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a b s t r a c t

Introduction: Although the pre-supplementary motor area (pre-SMA) is one of the most

frequently reported areas of activation in functional imaging studies, the role of this brain

region in cognition is still a matter of intense debate. Here we present a patient with a focal

lesion of caudal pre-SMA who displays a selective deficit in updating a response plan to

switch actions, but shows no impairment when required to withhold a response e

stopping.

Materials & methods: The patient and a control group underwent three tasks designed to

measure different aspects of cognitive control and executive function.

Results: The pre-SMA patient displayed no impairment when responding in the face of

distracting stimuli (Eriksen flanker paradigm), or when required to halt an on-going

response (STOP task). However, a specific deficit was observed when she was required to

rapidly switch between response plans (CHANGE task).

Conclusions: These findings suggest that the caudal pre-SMA may have a particularly

important role in a network of brain regions required for rapidly updating and imple-

menting response plans. The lack of any significant impairment on other measures of

cognitive control suggests that this is not likely due to a global deficit in cognitive control.

We discuss the implications of these results in the context of current theories of pre-SMA

function.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

The pre-supplementary motor area (pre-SMA) in humans is

located in the dorsomedial frontal cortex, rostral to the sup-

plementary motor area (SMA) and dorsal to the cingulate

motor areas (Nachev, Kennard, & Husain, 2008). Although the
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pre-SMA is the most frequently activated brain region in

neuroimaging studies (Behrens, Fox, Laird, & Smith, 2012),

there is still no consensus on its function. In terms of its

connectivity with other brain regions, pre-SMA displays a

profile that is quite distinct to neighbouring SMA,withmore of

its connections projecting to dorsolateral prefrontal cortex
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than motor areas. This is based on both neuroimaging data in

humans (Johansen-Berg et al., 2004; Kim et al., 2010) and an-

imal studies (for a review see Nachev et al., 2008).

Despite the wealth of information from neuroimaging,

decoding the precise role of pre-SMA remains to be estab-

lished and has proven to be challenging, due to its apparent

involvement in situations which could imply many different

functions (Nachev et al., 2008). In humans the principal focus

of a large number of studies has been to identify the contri-

bution of pre-SMA to the performance of tasks designed to

measure aspects of cognitive control and executive function

(Curtis & D'Esposito, 2003; Nachev, Rees, Parton, Kennard, &

Husain, 2005; Shima & Tanji, 2000). These paradigms often

require participants to rapidly inhibit or alter a pre-potent

response (Curtis & D'Esposito, 2003; Logan & Cowan, 1984;

Mostofsky et al., 2003; Nachev et al., 2005), or to respond

accurately in the presence of distractors (Botvinick, Nystrom,

Fissell, Carter, & Cohen, 1999; Luks, Simpson, Dale, & Hough,

2007; Shima & Tanji, 2000). To date, evidence from func-

tional imaging has implicated pre-SMA in stopping an on-

going response (Aron & Poldrack, 2006; Obeso, Robles,

Marr�on, & Redolar-Ripoll, 2013; Picard & Strick, 1996; Sharp

et al., 2010), selecting between conflicting response alterna-

tives (Forstmann, van den Wildenberg, & Ridderinkhof, 2008;

Garavan, Ross, Kaufman, & Stein, 2003; Mostofsky &

Simmonds, 2008; Nachev et al., 2005; Van Gaal, Scholte,

Lamme, Fahrenfort, & Ridderinkhof, 2011), and switching

from automatic to voluntary action (Curtis & D'Esposito, 2003;
Isoda & Hikosaka, 2007; Nachev, Wydell, O'Neill, Husain, &

Kennard, 2007; Ullsperger & von Cramon, 2001).

Diffusion tensor imaging in humans has also been used to

describe a triangular structural network linking pre-SMA,

inferior frontal cortex (IFC) and subthalamic nucleus (STN)

(Aron, Behrens, Smith, Frank, & Poldrack, 2007), which is also

thought to exist in non-human primates (Nambu, Takada,

Inase, & Tokuno, 1996). It has been proposed that such a

networkmay enable the rapid braking of an initiated action by

providing a ‘hyper-direct’ connection from pre-SMA to STN

(Aron et al., 2007; Nambu et al., 1996). This structural

connection has led to the suggestion that the pre-SMA may

play a key role in stopping on-going responses e possibly

explaining one facet of pre-SMA function. However, even

within the area of cognitive control, it remains unclear pre-

cisely what contribution is made by pre-SMA in situations

with different response requirements.

Some have proposed that pre-SMA may be a key node in

brain networks responsible for the voluntary control of action

(Lau, Rogers, Ramnani, & Passingham, 2004; Rushworth,

Hadland, Paus, & Sipila, 2002), as volition or self-generated ac-

tions (not externally cued) appear to be a common factor across

experimental findings. For example, the Bereitschaftspotential e

a negative premotor potential recorded over central frontal

electrodes in humans e has larger peak amplitudes with self-

initiated actions (Deecke & Kornhuber, 1978); while in mon-

keys, lesions of the pre-SMA impair the ability to initiate arbi-

trary movements to obtain a reward, but the effect is

ameliorated if the animals are cued with an external tone

(Thaler, Chen, Nixon, Stern, & Passingham, 1995).

