 3).

@�(E) = E = x∗(xx + y)∗;

@x(E) = @x(x∗)(xx + y)∗ ∪ @x((xx + y)∗)

= @x(x)x∗(xx + y)∗ ∪ (@x(xx) ∪ @x(y))(xx + y)∗

= {x∗(xx + y)∗} ∪ {x(xx + y)∗}
= {x∗(xx + y)∗; x(xx + y)∗};

@y(E) = @y(x∗)(xx + y)∗ ∪ @y((xx + y)∗)

= @y(x)x∗(xx + y)∗ ∪ (@y(xx) ∪ @y(y))(xx + y)∗

= ∅ ∪ (∅ ∪ {1})(xx + y)∗

= {(xx + y)∗};
@x(x(xx + y)∗) = @x(x)(xx + y)∗ = {(xx + y)∗};
@y(x(xx + y)∗) = @y(x)(xx + y)∗ = ∅;

@x((xx + y)∗) = @x(xx + y)(xx + y)∗ = (@x(xx) ∪ @x(y))(xx + y)∗

= {x(xx + y)∗};

@y((xx + y)∗) = @y(xx + y)(xx + y)∗ = (@y(xx) ∪ @y(y))(xx + y)∗

= {(xx + y)∗}:

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 155

5.2. C-derivatives versus partial derivatives

We now explain how c-derivatives and partial derivatives w.r.t. a symbol are related.

Proposition 10. Let E be a regular expression. Let HE be a subexpression of E.
Denote by P(ai; HE) the property: (ai ∈PosE(HE))∧ (h(ai) = a)∧ (dai(HE) �= 0). Then
for all HE one has

⋃
P(ai ;HE)

h(dai(HE)) = @a(HE):

Proof. Subexpressions HE; FE and GE are denoted by H; F and G for short, and HE; FE
and GE are denoted by QH , QF and QG. Let us verify that the proposition is true for
atomic expressions. If H = 0 or H = 1, then we have dai(QH) = 0 and @a(H) = ∅. If
H = a, then we have QH = ai. Thus h(dai(QH)) = 1 and @a(E) = {1}.

We now suppose that the proposition is true for every expression E of size less than
n; n¿1, and we prove that it is true for expressions of size equal to n.
Case 1: H =F + G. We have F + G= QF + QG. From De#nition 5, dai(QF + QG) is

either equal to dai(QF) or to dai(QG). Thus, we can write

⋃
P(ai ;H)

h(dai(QH)) =

(⋃
P(ai ;F)

h(dai(QF))

)
∪ ⋃
P(ai ;G)

h(dai(QG))

ind:hyp:
= @a(F) ∪ @a(G) = @a(H):

Case 2: H =F · G. We have F · G= QF · QG. From De#nition 5 there are two alter-
natives. The #rst one is when dai(QF) �= 0. In this case we have: dai(QF · QG) =dai(QF) · QG
and ai ∈PosE(F). Thus we get

⋃
P(ai ;H)

h(dai(QH)) =
⋃

P(ai ;F)
h(dai(QF) · QG) =

(⋃
P(ai ;F)

h(dai(QF))

)
· G

ind:hyp:
= @a(F) · G= @a(H):

In the second alternative we have: �(QF) = 1, dai(QF · QG) =dai(QG), P(ai; H)⇒P(ai; G)
and ai ∈PosE(G). Hence, we can write

⋃
P(ai ;H)

h(dai(QH)) =
⋃

P(ai ;G)
h(dai(QG))

ind:hyp:
= @a(G) = @a(H):

Case 3: H =F∗. We have F∗ = QF
∗
.

⋃
P(ai ;H)

h(dai(QH)) =
⋃

P(ai ;F)
h(dai(QF) · QF

∗
) =

(⋃
P(ai ;F)

h(dai(QF))

)
· F∗

ind:hyp:
= @a(F) · F∗ = @a(H):

156 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

We now deal with c-derivatives and partial derivatives w.r.t. a word. We #rst prove
two propositions and then state a main theorem.

Proposition 11. Let du(QE) =H1 ·H2 · · ·Hl be a c-derivative. Let i and j be such that
1 6 i¡j 6 l and PosE(Hi)∩PosE(Hj) �= ∅. Then there exists a suAx s of u such
that du(QE) =ds(Hj) · Hj+1 · · ·Hl.

