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We study the embedding problem of enhanced and augmented hypercubes into complete
binary trees. Using tree traversal techniques, we compute the minimum average edge
congestion of enhanced and augmented hypercubes into complete binary trees.
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1. Introduction and terminologies

Let G andH be finite graphs with n vertices. V (G) and V (H) denote the vertex sets of G andH , respectively. E(G) and E(H)
denote the edge sets of G and H , respectively. An embedding [2] f of G into H is defined as follows:

(i) f is a bijective map from V (G) → V (H)

(ii) f is a one-to-one map from E(G) to {Pf (f (u), f (v)) : Pf (f (u), f (v)) is a path in H between f (u) and f (v)}. Some authors
use the name labeling instead of embedding. We may use both terminologies here.

The average congestion problem:
The congestion of an embedding f of G into H is the maximum number of edges of G that are embedded on any single

edge of H . Normally an embedding f of G into H defines a mapping of V (G) into V (H) and does not map the edges of E(G)
into E(H). In the congestion problem, we need the information as to how the edges of E(G) are embedded into E(H). For
every edge (u, v) of G, there are several paths between its images f (u) and f (v) in H . Let us assume that the embedding f of
G into H defines a unique path between f (u) and f (v) in H for every edge (u, v) of G. Let Pf (f (u), f (v)) denote the unique
path between f (u) and f (v) in H for the edge (u, v) of G.

The congestion on an edge e of H , with respect to an embedding f is defined by

Cf (G,H, e) = |{(u, v) ∈ E(G) : e ∈ Pf (f (u), f (v))}| (1)
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and the minimum congestion on e is

Cmin(G,H, e) = min
f

Cf (G,H, e) (2)

where the minimum is taken over all embeddings f of G into H .
The average congestion of an embedding f of G into H is denoted by

Cf (G,H) =
1

|E(H)|

−
e∈E(H)

Cf (G,H, e) (3)

and the minimum average congestion is denoted byC(G,H) = min
f

Cf (G,H) (4)

where the minimum is taken over all embeddings f of G into H . The average congestion problem [3] of a graph G into H is to
findC(G,H).

The following lemma provides a method to estimate the sum of congestions of an embedding. It will be used throughout
this paper.

Lemma 1 ([23]). Let f be an embedding of a graph G into an arbitrary tree T . Let e ∈ E(T ) and T1 be a component of T − e. Then
the congestion Cf (e) on e is given by

Cf (e) =

−
v∈G1

dG(v) − 2|E(G1)| (5)

where G1 is the subgraph of G induced by the vertices {f −1(u) : u ∈ T1} and dG(v) denotes the degree of v in G. �

2. Overview of the paper

The concept of embedding is widely studied in the literature of fixed interconnection parallel architectures [27]. The
average congestion problem of an arbitrary graph on a path is called the linear layout or the linear arrangement problem in
the VLSI literature [18]. The average congestion problem is NP-complete for general graphs [14,18,25]. Even though there
are numerous results and discussions on the congestion-sum problem, most of them deal with only approximate results
[5,12,17].

The average congestion problem is studied for binary trees into paths [5,12], hypercubes into grids [3], complete graphs
into hypercubes [17]. The bounded cost of dilation and congestionhas been estimated for the embedding onbinary trees [25].
Most of the works on the average congestion problem are on a particular case in which the host graph is a path, or a cycle
[9,18]. There are also other general results on embeddings [1].

The concept of congestion is similar to cutwidth in graph theory [9,24]. There are several results on the congestion
problem of various architectures such as complete binary trees into star and pancake graphs [7], trees into hypercubes [21],
hypercubes into grids [3], complete binary trees into grids and extended grids [22], ladders and caterpillars into
hypercubes [4,8] and generalized wheels into arbitrary trees [23].

The embeddings discussed in this paper produce exact results for the average congestion. We demonstrate that the
average congestion problem of folded hypercubes, and enhanced hypercubes into complete binary trees can be constructed
in linear time.

3. Embedding of enhanced hypercubes into complete binary trees

Hypercube network topology has become the most popular message-passing architecture, and several multicomputer
configurations based on this topology have been designed and even marketed. There are different variations of hypercubes,
for example, folded hypercubes [27], crossed hypercubes [27], Fibonacci cubes [15], enhanced cubes [26], and augmented
cubes [10]. The problem of embedding complete binary trees into folded and enhanced hypercubes has been considered
in [11]. In this paper we describe the embedding of enhanced and augmented hypercubes into complete binary trees
optimizing the average congestion. We begin with the definition of a hypercube.

Definition 1. For r ≥ 1, let Qr denote the graph of the r-dimensional hypercube. The vertex set V (Qr) = {x0x1 . . . xr−1 :

xi = 0 or 1, 0 ≤ i ≤ r − 1}. Two vertices x0x1 . . . xr−1 and y0y1 . . . yr−1 are adjacent if and only if they differ exactly in one
position.

