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Some bivariate gamma distributions
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Abstract

We introduce two new bivariate gamma distributions based on a characterizing property involving products of gamma and
beta random variables. We derive various representations for their joint densities, product moments, conditional densities and
conditional moments. Some of these representations involve special functions such as the complementary incomplete gamma and
Whittaker functions. We also discuss ways to construct multivariate generalizations.
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1. Introduction

There have only been a few bivariate gamma distributions proposed in the statistics literature; see Chapter 48 in [1]
for a good review. These distributions have found useful applications in several areas; for example, in the modeling
of rainfall at two nearby rain gauges [2], data obtained from rainmaking experiments [3,4], the dependence between
annual streamflow and areal precipitation [5], wind gust data [6] and the dependence between rainfall and runoff [7].
They have also found applications in reliability theory, renewal processes and stochastic routing problems.

The aim of this work is to construct two new bivariate gamma distributions and to study their properties. The basis
for their construction is thefollowing characterization of gamma and beta distributions due to Yeo and Milne [8]. We
say that a random variableX is beta distributed with shape parametersα andβ if its probability density function (pdf)
is

f (x) = xα−1(1 − x)β−1

B(α, β)

for 0 < x < 1, α > 0 andβ > 0, where

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt
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denotes the beta function. Likewise, a random variableX is gamma distributed with shape parameterα and scale
parameterβ if its pdf is

f (x) = βαxα−1 exp(−βx)

Γ (α)

for x > 0, α > 0 andβ > 0.

Lemma 1 (Yeoand Milne [8] ). Suppose U and V are independent, absolutely continuous and non-negative random
variables such that U has bounded support. Then for any a> 0 and b> 0, any two of the following three conditions
imply the third:

(i) UV is gamma distributed with shape parameter a and scale parameter1/µ, where0 < µ < ∞;
(ii) U is beta distributed with shape parameters a and b;
(iii) V isgamma distributed with shape parameter a+ b and scale parameter1/µ.

An obvious way to generate a bivariate gamma from this lemma is to consider the joint distribution ofX = UV
andV . The joint pdf of U andV is

f (u, v) = ua−1(1 − u)b−1

B(a, b)

va+b−1 exp(−v/µ)

µa+bΓ (a + b)

and thus the joint pdf ofX andV becomes

f (x, v) = xa−1(v − x)b−1 exp(−v/µ)

µa+bΓ (a)Γ (b)
(1)

for x ≤ v andv > 0. Unfortunately, the pdf(1) corresponds to a known bivariate gamma distribution—McKay’s
bivariate gamma distribution (see Section 48.2.1 of [1] for details).

TakeU, V and W to be independent, absolutely continuous and non-negative random variables. Then two new
bivariate gamma distributions can be constructed as follows:

1. Assume thatW is beta distributed with shape parametersa and b. Assume further thatU and V are gamma
distributed with common shape parameterc and scale parameters 1/µ1 and 1/µ2, respectively, wherec = a + b.
Define

X = UW, Y = V W. (2)

Then, byLemma 1, X andY will be gamma distributed with common shape parametera and scale parameters 1/µ1
and 1/µ2, respectively. However, they will be correlated so that(X, Y) will have a bivariate gamma distribution
over(0,∞) × (0,∞).

2. Assume thatU and V are beta distributed with shape parameters(a1, b1) and (a2, b2), respectively, where
a1 + b1 = a2 + b2 = c (say). Assume further thatW is gamma distributed with shape parameterc and scale
parameter 1/µ. Define

X = UW, Y = V W. (3)

Then, byLemma 1, X andY will be gamma distributed with common scale parameter 1/µ and shape parametersa1
anda2, respectively. However, they will be correlated so that(X, Y) will again have a bivariate gamma distribution
over(0,∞) × (0,∞).

In the rest of this work, we derive various representations for the joint densities, product moments, conditional
densities and conditional moments associated with(2) and (3). We also discuss ways to construct multivariate
generalizations.

The calculations of this work make use of the following special functions: the complementary incomplete gamma
function defined by

Γ (a, x) =
∫ ∞

x
ta−1 exp(−t)dt;
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and the Whittaker function defined by

Wλ,µ(a) = aµ+1/2 exp(−a/2)

Γ (µ − λ + 1/2)

∫ ∞

0
tµ−λ−1/2(1 + t)µ+λ−1/2 exp(−at)dt .

The properties of these special functions can be found in [9,10].

2. Joint PDFs

Theorem 1states that the joint pdf of(X, Y) for the first construct can be expressed in terms of the Whittaker
function.