Proof. From Proposition 4, if du(QE) =H1 · H2 · · ·Hl, there exist a suBx s of u and
a subexpression H ′ of QE such that du(QE) =ds(H ′) · Hj · Hj+1 · · ·Hl, for some j,
1 6 j 6 l. If �ds(H ′) ∩�Hj �= ∅, then the product ds(H ′) · Hj comes from the c-
derivation of some star expression. That is Hj =F∗ and H ′ =F . Thus du(QE) =ds(F) ·
F∗ · Hj+1 · · ·Hl =ds(F∗) · Hj+1 · · ·Hl =ds(Hj) · Hj+1 · · ·Hl.

Let E be a regular expression and F =du(QE) a non-zero c-derivative of QE. We
consider the linearization h(F) of h(F) and we denote by h′ the induced mapping
from Posh(F) onto �E . For example if E= (ab+ b)∗ and F =da1 (QE) = b2(a1b2 + b3)∗,
we have: h(F) = b(ab+ b)∗ = b1(a2b3 + b4)∗.

Since F =H1 · H2 · · ·Hl, where Hi is a linear subexpression of QE, for 1 6 i 6 l,
we have h(F) =H ′

1 · H ′
2 · · ·H ′

l , where Hi and H ′
i , 1 6 i 6 l, are two linearizations

of the same expression. In our current example, we have: H2 = (a1b2 + b3)∗ and H ′
2 =

(a2b3 + b4)∗.
Let aj be the jth symbol of h(F), and �(aj) the jth symbol of F . Notice that two

distinct symbols of h(F) may be mapped to the same symbol of F : for instance, b1

and b3 are mapped to b2.
The following proposition shows that it is equivalent to compute the c-derivative of

F w.r.t. ai and the c-derivative of h(F) w.r.t. every aj such that �(aj) = ai.

Proposition 12. Let E be a regular expression; F =du(QE) a non-zero c-derivative of
QE; and h′ the mapping associated to h(F). Let ai a position of E; and aj a position
of h(F) such that: �(aj) = ai; h′(aj) = h(ai) and daj (h(F)) �= 0. Then there exists m;
1 6 m6 l; such that

daj (h(F)) = daj (H
′
m) · H ′

m+1 · · ·H ′
l ; (55)

dai(F) = dai(Hm) · Hm+1 · · ·Hl; (56)

h′(daj (h(F))) = h(dai(F)): (57)

Proof. We consider two cases. The #rst case is when there is no occurrence of ai in
F before rank j. We suppose that ai occurs in Hm, which implies: dai(H1) =dai(H2) =
· · · =dai(Hm−1) = 0. Since daj (h(F)) �= 0 and aj (only) occurs in H ′

m, we have: �(H ′
1)

= �(H ′
2) = · · · = �(H ′

m−1) = 1, daj (H
′
m) �= 0 and daj (h(F)) =daj (H

′
m) ·H ′

m+1 · · ·H ′
l . As a

consequence we have: �(H1) = �(H2) = · · · = �(Hm−1) = 1; dai(Hm) �= 0 and dai(F) =
dai(Hm) · Hm+1 · · ·Hl. Therefore we get: h′(daj (h(F))) = h(dai(F)).

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 157

The second case is when ai occurs in F before rank j. In this case, by Proposi-
tion 11 there exists a suBx s of u such that du(QE) =ds(Hm) ·Hm+1 · · ·Hl. It implies that
dai(F) =dai(ds(Hm) ·Hm+1 · · ·Hl). Since daj (H

′
m) �= 0 we have dai(Hm) �= 0. By Propo-

sition 11, it comes dsai(Hm) =dai(Hm). Finally we get: dai(F) =dai(Hm) · Hm+1 · · ·Hl
and h′(daj (h(F))) = h(dai(F)).

The following theorem enlightens the relation between c-derivatives and partial
derivatives.

Theorem 9. Let E be a regular expression and HE be a subexpression of E. Let
P(u; HE) denote the property: (v= Qu∈Pos∗E(HE))∧ (h(v) = u)∧ (dv(HE) �= 0). Then
for all subexpression HE of E; one has

⋃
P(u;HE)

h(d Qu(HE)) = @u(HE):

Proof. The proof is done by induction on the length of u. The proposition is true for
words u= a by Proposition 10.