Definition 2. The enhanced hypercube Qr,k, 0 ≤ k ≤ r − 1, is a graph with vertex set V (Qr,k) = V (Qr) and edge set
E(Qr,k) = E(Qr) ∪ {(x0x1 . . . xk−2xk−1xk . . . xr−1, x0x1 . . . xk−2xk−1xk . . . xr−1), xi = 0 or 1, 0 ≤ i ≤ r − 1}. The edges of Qr in
Qr,k are hypercube edges and the remaining edges of Qr,k are called complementary edges.
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Fig. 1. Folded hypercube Q3,1 .
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Fig. 2. (a) Enhanced hypercube Q3,2 . (b) Enhanced hypercube Q4,2 . The dashed edges are complementary edges and the remaining edges are hypercube
edges.

Remark 1. The set {(x0x1 . . . xk−2xk−1xk . . . xr−1, x0x1 . . . xk−2xk−1xk . . . xr−1)} is empty when k = 0. Hence Qr,0 reduces to
the r-dimensional hypercube. In what follows Qr is denoted by Qr,0.

Notice that the enhanced hypercubes Qr,1 are folded hypercubes. The folded hypercube Qr,1 proposed by El-Amawy
and Latifi [13] is (r + 1)-regular, has 2r vertices and (r + 1)2r−1 edges; Qr,1 has diameter ⌈r/2⌉ and connectivity
r + 1. The graph shown in Fig. 1 is a 3-dimensional folded hypercube Q3,1, where the complementary edges are
(000, 111), (001, 110), (010, 101), and (011, 100).

The enhanced hypercubes Qr,k, 1 ≤ k ≤ r − 1, proposed by Tzeng and Wei [26] are (r + 1)-regular and have diameter
k + ⌈(r − k)/2⌉. The graphs in Fig. 2(a) and (b) are enhanced hypercubes Q3,2 and Q4,2, respectively.

A subcube represents a hypercube of lower order which is an induced subgraph of a hypercube of higher order.

3.1. Properties of enhanced hypercubes and complete binary trees

A few properties of enhanced hypercubes and complete binary trees are listed below.

Proposition 1. |E(Qr,k)| = (r + 1)2r−1, k ≥ 1.

Proof. The proof follows from the fact that Qr,k is (r + 1)-regular. �

Notation 1. Let Sα denote a set of α vertices of a guest graph G and G[Sα] denote the subgraph of G induced by Sα . Let Sα

represent some Sα forwhich the number of edges |E(G[Sα])| ismaximum. This Sα is called amaximumsubgraph ofα vertices
in G.

Lemma 2 ([20]). The cardinality of the edge set of a maximum subgraph of Qr induced by α vertices is given by

|E(G[Sα])| =


m2m−1 if α = 2m

m(2m−1
− 1) if α = 2m

− 1

where m ≤ r. �

Lemma 3. The cardinality of the edge set of a maximum subgraph of Qr,k induced by α vertices is given by

|E(G[Sα])| =


(m + 1)2m−1 if α = 2m

(m + 1)(2m−1
− 1) if α = 2m

− 1

where r − k + 1 ≤ m ≤ r.
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Fig. 3. T 4 with Ψ (e1) = 8, Ψ (e2) = 1, Ψ (e3) = 3, Ψ (e4) = 1, Ψ (e7) = 1, and Ψ (e8) = 1.

Proof. When m < r − k + 1,Qm,k−(r−m) has no complementary edges of Qr,k. Thus Qm,k−(r−m), when m < r − k + 1, is
nothing but Qm,0. In other words, Qm,k−(r−m) has complementary edges of Qr,k only whenm ≥ r − k + 1.

|E(G[Sα])| = largest possible hypercube edges of S + largest possible complementary edges of S where |S| = α.
By the definition of enhanced hypercubes, wheneverm ≥ r −k+1, largest possible complementary edges of S = 2m−1 if

|S| = 2m and largest possible complementary edges of S = 2m
− 1 if |S| = 2m

− 1. Thus by using Lemma 2, we write

|E(G[Sα])| =


m2m−1

+ 2m−1 if α = 2m

m(2m−1
− 1) + (2m−1

− 1) if α = 2m
− 1

whenm ≥ r − k + 1. Thus

|E(G[Sα])| =


(m + 1)2m−1 if α = 2m

(m + 1)(2m−1
− 1) if α = 2m

− 1

when r − k + 1 ≤ m ≤ r . �

Notation 2. Let T r denote a complete binary tree rooted at w, with 2r nodes. An edge e = uv of T r with d(w, v) =

d(w, u) + 1, is called eα if the subtree Teα of T r rooted at v has α vertices. Let Ψ (eα) denote the number of eα ’s in T r . In
other words, Ψ (eα) denotes the number of subtrees of T r with α vertices. See Fig. 3.