Unilateral inactivation of monkey pre-SMAwith muscimol

has been found to induce deficits in sequence learning, but
performance of previously well-learnt sequences was left

intact (Nakamura, Sakai,&Hikosaka, 1999). This has led to the

suggestion that this might reflect an impairment of the

mechanism responsible for updating the association between

the correct action given current conditions. Therefore, it is

possible that deficits in self-initiated action observed after

SMA/pre-SMA disruption might arise from a failure to make

the appropriate connection between the action to be initiated

in a novel situation (Nachev et al., 2008).

Trans-cranial magnetic stimulation (TMS) has also been

employed to measure physiological interactions between pre-

SMA and other brain regions associated with response selec-

tion. This has demonstrated that in the presence of response

conflict, pre-SMA facilitates motor-evoked potentials in M1 dur-

ing action reprogramming (Mars et al., 2009), and suppresses

unselectedresponseoptions (Duque,Olivier,&Rushworth,2013).

TMS over pre-SMA has been associated with an increased delay

in the ability to inhibit responses (Cai, George, Verbruggen,

Chambers, & Aron, 2012), but there is also evidence that activity

inpre-SMAcanoccurbeforestopping is initiated,whichwouldbe

indicative of a role in selecting rather than implementing re-

sponses (Swannetal., 2012).However,acaveatof thisapproachis

thatTMSstimulationwhich inducesa transient ‘lesion’mayalso

propagate to other brain networks. Similar effects on network

function have also been observed following anatomical focal le-

sions, dependent on the position of the brain area within the

network architecture and degree of white matter involvement

(Gratton, Nomura, P�erez, & D'Esposito, 2012).
Although cognitive control, self-initiated action and

sequence learning may not be mutually exclusive functions,

providing an overarching framework which can account for the

range of such complex behaviour has provendifficult. Due to the

extremely rare incidence of focal damage to this brain area in

humans, only a very small number of lesion studies of pre-SMA

have been reported. Moreover, these reports have included pa-

tients whose lesions were not entirely constrained within the

borders of the pre-SMA, extending into sections of either cingu-

late gyrus, superior frontal gyrus or SMA (Floden & Stuss, 2006;

Nachev et al., 2007). As these adjacent brain areas have also

been implicated in cognitive control tasks (particularly anterior

cingulate), it is not possible to entirely disambiguate their

possible contribution to thedeficits observed in these studies. To

ourknowledge therehasbeennoreportofapatientwhose lesion

is entirely constrained within the borders of the pre-SMA.

Here we present a young patient with a highly focal, uni-

lateral lesion of the caudal pre-SMA. Since pre-SMA has

frequently been associated with cognitive control and execu-

tive function, we chose to investigate how this might have

affected performance on three standard tasks, each of which

indexes a different aspect of response selection or inhibition.

The STOP-signal task assesses the ability to inhibit an on-

going response, whereas the CHANGE-signal task requires

the participant to rapidly switch to a different response

plan. Finally the Eriksen flanker task measures how quickly

an individual is able to select between conflicting response

plans that are activated simultaneously. Together these

tasks employ similar stimuli with different rules, to explore

specific aspects of executive function.

Surprisingly we found that she did not display a significant

impairmentwhen asked to stop an action (STOP task), but was

http://dx.doi.org/10.1016/j.cortex.2014.08.004
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Fig. 1 e Lesion location. A) A high resolution T1-weighted MRI scan of patient KP in native space, the lesion location is

circled in yellow. (B, C, D) The patient's brain image was normalised to standard MNI space and subsections show cross-

sections for sagittal, axial and coronal sections, respectively. In panel B the VCA line is marked as a black vertical line,

posterior to the lesion location. The lesion clearly lies medial to the superior frontal sulcus, anterior to paracentral sulcus,

and dorsal to cingulate sulcus.
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significantly impaired when switching between response

plans (CHANGE task). The patient also displayed no significant

deficit when processing conflict at the level of the stimulus

(Eriksen Flanker). Remarkably, it appears that this lesion of

the caudal pre-SMA impaired the ability to rapidly switch

between overt responses, whilst leaving stopping behaviour

intact. We discuss these findings in the context of the current

literature and the implications for understanding the role of

pre-SMA in voluntary action.
2. Materials and methods

2.1. Patient participant

Patient KP is a 28-year-old, right-handed woman who was

diagnosed with epilepsy, following the onset of simple partial

seizures. Following a subsequent grand mal seizure later in

the year, further MRI investigations revealed a very small

http://dx.doi.org/10.1016/j.cortex.2014.08.004
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Table 1 e Testing protocol for patient KP. A) Neuropsychological test battery for intellectual functioning. B) Focal tests of
cognitive function. C) Testing protocol for the experiments described in this chapter. KP was tested on the CHANGE, STOP
and Flanker tasks over a 10 week period. The numbering 1e3 indicates in which session the data was acquired.