Assume now that the proposition is true for words u of length less than some integer
n; n¿1, and prove it for words ua of length n. Denote by F the c-derivative d Qu(HE).
By Proposition 12, we have

⋃
P(ua;HE)

h(d Quai(HE)) =
⋃

P(u;HE);P(aj ;h(F))
h′(daj (h(F))):

By Proposition 10, we get

⋃
P(u;HE);P(aj ;h(F))

h′(daj (h(F))) = @a

(⋃
P(u;HE)

h(F)

)

ind:hyp:
= @a(@u(HE)):

6. Construction of the equation automaton

Let E be a regular expression over � and QE the linearized version of E over PosE .
We now present the connection between the two automata: (1) CE , the c-continuation
automaton, and (2) EE , the equation automaton.

Let us #rst recall the de#nitions of CE and EE (from now on, cx(QE) is shortened to
cx and hE to h).
CE = (Q;�; i; T; �), with Q= {(x; cx) | x∈PosE ∪{0}}, i= (0; c0), T = {(x; cx) |

�(cx)= 1}, �((x; cx); a) = {(y; cy) | h(y) = a and dy(cx)≡ cy}, ∀x∈PosE ∪ {0} and
∀a ∈ �.
EE = (QA; �; iA; TA; �A), with QA =PD(E), iA =E, TA = {p | �(p) = 1}, �A(p; a) =

@a(p), ∀p∈QA and ∀a∈�.

158 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

Fig. 4. The automata CE and CE=∼ for E= x∗(xx + y)∗.

Let us consider the following equivalence relation on PosE ∪{0}, the set of states
of CE :

(x; cx) ∼ (y; cy) ⇔ h(cx) ≡ h(cy):

Proposition 13. The relation ∼ is right-invariant; i.e. for all a in �; for all (x; cx);
(t; ct) in Q such that (x; cx) ∼ (t; ct); we have: �((x; cx); a) ∼ �((t; ct); a).

Proof. Let (x; cx) ∼ (t; ct). We show that for every symbol a in �, for every transition
((x; cx); a; (y; cy)) there exists a transition ((t; ct); a; (z; cz)) such that (y; cy) ∼ (z; cz).

Assume that (y; cy)∈ �((x; cx); a). By de#nition of � we have: h(y) = a and dy(cx)≡
cy. Then, by Proposition 10, it comes h(cy)∈ @a(h(cx)). This implies that h(cy)∈
@a(h(ct)), since h(cx)≡ h(ct). By Proposition 10, there exists z ∈PosE such that (1)
h(z) = a, which implies (z; cz)∈ �((t; ct); a) and (2) h(dz(ct))≡h(cy), which implies
h(cz)≡h(cy) and thus (y; cy) ∼ (z; cz).

Moreover, if two states are equivalent, then they are either both #nal or both non-
#nal, since (x; cx)∈T⇔ �(cx) = 1⇔ �(h(cx)) = 1.

Let us denote by [cx] the equivalence class of the state (x; cx). Since the relation ∼ is
right-invariant we can de#ne the quotient automaton CE=∼ = (Q∼; �; i; T; �) as follows
(Fig. 4):
• Q∼ = {[cx] | x∈PosE ∪{0}},
• i= [c0],

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 159

• T = {[cx] | �(cx) = 1},
• �([cx]; a) = {[cy] | h(y) = a and dy(cx)≡ cy}; ∀[cx]∈Q∼ and ∀a∈�.

Theorem 10. Let E be a regular expression. The automaton CE=∼ derived from the
c-continuation automaton is isomorphic to the equation automaton.

Proof. By Theorem 9 the mapping h from PosE onto � is a surjective one from
{cx | x∈PosE} onto @�+(E). Since c0 = QE and @�(E) = {E}, we have h(c0)∈ @�(E).
Thus h is a surjective mapping from Q= {(x; cx) | x∈PosE ∪ {0}} onto QA =PD(E).
Thus, by de#nition of the equivalence ∼; h is a one-to-one mapping from Q∼
onto QA.