Proposition 2 ([19]). The number of subtrees of T r with α vertices is given by

Ψ (eα) =

1 if α = 2m, m = 1, 2, . . . , r − 1
2r−m

− 1 if α = 2m
− 1, m = 2, 3, . . . , r − 1

2r−1 if α = 1.

3.2. Inorder embedding of enhanced hypercube into complete binary tree

We apply the well-known inorder traversal to construct an optimal embedding of Qr,k into a complete binary tree T r

with 2r nodes. Inorder traversal on a tree is a widely known technique. This traversal is used to read the labels of the tree
and output the inorder listing of the labels. Here we use this technique to assign labels {0, 1, . . . , 2r

− 1} to the nodes of the
tree T r .

3.2.1. The inorder embedding
The inorder embedding I of Qr,k into a complete binary tree T r assigns labels to the nodes of T r by inorder traversal as

described in Fig. 4.

Theorem 1. The inorder embedding I of Qr,k into complete binary tree T r yields minimum average congestionC(Qr,k, T r).

Proof. It is enough to prove that the edge congestion on each edge of T r is minimum. The nodes of T r are labeled using
inorder traversal. Let vl

i, i = 0, 1, 2, . . . , 2l
− 1 be the vertices of T r at level l, 0 ≤ l ≤ r . Let T (vl

i) denote the subtree of T r

rooted at vl
i .

We claim that the subcube of Qr,k induced by the labels of T (vl
i) is isomorphic to the subcube of Qr,k induced by the labels

of T (vl
0)r{0}. A binary representation of the label of v belonging to the subtree T (vl

i) is of the formα0α1 . . . αl−1xlxl+1 . . . xr−1,
where α0α1 . . . αl−1 is the binary representation of i. In other words, if α0α1 . . . αl−1 is the binary representation of i, then a
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Fig. 4. Inorder embedding of Q4,3 into T 4 .
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Fig. 5. The binary labels of T 6 are the vertices of Q6,k assigned by inorder embedding. T (v2
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2) are marked in circles. The labels of T (v2
0) are

{0, 1, . . . , 15}. The labels of T (v2
0) r {0} are {1, 2, . . . , 15}. The subcube of Q6,k induced by the labels of T (v2

0) r {0} is isomorphic to the subcube of Q6,k

induced by the labels of T (v2
2).

sequence of the form α0α1 . . . αl−1xlxl+1 . . . xr−1 is a label of some vertex of T (vl
i). There are 2r−l vertices of T (vl

i) and each
is represented by xlxl+1 . . . xr−1 preceded by α0α1 . . . αl−1. Let a, b ∈ T (vl

i) whose labels are

a = α0α1 . . . αl−1xlxl+1 . . . xr−1

b = α0α1 . . . αl−1ylyl+1 . . . yr−1

where α0α1 . . . αl−1 is the binary representation of i. Then consider the corresponding vertices u, v ∈ T (vl
0) r {0} where

u = 00 . . . 0xlxl+1 . . . xr−1, and v = 00 . . . 0ylyl+1 . . . yr−1.

Thus, (a, b) is an edge of the subcube of Qr,k induced by the labels of T (vl
i) if and only if (u, v) is an edge of the subcube of

Qr,k induced by the labels of T (vl
0)r{0}. See Fig. 5. Therefore, the subcube of Qr,k induced by the labels of T (vl

i) is isomorphic
to the subcube of Qr,k induced by the labels of T (vl

0) r {0}. The subcube induced by the labels of T (vl
0) is Qr−l,0 which is a

maximum subgraph on 2r−l vertices of Qr,k. In the sameway the subcube induced by the labels of T (vl
0)r {0} is a maximum

subgraph on 2r−l
− 1 vertices of Qr,k [6,16]. Hence the subcube induced by the labels of T (vl

i) is a maximum subgraph on
2r−l

− 1 vertices of Qr,k.
When an edge e is deleted from T r , one of the two components is rooted at some vl

j . See Fig. 6. In other words, one
of the two components is T (vl

j). Since the subcube induced by the labels of T (vl
j) is maximum, the edge congestion on e

of T r is minimum by Lemma 1. Since the edge congestion on each edge of T r is minimum, the average congestion is also
minimum. �

3.2.2. Estimation ofC(Qr,k, T r)

We now estimate the average congestion of an enhanced cube on a complete binary tree.
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Theorem 2. The minimum average congestion of an enhanced hypercube Qr,k into a complete binary tree T r is

C(Qr,k, T r) =
1

2r − 1


(r + 1)2r−1

+ 2r +

r−k−
m=2

[(r − m + 1)2r
+ (2r−m

− 1)(2m − r − 1)]

+

r−1−
m=r−k+1

[(r − m)2r
+ (2r−m

− 1)(2m − r + 1)]

 .