A)

Intellectual functioning 69 days prior 14 days prior 106 days post

Verbal IQ (WAIS-III) 98 Not tested 98

Performance IQ (WAIS-II) 111 Not tested 125

Advanced Progressive Matrices Not tested 41st %ile 56th %ile

Memory

Recognition Memory Test Words 50th %ile 25e50th %ile 50th %ile

Recognition Memory Test Faces At chance 50e75th %ile 90th %ile

Doors and People e People Test Not tested 50th %ile 50e75th %ile

Doors and People e Shapes Test Not tested 75 %ile 75th %ile

B)

Focal cognitive Prior Post

Naming Skills 50e75th %ile 95th %ile

VOSP Silhouettes and Cube Analysis >5% cut off >5% cut off

Stroop colour-word Very superior Very superior

Trails B 90th %ile 75e90 %ile

Symbol Digit Modalities Test average mild impaired

C)

Days post-surgery 31 71 104

Session 1 2 3

Task

CHANGE task X X X

STOP task X

Eriksen Flanker X X
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cavernoma (a blood vessel anomaly, also sometimes referred

to as a cavernous haemangioma). This was located on the

medial aspect of the right superior frontal gyrus. At the time,

KP was experiencing complex partial seizures with secondary

generalisations, and the cavernoma was subsequently

resected.

A follow-up structural scan 4 months after surgery

demonstrates the focal nature of the lesion, which lies

medial to the superior frontal sulcus and rostral to the

paracentral sulcus. The paracentral sulcus has previously

been demonstrated to be a useful landmark for the location

of the supplementary eye field (SEF) (Grosbras, Lobel, Van de

Moortele, LeBihan, & Berthoz, 1999), which lies at the caudal

border of the pre-SMA; thus this lesion lies well within the

pre-SMA. The sagittal sections in Fig. 1A and B illustrate that

the lesion is clearly located dorsal to the cingulate sulcus

(and cingulate motor areas). Importantly, therefore, any

behavioural deficit observed in this patient cannot be

attributed to direct damage to ACC or SMA as the bound-

aries of the lesion do not encroach on the surrounding brain

areas.
2.2. Control participants

A group of 10 healthy volunteers (7 males) were recruited to

act as a control group, mean age ¼ 30.9, SE ¼ .63). All partici-

pants were right-handed (mean score ¼ 90, SE ¼ 2.6); Edin-

burgh Handedness test (Oldfield, 1971). All reported normal or

corrected-to-normal colour-vision and no subject was taking

any medication. Participants were reimbursed £8/h to cover

travel expenses.
2.3. Assessment

2.3.1. Clinical neuropsychological evaluation
A clinical neuropsychological assessment of KP was con-

ducted before and after surgery (Table 1). The assessment

included measures of intellectual function (Verbal IQ, Perfor-

mance IQ), memory (recognition memory test for words and

faces) and focal cognitive abilities (Naming skills, VOSP sil-

houettes and Cube Analysis, Stroop colour-word, Trails B,

Symbol Digit Modalities test).
2.4. Experimental tasks

2.4.1. Behavioural tasks
2.4.1.1. STOP TASK. In the STOP task (Fig. 2A) participants are

instructed to respond as quickly as possible to the direction of

an imperative GO stimulus. In this version of the task, which is

a variant of a CHANGE task we have presented previously

(Roberts, Anderson,&Husain, 2010), the GO signal was a green

arrow pointing left or right, and participants were required to

press either a left or right response key using the corre-

sponding index finger (Logan, Cowan, & Davis, 1984). On 50%

of trials the GO signal was the only stimulus presented. On the

remaining trials the GO signal would be followed, after a

variable delay, by a STOP signal: a vertical red bar. In the event

of a STOP signal, participants were instructed to attempt to

withhold their response. They were also instructed to avoid

waiting for a STOP signal.

Throughout the course of the experiment the stimulus

onset asynchrony between the GO and STOP signals was

varied parametrically using a staircase algorithm in response

http://dx.doi.org/10.1016/j.cortex.2014.08.004
http://dx.doi.org/10.1016/j.cortex.2014.08.004


Fig. 2 e Design of behavioural paradigms. A) The CHANGE of plan task. Participants must respond to the direction of the

green Go arrow unless they see the red CHANGE arrow, whereupon they must change their response. B) The STOP-signal

task. Participants must respond to the direction of the green Go arrow unless they see the STOP bar, when they must

withhold their response. C) Eriksen flanker task. Participants must respond to direction of the central arrow whilst ignoring

the peripheral distractors.

c o r t e x 6 3 ( 2 0 1 5 ) 1 8 4e1 9 5188
to the performance of the participant (Levitt, 1971). This was

in order to determine the delay at which each participant was

able to correctly respond to a STOP signal on 50% of trials; the

STOP-signal reaction time (SSRT). In order to account for drift

in reaction times, a cubic spline was fitted to the CHANGE-

signal reaction time (CSRT) data, guided by the shape of Go

responses. This method uses the local variation of the Go
distribution to interpolate across STOP trial data points. The

resulting distribution provides an approximation of the local

Go RT for each Stop trial, which is then used to calculate the

SSRT.

2.4.1.2. CHANGE TASK. The CHANGE task (Fig. 2B) employed a

similar design to the STOP task. However, instead of a STOP

http://dx.doi.org/10.1016/j.cortex.2014.08.004
http://dx.doi.org/10.1016/j.cortex.2014.08.004


Fig. 3 e Behavioural findings. Main findings from

behaviour experiments. A) STOP task. KP demonstrated no

significant difference in performance on this task

compared to the control group. B) CHANGE task. KP

demonstrated significantly increased latency when

required to change responses (CSRT) in all three testing

sessions.
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signal, participants were presented with a CHANGE signal e a

red arrow pointing in the opposite direction to the GO signal

(Roberts et al., 2010). Participants were instructed to respond

as quickly as possible to the GO signal, unless they saw a

CHANGE signal, in which case they had to attempt to respond

with the finger corresponding to the direction of the CHANGE

signal instead. The delay between the GO and CHANGE signals

was varied in the same manner as described in the STOP task

in order to find delay at which each individual was able to

change their response on 50% of trials; the CSRT.