It can be easily checked that, by Proposition 10, we have: (1) h(i) = h([QE]) =E= iA;
(2) h([T]) =TA; (3) h is compatible with transition functions: [cy]∈ �([cx]; a) ⇔ h([cy])
∈ �A(h([cx]); a).

7. An algorithm to compute the automaton CE=∼

We now present the sketch of the algorithm CtoE3 which computes the automa-
ton CE=∼. We shortly describe a naive implementation of this algorithm, involving a
complete computation of the c-continuations of the expression QE, and leading to an
O(||E|| · |E|2) space and time complexity. A full proof of the correctness and complex-
ity analysis of this algorithm as well as algorithmic re#nements yielding an O(|E|2)
space and time complexity are presented in [6].

Let us notice that the alphabetic width and the size of a regular expression are a
priori independent parameters. Indeed, for a given language, the size of an expression
can be arbitrarily increased by adding 0’s, concatenating 1’s, or repetitively starring star
subexpressions, with a constant alphabetic width. Moreover, some computation steps
depend on the size of the expression while other ones depend on the alphabetic width.
This additional information may be helpful, for implementation purpose for instance, or
for a deeper analysis of the number of operations. Therefore complexities are expressed
w.r.t. both of these two parameters.

7.1. Sketch of the algorithm

The algorithm CtoE3 is divided into three parts.
Part 1 is the computation of the set of states Q∼. The two following steps are per-
formed:
(1) The production of the c-continuations of QE.

By Corollary 5, a c-continuation can be computed as a product of subexpressions
of QE. There are O(|E|) subexpressions, and a subexpression has an O(|E|) size.
This implies that the size of a c-continuation is O(|E|2). The production of a c-
continuation can be achieved on the syntax tree of E in space and time linear w.r.t.

160 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

the size of the c-continuation. Hence the whole step space and time complexity
is O(||E|| · |E|2).

(2) The identi#cation of the c-continuations which coincide on �.
This step can be achieved by sorting the list of expressions in lexicographic
order, according to Aho et al. algorithm [1] or Paige and Tarjan re#nement [13],
which lead to a time linear w.r.t. the sum of the size of the strings. Hence an
O(||E|| · |E|2) time complexity for this step.

Finally, the set of states of CE=∼ is computed with an O(||E|| · |E|2) space and time
complexity.
Part 2 is the computation of T , the set of #nal states. A #nal state of CE=∼ is a class
of c-continuations c such that �(c) = 1. Hence the two following steps:
(1) The computation of �(F) for each subexpression F of E.

This step can be achieved by a recursive procedure with an O(|E|) space and
time complexity.

(2) The computation of �(c) for one c-continuation c in each class.
Since a c-continuation is a product of O(|E|) subexpressions of QE; �(c) can be
computed with an O(|E|) time complexity. Hence an O(||E||) space complexity
and an O(||E|| · |E|) time complexity for this step.

Finally, the set of #nal states of CE=∼ is computed with an O(||E|| + |E|) space com-
plexity and an O(||E|| · |E|) time complexity.
Part 3 is the computation of �, the set of transitions. A transition ([cx]; a; [cy]) is such
that h(y) = a and dy(cx)≡ cy. On the other hand, we have: {y∈PosE |dy(cx) �= 0}=
First(cx). Hence the computation of � is based on two steps:
(1) The computation of First(FE) for each subexpression FE of QE.

This step can be achieved by a recursive procedure with an O(||E|| · |E|) space
and time complexity.

(2) The computation of First(c) for one c-continuation c in each class.
Since a c-continuation is a product of O(|E|) subexpressions of QE, and since the
First set of a subexpression has an O(||E||) size, First(c) can be computed with
an O(||E|| · |E|) time complexity. Hence an O(||E||2) space complexity and an
O(||E||2|E|) time complexity for this step.

Finally, the computation of the set of transitions of CE=∼ has an O(||E|| · |E|) space
complexity and an O(||E||2|E|) time complexity.

The above results lead to the following theorem.

Theorem 11. The Algorithm CtoE3 computes the CE=∼ automaton of a regular ex-
pression E with an O(||E|| · |E|2) space and time complexity.