Proof. By Theorem 1,C(Qr,k, T r) = CI(Qr,k, T r), where I is the inorder embedding of Qr,k into T r . As described in Notation 2,
let eα be an edge of T r such that the subtree of T r rooted at e has α vertices. It is enough to prove that the edge congestion
on eα is

CI(eα) =


(r − m + 1)2m ifm < r − k + 1
(r − m)2m if r − k + 1 ≤ m ≤ r − 1

when α = 2m, and

CI(eα) =


(r − m + 1)2m

+ (2m − r − 1) ifm < r − k + 1
(r − m)(2m

− 1) + m + 1 if r − k + 1 ≤ m ≤ r − 1

when α = 2m
− 1.

As described in Notation 1, let Sα be a maximum subgraph of Qr,k induced by α vertices. We first consider the claim for
α = 2m.

Case(m < r − k + 1): As is discussed in the proof of Lemma 3, Sα is isomorphic to Qm,0. Let f be an arbitrary embedding of
Qr,k into T r . By Lemmas 1 and 2, if α = 2m, then

CI(eα) = (r + 1)2m
− 2(m2m−1)

= (r − m + 1)2m.

Case(r − k + 1 ≤ m ≤ r − 1): By Lemmas 1 and 3,

CI(eα) = (r + 1)2m
− 2(m + 1)2m−1

= (r − m)2m.

The case when α = 2m
− 1 can be proved similarly. Now the theorem follows by Proposition 2. �

Theorem 3. The average congestion problem of enhanced hypercubes into complete binary trees is solvable in linear time. �

4. Embedding of augmented hypercubes into complete binary trees

Following the recursive definition of the hypercube Qr,0, the augmented cubes AQr have been introduced in [10].
Augmented cubes are vertex symmetric, (2r − 1)-regular, and (2r − 1)-connected with diameter ⌈r/2⌉.

Definition 3. Let r ≥ 1 be an integer. The augmented cube AQr of dimension r has 2r vertices, each labeled by an r-bit binary
string a0a1a2 . . . ar−1. We define AQ1

= K2. For r ≥ 2,AQr is obtained by taking two copies of the augmented cube AQr−1,
denoted by AQr−1

0 and AQr−1
1 , and adding 2 × 2r−1 edges between the two as follows: Let V (AQr−1

0 ) = {0a1a2 . . . ar−1 :

ai = 0 or 1} and V (AQr−1
1 ) = {1b1b2 . . . br−1 : bi = 0 or 1}. A vertex u = 0a1a2 . . . ar−1 of AQr−1

0 is joined to a vertex
v = 1b1b2 . . . br−1 of AQr−1

1 if and only if for every i, 1 ≤ i ≤ r−1, either (1) ai = bi; in this case, (u, v) is called a hypercube
edge, or (2) ai = bi; in this case, (u, v) is called a complement edge.
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The inorder embedding I of AQr into a complete binary tree T r assigns labels to the nodes of T r by inorder traversal. The
proof of the following theorem is similar to that of Theorem 1.

Theorem 4. The inorder embedding I of AQr into complete binary tree T r yields minimum average congestionC(AQr , T r). �

Theorem 5. The minimum average congestion of an augmented cube AQr into a complete binary tree T r is

C(AQr , T r) =
1

2r − 1


r−1−
m=1

(r − m)2m+1
+

r−1−
m=2

[(r − m)(2m+1
− 2) + (2m − 1)](2r−m

− 1) + (2r − 1)2r−1


.

Proof. By Theorem 4,C(AQr , T r) = CI(AQr , T r), where I is the inorder embedding of AQr into T r . The cardinality of the edge
set of a maximum subgraph of AQr induced by α vertices is given by

|E(G[Sα])| =


(2m − 1)2m−1 if α = 2m

(2m − 1)(2m−1
− 1) if α = 2m

− 1

wherem ≤ r . It is easy to verify that

CI(eα) =


(r − m)2m+1 if α = 2m

(r − m)(2m+1
− 2) + (2m − 1) if α = 2m

− 1

for 1 ≤ m ≤ r − 1, α ≤ 2r−1. The rest of the proof is similar to the previous section. �

Theorem 6. The average congestion problem of augmented hypercubes into complete binary trees is solvable in linear time. �

5. Conclusion

We obtain the minimum average congestion of embeddings of enhanced and augmented hypercubes into complete
binary trees. It is also an interesting research topic to verify whether this technique can be employed to solve the average
congestion problem for architectures such as butterfly, torus, star, and pancake. This paper discusses hypercubes, folded
hypercubes, enhanced hypercubes and augmented hypercubes. However, there are two more families of hypercubes such
as crossed cubes and Fibonacci cubes which are not discussed here. It is interesting to find a methodology to solve the
average congestion problem for these two classes. �
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