2.4.1.3. ERIKSEN FLANKER TASK. In this version of the flanker task

(Roberts et al., 2010) participants were asked to respond to the

direction of a central target arrow using their index fingers.

The target arrow could point either left or right, and presented

above and below it were distracting objects (Fig. 2C). These

could be either arrows pointing in the same direction as the

target (congruent), the opposite direction (incongruent) or
squares (neutral). Participants were instructed to respond as

quickly and as accurately as possible to the central target

arrow, and ignore the distractors. Performance on this task is

measured in terms of latency of response to all three stimulus

types.

In addition, performance is also measured by comparing

the relative differences in reaction time between the three

conditions, thus providing three additional indices of.

� Pure Cost (incongruent-neutral RT)

� Benefit (neutral-congruent RT) and

� Incongruence Cost (incongruent-congruent RT).

These measures are often used to estimate the level of

positive (facilitating) and negative (interference) effects on

reaction time evoked by flankers, with higher incongruence

costs usually regarded as indicative of poorer cognitive control

on this task. Intra-individual coefficient of variation (ICV) is

calculated by dividing the variance in reaction times to neutral

stimuli by the mean response (Stuss, Murphy, Binns, &

Alexander, 2003). This provides an estimate of the consis-

tency of an individual's responses, and patients with frontal

lesions have previously demonstrated impairments on this

metric (Stuss et al., 2003).

2.5. Procedure

All participants were tested in a quiet room with neutral

lighting conditions. For the purposes of this experiment, KP

was tested on three occasions starting 4 weeks after surgery;

see Table 1 for testing protocol. The first session was held 30

days after surgery. The legend of Fig. 3 denotes the session at

which the testing took place, labelled S1eS3 (respectively, 4,

10 and 15 weeks post-surgery). Each task took around 30 min

to complete, but it was not possible to test KP on CHANGE,

STOP and Flanker tasks on all three occasions due to time

constraints.

2.6. Data analysis

In order to determine whether there was a significant differ-

ence between the behaviour of the patient and the control

group, confidence limits were employed as described by

Crawford and Garthwaite (Crawford & Garthwaite, 2002;

Crawford, Garthwaite, & Porter, 2010). This method has

become widely used to compare a single case with healthy

individuals (Couto et al., 2012). All comparisons are made

using a one-tailed level of significance (p < .05) because there

were explicit predictions about the pattern of results based on

the previous neuroimaging literature discussed in the Intro-

duction. The figures presented are shownwith ± one standard

deviation.
3. Results

3.1. Clinical and neuropsychological results

KP did not demonstrate any decrements in intellectual func-

tion or memory following surgery for her right-hemisphere

http://dx.doi.org/10.1016/j.cortex.2014.08.004
http://dx.doi.org/10.1016/j.cortex.2014.08.004
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cavernoma, when tested 15 weeks after surgery (see Table 1).

There were no significant changes in focal cognitive ability,

except a very mild decline in her performance on the Symbol

Digit Modalities Test, on which she was considered borderline

impaired, whereas she had previously been average.

3.2. Experimental task results

3.2.1. STOP task
KP was tested once on the STOP task, on the second occasion

we saw her (Table 1). The SSRT provides an estimate of the

time required for an individual to correctly inhibit an initial

response on 50% of trials. On this task KP's SSRT (150 msec)

was not significantly different (t ¼ �.78; p > .22) to the control

group (mean ¼ 177 msec, SD ¼ 32.1; Fig. 3A).

KP's leftward SSRT was longer than rightwards (12 msec),

but this deviation was not significantly different to the con-

trols (t¼ .29; p > .39) who also showed slightly greater leftward

slowing (7.3 msec, SD ¼ 15.4). In terms of GO reaction time, KP

(532 msec) was not significantly different to the control group

(mean ¼ 434, SD ¼ 114.3; t ¼ .82). She demonstrated virtually

no lateralisation in GO reaction time, being only 2 msec

quicker when making leftward responses. This was not

significantly different to the control group (t ¼ �.14; p > .45),

who overall were slightly slower when making leftward re-

sponses (5 msec, SD ¼ 20.9). Thus, KP's performance on the

STOP task was entirely within normal limits when assessed

(Session 2, S2).

3.2.2. CHANGE task
KPwas tested three times on the CHANGE task over the course

of 10 weeks (see Table 1). Performance on this paradigmuses a

similar metric to the STOP-signal paradigm, however here the

CHANGE-signal reaction time (CSRT) reflects the time taken to

inhibit an initial response and then correctly execute a second

response on 50% of trials.

In the first session (S1), four weeks after surgery, KP's CSRT
(382 msec) was significantly higher (t ¼ 2.85; p < .01) than the

control group (mean¼ 268msec, SD¼ 37.7), see Fig. 3B. KP also

demonstrated a highly significant lateralisation in CSRT

(t ¼ 2.6; p < .005; paired-samples t-test), with leftward CSRT

46 msec slower than rightward. This lateralisation was

significantly different to the control group (t ¼ 2.61; p < .028),

who demonstrated a leftward slowing of only 6 msec

(SD ¼ 4.6). Both leftward and rightward CSRT measurements

were still highly significantly different to the controls (t¼ 3.05;

p < .007).