Notice that the Algorithm CtoE3 provides an O(||E|| · |E|2) construction of both the
position automaton and the equation automaton of an expression.

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 161

7.2. Example

The following results are output by the program ProgCtoE3 which has been run on
an example given by Antimirov in [2].

E=(a+b)*.(b.a.b.a.b.(a+b)*.b.a.b+b.b.a.(a+b)*.b.a.b).(a+b)*
size=47 alphabetic-width=22

------------------- Computation of the c-continuations (alphabet "ab01+.*")

Before the identification : 23 c-continuation(s)

l0=(a1+b2)*.(b3.a4.b5.a6.b7.(a8+b9)*.b10.a11.b12+b13.b14.a15.(a16+b17)*.b18.a19.b20).(a21+b22)*
l1=(a1+b2)*.(b3.a4.b5.a6.b7.(a8+b9)*.b10.a11.b12+b13.b14.a15.(a16+b17)*.b18.a19.b20).(a21+b22)*
l2=(a1+b2)*.(b3.a4.b5.a6.b7.(a8+b9)*.b10.a11.b12+b13.b14.a15.(a16+b17)*.b18.a19.b20).(a21+b22)*
l3=a4.b5.a6.b7.(a8+b9)*.b10.a11.b12.(a21+b22)*
l4=b5.a6.b7.(a8+b9)*.b10.a11.b12.(a21+b22)*
l5=a6.b7.(a8+b9)*.b10.a11.b12.(a21+b22)*
l6=b7.(a8+b9)*.b10.a11.b12.(a21+b22)*
l7=(a8+b9)*.b10.a11.b12.(a21+b22)*
l8=(a8+b9)*.b10.a11.b12.(a21+b22)*
l9=(a8+b9)*.b10.a11.b12.(a21+b22)*
l10=a11.b12.(a21+b22)*
l11=b12.(a21+b22)*
l12=(a21+b22)*
l13=b14.a15.(a16+b17)*.b18.a19.b20.(a21+b22)*
l14=a15.(a16+b17)*.b18.a19.b20.(a21+b22)*
l15=(a16+b17)*.b18.a19.b20.(a21+b22)*
l16=(a16+b17)*.b18.a19.b20.(a21+b22)*
l17=(a16+b17)*.b18.a19.b20.(a21+b22)*
l18=a19.b20.(a21+b22)*
l19=b20.(a21+b22)*
l20=(a21+b22)*
l21=(a21+b22)*
l22=(a21+b22)*

After the identification : 11 c-continuation(s)

L0={14} : a.(a+b)*.b.a.b.(a+b)*
L1={0,1,2} : (a+b)*.(b.a.b.a.b.(a+b)*.b.a.b+b.b.a.(a+b)*.b.a.b).(a+b)*
L2={7,8,9,15,16,17} : (a+b)*.b.a.b.(a+b)*
L3={12,20,21,22} : (a+b)*
L4={5} : a.b.(a+b)*.b.a.b.(a+b)*
L5={10,18} : a.b.(a+b)*
L6={3} : a.b.a.b.(a+b)*.b.a.b.(a+b)*
L7={6} : b.(a+b)*.b.a.b.(a+b)*
L8={11,19} : b.(a+b)*
L9={13} : b.a.(a+b)*.b.a.b.(a+b)*
L10={4} : b.a.b.(a+b)*.b.a.b.(a+b)*

------------------- The c-continuation quotient automaton
Initial state : 1
Final States : 3
Transitions :
State 0 : a : 2
State 1 : a : 1 b : 1 6 9
State 2 : a : 2 b : 2 5
State 3 : a : 3 b : 3
State 4 : a : 7
State 5 : a : 8
State 6 : a : 10
State 7 : b : 2
State 8 : b : 3
State 9 : b : 0
State 10 : b : 4

162 J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163

7.3. Comparison with Antimirov’s construction

In Antimirov’s construction, p partial derivatives are computed, among which n
are distinct ones. While n is bounded by ||E||; p is bounded by ||E||2 since each
transition involves the computation of one partial derivative. Every partial derivative
computation terminates with a syntactical equality check w.r.t. every distinct partial
derivative already produced. The size of a partial derivative is O(|E|2). Hence an
O(||E||3 · |E|2) worst-case time complexity for Antimirov’s construction. Notice that
the O(||E||2 · |E|2) complexity reported in [2] only covers the computation of the set
of states.