Importantly, in terms of GO reaction time KP

(mean ¼ 435 msec) was not significantly slower than the

control group (mean ¼ 395 msec, SD ¼ 160.1; t ¼ .24). She did

demonstrate an increased latency in responding to leftward

GO signals (11 msec), but this was also not significantly

different to the controls (t ¼ �.17) who showed a similar lat-

eralisation (mean ¼ 14.9 msec, SD ¼ 21.9).

In the second testing session (S2), 10 weeks after surgery,

KP's CSRT had reduced to 329 msec. Despite this improve-

ment, KPwas still significantly impaired relative to the control

group (t ¼ 2.2; p < .028). In this session KP's GO reaction time

had increased (581msec), but this was not significantly higher

than the controls (t ¼ .82, p > .43). Nor was the lateralisation in
her responses significantly different to the controls in this

session in terms of Go responses (t ¼ 1.04) or CSRT (t ¼ �.83).

In the third session (S3), 15 weeks after surgery, KP's CSRT

(324 msec) had reduced by a small amount relative to session

S1. However, she still remained significantly impaired relative

to the controls (t ¼ 2.038; p < .036). KP's GO reaction time

improved in this session (382 msec), and was again not

significantly different to the controls (t ¼ �.077), neither was

her lateralisation in responding in terms of Go reaction time

(t ¼ .913) or CSRT (t ¼ .738).

Thus, KP demonstrated a consistent impairment on the

CHANGE task in all three testing sessions, and a lateralised

leftward slowing in CSRT in the first session. Note that on the

session where we were able to test her on both the STOP and

the CHANGE tasks, she performed normally on the former but

was impaired on the latter (compare Fig. 3A and B).

3.2.3. Eriksen flanker task
KP's performance on the Eriksen flanker task was assessed in

two separate sessions (S2 and S3). In session S2 there were

significant differences in reaction time between KP and the

controls, but to all three stimulus types. Her reaction time

when responding to congruent stimuli (468 msec) was signifi-

cantly longer (t ¼ 2.38; p < .021) than the control group

(mean ¼ 383.7 msec, SD ¼ 34.1). Similarly when responding to

neutral stimuli (502 msec vs controls mean ¼ 408 msec,

SD ¼ 34.4; t ¼ 2.56; p < .016). The most significant difference

between KP's reaction time (570 msec) and the control group

was in response to incongruent stimuli where there was a

112 msec increase in latency relative to the control group

(458 msec, SD ¼ 35.0; t ¼ 3.14; p < .001). Thus, in session S2, KP

showed overall slowing across all conditions.

In terms of lateralisation of response, KP demonstrated

significant leftward slowing compared to rightward responses

(t ¼ 2.1; p < .02; paired-samples t-test) on congruent and

neutral trials; but no significant difference in response to

incongruent stimuli. However, these differences between

leftward and rightward movements were not significantly

different to the control group on congruent (KP ¼ 20.4 msec;

Controls ¼ 10 msec, SD ¼ 18.0), incongruent (KP ¼ �3.2 msec;

Controls 16 msec, SD ¼ 19.3), or neutral stimuli

(KP ¼ 24.5 msec; Controls ¼ 21 msec, SD ¼ 15.5).

We also calculated the relative differences in reaction time

between the stimuli to assess whether KP was more suscep-

tible to interference effects than the controls. KP's reaction

time Benefit (34 msec) was not significantly different (t ¼ 1.57)

to the control group (mean ¼ 24.9 msec, SD ¼ 6.6). However,

her Pure Cost (68 msec) was significantly higher (t ¼ 3.97;

p < .001) than the controls (mean ¼ 49.8 msec, SD ¼ 4.06). In

addition, there was also a significant difference between the

Incongruence Cost measures where KP (102 msec) demon-

strated a 27 msec increased latency compared to the control

group (mean ¼ 75 msec, SD ¼ 8.08; t ¼ 3.35; p < .001). KP's
accuracy in responding (97%) was not significantly different to

the control group (mean ¼ 94.2%, SD ¼ 5; t ¼ .56). We also

calculated KP's ICV (4.49), but this was again not significantly

different to the controls (mean ¼ 3.98, SD ¼ .89; t ¼ .539).

It is possible that the large increase in incongruence costs

demonstrated by KP in session 2 could have been a product of

generalised slowing, rather than a specific impairment when

http://dx.doi.org/10.1016/j.cortex.2014.08.004
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responding to incongruent stimuli. To investigate this possi-

bility, the ratio between neutral reaction time and the three

incongruence measures was examined. If KP were to

demonstrate a significant deviation from the controls on these

measures, this might be evidence that her incongruence costs

were not just a product of increased reaction times. The

analysis demonstrated that the ratio of neutral reaction time

to Incongruence Cost (KP ¼ .21; Controls ¼ .18, SE ¼ .022), Pure

Cost (KP ¼ .14; Controls ¼ .12, SE ¼ .014) or Benefit (KP ¼ .068;

Controls ¼ .059, SE ¼ .015) there was no significant difference

between KP and the control group. Therefore it is likely that

KP's higher incongruence costs in the first sessionwere simply

a consequence of a general increased latency in responding

following her lesion.

In the following session (S3) KP's reaction times improved

and there was now no significant difference between her re-

action time to congruent (422 msec), incongruent (495 msec)

or neutral stimuli (440 msec), compared to the control group.

Nor were there any significant differences between any of the

incongruence measures and the controls. In this session KP

again demonstrated no significant differences in accuracy

(94%) to the control group, and her consistency (ICV) in

responding to neutral stimuli increased relative to the previ-

ous session (4.91), but was not significantly higher than in the

control group (mean ¼ 3.98, SD ¼ .89; t ¼ .99).

In summary, in the first session using the flanker task (S2),

KP was consistently slower in responding to all three types of

stimuli. KP also demonstrated significantly larger incongru-

ence costs, but this is likely a product of generalised slowing.

In the second Flanker session (S3), KP demonstrated no sig-

nificant impairment compared to controls.
4. Discussion

In this study we explored the behavioural consequences of a

lesion of the caudal right pre-SMA on three standard
measures of cognitive control. Our aim was to identify

whether KP's behaviour had changed as a result of the lesion

and how this could be integrated into contemporary accounts

of pre-SMA function. To our knowledge the lesion described

here is unique in the literature as it does not extend into

neighbouring anterior cingulate cortex or SMA.

We employed tasks designed to index specific aspects of

executive function or cognitive control in order to stratify the

behavioural effects of the lesion. We explored whether re-

sponses that require inhibition of pre-potent response (STOP

task), updating of a response plan (CHANGE task), or inhibition

of distractors (Eriksen flanker) were affected when perfor-

mance was compared to a control group. We found that KP

demonstrated a specific deficit when rapidly updating a

response plan as assessed by the CHANGE task. However, no

significant deficits were observed when KP was required to

withhold a response on the STOP task or during situations

where conflict occurred at the level of the stimulus, as in the

Eriksen flanker task (except generalised slowing).

The location of the lesion with respect to medial frontal

activations from several previous experiments which were

designed to isolate brain responses associated with either

stopping or changing a response plan is shown in Fig. 4A and

B. There is clearly a high degree of overlap with activation foci

from tasks requiring either stopping or changing a response

plan, yet in this patient we only observed a deficit in action

updating. This illustrates the challenge for interpretation of

these behavioural findings. We now attempt to place this

finding in the context of current theories of medial frontal

cortical function.

One approach to explaining the relationship between brain

function and cognitive control is to examine the complexity of

the response required for a given task. Classifying paradigms

with respect to their complexity potentially provides a single

metric to distinguish different tasks (Nachev et al., 2008), and

offers a way to interpret the range of behaviour which has

been associated with the pre-SMA (Behrens et al., 2012). For

http://dx.doi.org/10.1016/j.cortex.2014.08.004
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example, performance on the STOP task requires an on-going

response to be inhibited, whereas the CHANGE taskmight first

require inhibition of the prepared response and then execution

of the alternate response. As the CHANGE task is computa-

tionally more complex than the STOP task, these tasks might

recruit different brain areas.

It has been suggested that such differences in functional

complexity could be encoded along a rostro-caudal gradient

within the supplementary motor complex (SMC), an area

which includes both pre-SMA and SMA (Nachev et al., 2008). In

this model, more rostral areas are associated with a higher

degree of conflict processing or complexity of response than

caudal regions. What evidence is there that such a gradient

exists in SMC?

Neuroimaging and lesion evidence in humans, and

neurophysiology in monkeys suggests that increasingly

complex tasks are more often associated with rostral SMC

areas (Matsuzaka & Tanji, 1996; Nachev et al., 2005; Picard &

Strick, 1996; Picard & Strick, 2001), with caudal regions more

strongly associated with action execution, but it remains un-

clear the degree of functional granularity it is possible to

detect within this region. In terms of brain structure, pre-SMA

and SMA are separable based on their patterns of structural

connectivity in both humans and monkeys (Inase, Tokuno,

Nambu, Akazawa, & Takada, 1999; Johansen-Berg et al.,

2004). Furthermore, in humans, pre-SMA has been parcellated

into anterior and posterior regions based on differences in

functional connectivity (Zhang, Ide, & Chiang-shan, 2012). As

the resolution of these techniques improves, further sub-

divisions may also be detectable.

In the context of the lesion described here, the complexity

model predicts that stopping responses could be initiated by

structures other than pre-SMA. One possible candidate is

adjacent, caudally located SMA, where stimulation or lesions

have been found to affect the ability to inhibit actions (Drewe,

1975; Fried et al., 1991; Picton et al., 2007), and which has also

been associated with automatic, unconscious inhibition of

voluntary actions (Sumner et al., 2007). Therefore it might be

possible that pre-SMA is not specifically required for stopping,

and instead plays amore important role in switching response

plans.

A challenge to this interpretation comes from recent work

where pre-SMA activity was modulated using TMS during

performance of a response inhibition task. The authors re-

ported that implementation of the stopping process was dis-

rupted without affecting the ability to update response plans

(Cai et al., 2012; Obeso et al., 2013). Macrostimulation of pre-

SMA in humans has also been found to halt motor re-

sponses (Filevich, Kühn, & Haggard, 2012; Swann et al., 2012).