In the c-continuation construction, this worst-case time complexity is reduced to
O(||E|| · |E|2) thanks to three facts: (1) the set of the ||E|| c-continuations is computed
at once, i.e. without syntactical equality check, (2) during the identi#cation step, every
c-continuation is compared to only one other one, thanks to a preliminary lexicographic
sorting of the whole list of c-continuations, and (3) the set of transitions is obtained
from the computation of the First sets of the subexpressions of E.

7.4. Improvements

The worst-case space and time complexity of the Algorithm CtoE3 can be reduced
to O(|E|2) according to three main re#nements:
(1) The star subexpressions of QE are pre-processed: they are identi#ed by names and

their occurrences into c-continuations are replaced by these names. The resulting
strings have a linear size w.r.t. |E| and it is shown that they can be substituted
to c-continuations inside the identi#cation step.

(2) The First sets of the subexpressions of E are computed via a speci#c linking of
the nodes of the syntax tree of E, with a time complexity linear w.r.t. |E|. This
technique has already proved to be fruitful for devising an eBcient algorithm to
build the position automaton of an expression [15].

(3) The First set of a c-continuation is computed as a disjoint union of the First sets
of some subexpressions of E.

These improvements lead to the O(|E|2) Algorithm CtoE2 which is analyzed in [6].

8. Conclusion

The c-continuation automaton of a regular expression is a “canonical” automaton, in
the sense that the position automaton is a projection of this automaton and the equation
automaton is a factorization.

The notion of c-continuation allows us to design an O(|E|2) space and time algorithm
for the conversion of a regular expression into its equation automaton, improving by
an O(||E||3) factor the partial derivative construction.

We are looking for reductions over the set of c-continuations, which would lead to
smaller automata, with the same quadratic complexity.

J.-M. Champarnaud, D. Ziadi / Theoretical Computer Science 289 (2002) 137–163 163

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading, MA,
1983.

[2] V. Antimirov, Partial derivatives of regular expressions and #nite automaton constructions, Theoret.
Comput. Sci. 155 (1996) 291–319.

[3] D. Beauquier, J. Berstel, P. ChrSetienne, SElSements d’Algorithmique, Masson, Paris, 1992.
[4] G. Berry, R. Sethi, From regular expressions to deterministic automata, Theoret. Comput. Sci. 48 (1)

(1986) 117–126.
[5] J.A. Brzozowski, Derivatives of regular expressions, J. Assoc. Comput. Mach. 11 (4) (1964) 481–494.
[6] J.-M. Champarnaud, D. Ziadi, From C-continuations to new quadratic algorithms for automaton

synthesis, Internat. J. Algebra Comput. 11 (6) (2001) 707–735.
[7] J.-M. Champarnaud, D. Ziadi, From Mirkin’s prebases to Antimirov’s word partial derivatives, Fund.

Inform. 45 (3) (2001) 195–205.
[8] V.M. Glushkov, The abstract theory of automata, Russian Math. Surveys 16 (1961) 1–53.
[9] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation,

Addison-Wesley, Reading, MA, 1979.
[10] S. Kleene, Representation of events in nerve nets and #nite automata, Automata Studies Annals of

Mathematics Studies Vol. 34, 1956, Princeton University Press, Princeton NJ, pp. 3–41.
[11] R.F. McNaughton, H. Yamada, Regular expressions and state graphs for automata, IEEE Trans. Electron.

Comput. 9 (1960) 39–57.
[12] B.G. Mirkin, An algorithm for constructing a base in a language of regular expressions, Eng. Cybernet.

5 (1966) 110–116.
[13] R. Paige, R.E. Tarjan, Three partition re#nement algorithms, SIAM J. Comput. 16 (6) (1987) 973–989.
[14] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages,

Vol. I, Words, Languages, Grammars, Springer, Berlin, 1997, pp. 41–110.
[15] D. Ziadi, J.-L. Ponty, J.-M. Champarnaud, Passage d’une expression rationnelle 2a un automate #ni

non-dSeterministe, Bull. Belg. Math. Soc. 4 (1997) 177–203.