Although these studies suggest that pre-SMA is directly

involved in stopping responses, the use of SMA as a control

site could have extended their findings, and the possibility of

non-localised effects of the stimulation modalities cannot be

entirely discounted, particularly since SMA is directly adja-

cent to pre-SMA. However, if stimulation of pre-SMA can

inhibit a response but a lesion of the caudal pre-SMA does not

affect stopping, how can these apparently inconsistent posi-

tions be reconciled?

One approach is to consider whether inhibitory control of

behaviour might not be governed by a unitary system. In
humans, although the Go-NoGo and STOP-signal paradigms

have often been grouped collectively under the term ‘response

inhibition’, they are actually associated with quantitatively

different patterns of activation (Swick, Ashley, & Turken,

2011) e suggesting that ‘not going’ and ‘stopping’ are not

necessarily synonymous. Recently it has been proposed that

inhibiting a responsemight be achieved in two different ways:

reactive and proactive (Aron, 2011). Reactive inhibition is con-

ceptualised as a global stopping mechanism analogous to the

handbrake in a car, whereas proactive inhibition is a selective

system deployed when stopping is anticipated, more like a

footbrake.

The neuroanatomical evidence for the existence of sepa-

rate response inhibition pathways comes from monkey

neurophysiology studies. Here pre-SMA and SMA have been

found to maintain separate projections with two subcortical

regions that have frequently been associated with response

inhibition: the STN and striatum (Inase et al., 1999). The

frontosubthalamic and frontostriatal pathways are thought to

mediate ‘hyperdirect/reactive’ and ‘indirect/proactive’ modes

of inhibition respectively. Evidence from intracellular re-

cordings suggests that the convergence of these pathways in

the basal ganglia may explain their complementary func-

tionality.When STN and globus pallidus neurons are activated

in response to cortical or corticofugal stimulation, they are

subsequently inhibited via activation of the slower frontos-

triatal projection (Smith, Beyan, Shink, & Bolam, 1998).

Although the microcircuitry of the basal ganglia is highly

complex and still not fully understood, this feedback mecha-

nism might facilitate the process of halting an action in order

to then initiate an alternative response, and provides a

possible explanation for the existence of separate cortico-

subcortical inhibitory pathways.

In humans, changes in motor-evoked potentials (MEPs)

recorded during performance of response inhibition tasks

have been used to explore how differences in task re-

quirements can affect the rest of the motor system. In a

simple STOP-signal task that required only a left or right

thumb press in response to the direction of a go signal, sup-

pression of motor activity in successful STOP trials was

observed bilaterally in both hand and leg muscles up to

400 msec after the stimulus was presented (Badry et al., 2009).

Thus this result appears to exemplify global inhibition. In a

separate experiment where participants were cued as to

which hand movement they were likely to have to inhibit,

preparatory suppression was observed more specifically,

occurring only in the cued effector muscles (Claffey, Sheldon,

Stinear, Verbruggen, & Aron, 2010). These findings suggest

that inhibition can be applied globally or in a selective fashion

depending on the behavioural context. They may therefore

reflect the difference between deployment of reactive vs.

proactive inhibition.

If there are differentmechanisms for inhibition, how could

this explain the findings reported here in our patient?

Consider a situation where reactive inhibition is initiated by

SMA and proactive inhibition by pre-SMA. First, following a

lesion of the pre-SMA region mediating proactive inhibition,

performance of the STOP task would remain intact if reactive

stopping were mediated by SMA. Paradoxically, response

times might even improve, as it would minimize involvement

http://dx.doi.org/10.1016/j.cortex.2014.08.004
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of the slower, frontostriatal selective stopping mechanisms.

Second, in a situation where there is a selective deficit in

proactive inhibition, performance of the CHANGE task would

now have to rely on the reactive inhibitory mechanisms. Thus

instead of being able to selectively halt a pre-potent response

and update it, the reactive global stopping response would

have to be deployed.

Deploying such a mechanism might be possible but comes

at a cost. STN stimulation in Parkinson's disease ewhich may

affect the hyperdirect/reactive pathway e improves perfor-

mance on STOP and Go-NoGo tasks (Van den Wildenberg

et al., 2006), but also results in cortical inhibition-related ac-

tivity which persists for up to 400 msec (Baker, Montgomery,

Rezai, Burgess, & Lüders, 2002). Suppression of motor output

over a similar timescale due to global inhibition has also been

observed using MEPs (Badry et al., 2009). These data suggest

that although the CHANGE task could be performed using the

reactive inhibitory pathway, this would come at the cost of a

delay due to the duration of the post-stimulus suppression.

Thus, caudal pre-SMA may not be necessary for stopping per

se, but might be more important for selectively inhibiting an

action plan in order to switch to an alternative response. This

possibility is supported by evidence from studies of neurons in

monkey pre-SMA and functional imaging in humans which

suggest that pre-SMA may be crucial for switching between

controlled and automatic behaviour (Forstmann et al., 2008;

Isoda & Hikosaka, 2007). Thus, it is likely that this patient

might also exhibit elongated reaction times on tasks which

specifically test the ability to switch between response plans.

Unfortunately, we did not have the opportunity to test this.

As there is evidence to suggest that focal lesions can also

result in disruption of network activity (Gratton et al., 2012),

and since pre-SMA is thought to form a part of a right-

lateralised inhibitory network (Aron et al., 2007), to what

extent can it be reasonably argued that these findings are

attributable to deficits solely in pre-SMA function? First, the

lesion is a consequence of a resection, rather than vascular

pathology, and is highly constrained within the grey matter,

therefore it is unlikely that the observed behaviour is the

result of a pure disconnection syndrome. Second, this distinct

deficit in switching between responses is consistent with

previous electrophysiological recordings in monkey pre-SMA

(Isoda & Hikosaka, 2007, 2008), whereas the function of the

other regions involved in this inhibitory network, IFC and STN,

has been more consistently associated with either stopping

responses or attentional capture (Aron& Poldrack, 2006; Sharp

et al., 2010; Swann et al., 2012), behaviours in which we

observed no deficit at all. However, future studies may still

wish to consider employing functional or structural neuro-

imaging e such as DTI or resting state e in order to test for

possible differences in network function following such

lesions.

The lateralisation of the lesion to the right hemisphere

raises the question of whether a patient presenting with a left

hemisphere lesion would demonstrate a similar deficit. The

extant evidence places right pre-SMA as a node in a right-

hemisphere network involved in response inhibition (Aron

et al., 2007), but to our knowledge no similar network has

been identified in the left hemisphere. A recent meta-analysis

suggests that right pre-SMA is more strongly activated in
response to increased task difficulty e situations which are

very likely to involve an element of selection or response

switching (Keuken et al., 2014). Therefore it appears that there

is evidence to suggest that left and right pre-SMA may

perform different functions, but how much these reflect

hemispheric specialisations and differences in task design

remains an open question.

This discussion has focused on the role of pre-SMA and

SMA in stopping and switching response plans. Other regions

within medial frontal cortex, particularly ACC, have also been

implicated in stopping responses (Botvinick et al., 1999).

Lesion studies have demonstrated functional heterogeneity

within ACC, with the behavioural deficits dependent on the

modality of response (Turken & Swick, 1999), and more often

associated with deficits in error detection and correction

(Ullsperger & von Cramon, 2006). The Eriksen Flanker differs

fundamentally from the STOP and CHANGE paradigms

because it activates conflicting responses simultaneously,

analogous to the Stroop effect, rather than via two separate

stimuli presented at different temporal intervals. This may

explain why we did not observe any significant behavioural

deficits on this paradigm, except generalised slowing. These

data might arguably be considered to be consistent with the

proposal that ACC does not activate when only stimulus se-

lection is required, but instead appears to provide an evalua-

tive and error monitoring function in situations of conflict

(Rushworth, Walton, Kennerley, & Bannerman, 2004; Swick &

Turken, 2002).

In conclusion, our finding of a dissociation between stop-

ping and switching actions following a lesion of caudal pre-

SMA sheds new light on the role of this brain area in the

control of action. The results suggest that caudal pre-SMA

plays an important role in facilitating selective inhibition,

either by promoting this directly or by initiating transitions

between reactive and proactive inhibitory mechanisms.

Future investigationsmight profitably consider the distinction

between reactive and proactive mechanisms when devel-

oping tasks to probe the fundamental function of pre-SMA.
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Lüders, H. O. (2002). Subthalamic nucleus deep brain stimulus
evoked potentials: physiological and therapeutic implications.
Movement Disorders, 17(5), 969e983.

Behrens, T. E., Fox, P., Laird, A., & Smith, S. M. (2012). What is the
most interesting part of the brain? Trends in Cognitive Sciences.

Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D.
(1999). Conflict monitoring versus selection-for-action in
anterior cingulate cortex. Nature, 402(6758), 179e181.

Cai, W., George, J. S., Verbruggen, F., Chambers, C. D., & Aron, A. R.
(2012). The role of the right presupplementary motor area in
stopping action: two studies with event-related transcranial
magnetic stimulation. Journal of Neurophysiology, 108(2), 380e389.

Claffey, M. P., Sheldon, S., Stinear, C. M., Verbruggen, F., &
Aron, A. R. (2010). Having a goal to stop action is associated
with advance control of specific motor representations.
Neuropsychologia, 48(2), 541e548.

Couto, B., Sede~no, L., Sposato, L. A., Sigman, M., Riccio, P. M.,
Salles, A., et al. (2012). Insular networks for emotional
processing and social cognition: comparison of two case
reports with either cortical or subcortical involvement. Cortex.

Crawford, J. R., & Garthwaite, P. H. (2002). Investigation of the
single case in neuropsychology: confidence limits on the
abnormality of test scores and test score differences.
Neuropsychologia, 40(8), 1196e1208.

Crawford, J. R., Garthwaite, P. H., & Porter, S. (2010). Point and
interval estimates of effect sizes for the case-controls design
in neuropsychology: rationale, methods, implementations,
and proposed reporting standards. Cognitive Neuropsychology,
27(3), 245e260.

Curtis, C. E., & D'Esposito, M. (2003). Success and failure
suppressing reflexive behavior. Journal of Cognitive
Neuroscience, 15(3), 409e418.

Deecke, L., & Kornhuber, H. H. (1978). An electrical sign of
participation of the mesial “supplementary”motor cortex in
human voluntary finger movement. Brain Research, 159(2),
473e476.

Drewe, E. A. (1975). Go-no go learning after frontal lobe lesions in
humans. Cortex, 11(1), 8e16.

Duque, J., Olivier, E., & Rushworth, M. (2013). Topedown
inhibitory control exerted by the medial frontal cortex during
action selection under conflict. Journal of Cognitive Neuroscience,
25(10), 1634e1648.
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