Theorem 1. Under the assumptions of(2), the joint pdf of X and Y is given by

f (x, y) = CΓ (b)(xy)c−1
(

x

µ1
+ y

µ2

) a−1
2 −c

exp

{
−1

2

(
x

µ1
+ y

µ2

)}
Wc−b+ 1−a

2 ,c− a
2

(
x

µ1
+ y

µ2

)
(4)

for x > 0 and y> 0, where the constant C is given by

1

C
= (µ1µ2)

cΓ (c)Γ (a)Γ (b).

Proof. The joint pdf ofU , V andW is

f (u, v,w) = C(uv)c−1wa−1(1 − w)b−1 exp

{
−

(
u

µ1
+ v

µ2

)}

from which the joint pdf ofX, Y andW becomes

f (x, y, w) = C(xy)c−1wa−2c−1(1 − w)b−1 exp

{
− 1

w

(
x

µ1
+ y

µ2

)}
.

Integrating over 0< w < 1, one obtains

f (x, y) = C(xy)c−1I (x, y), (5)

whereI (x, y) denotes the integral

I (x, y) =
∫ 1

0
wa−2c−1(1 − w)b−1 exp

{
− 1

w

(
x

µ1
+ y

µ2

)}
dw.

Substitutingu = 1/w − 1 and then using the definition of the Whittaker function, one can write

I (x, y) = Γ (b)

(
x

µ1
+ y

µ2

) a−1
2 −c

exp

{
−1

2

(
x

µ1
+ y

µ2

)}
Wc−b+ 1−a

2 ,c− a
2

(
x

µ1
+ y

µ2

)
. (6)

The result in(4) follows by substituting(6) into (5). �

Corollary 1. If b = 1 then the joint pdf (4) reduces to the simpler form

f (x, y) = C(xy)c−1
(

x

µ1
+ y

µ2

)a−2c

Γ
(

2c − a,
x

µ1
+ y

µ2

)
.

Proof. Immediate from properties of the Whittaker function; see, for example, Sections 9.22 and 9.23 of [10]. �

Theorem 2states that the joint pdf of(X, Y) for the second construct(3) can be expressed as an infinite sum of the
Whittaker functions.
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Theorem 2. Under the assumptions of(3), the joint pdf of X and Y is given by

f (x, y) = CΓ (b1)Γ (b2)µ
b1+b2−c+1

2 x
a1+b2−3

2 ya2−1 exp

(
− x

2µ

)

×
∞∑
j =0

(−1) j (µx)− j /2y j

j !Γ (b2 − j )
Wb2−b1−c− j −1

2 ,
b1+b2−c− j

2

(
x

µ

)
(7)

for x ≥ y > 0, where the constant C is given by

1

C
= µcΓ (c)B(a1, b1)B(a2, b2).

The corresponding expression for0 < x ≤ y canbe obtained from(7) by symmetry, i.e. interchange x with y, a1 with
a2, and b1 with b2.

Proof. The joint pdf ofU , V andW is

f (u, v,w) = Cua1−1va2−1(1 − u)b1−1(1 − v)b2−1wc−1 exp

(
−w

µ

)

from which the joint pdf ofX, Y andW becomes

f (x, y, w) = Cxa1−1ya2−1w1−c(w − x)b1−1(w − y)b2−1 exp

(
−w

µ

)
(8)

for w ≥ max(x, y). The integration of(8) over max(x, y) ≤ w < ∞ is not easy. However,using the series
representation

(1 + z)α =
∞∑
j =0

Γ (α + 1)

Γ (α − j + 1)

zj

j ! ,

one can write

f (x, y) = CΓ (b2)x
a1−1ya2−1

∞∑
j =0

(−y) j I j (x)

j !Γ (b2 − j )
(9)

for x ≥ y > 0, whereI j (x) denotes the integral

I j (x) =
∫ ∞

x
wb2−c− j (w − x)b1−1 exp

(
−w

µ

)
dw.

Substitutingu = w/x − 1 and then using the definition of Whittaker function, one can obtain the expression

I j (x) = Γ (b1)µ
b1+b2−c− j +1

2 x
b1+b2−c− j −1

2 exp

(
− x

2µ

)
Wb2−b1−c− j −1

2 ,
b1+b2−c− j

2

(
x

µ

)
. (10)

The result in(7) follows by substituting(10) into (9). �

Corollary 2. If b1 = 1 then the joint pdf (7) reduces to the simpler form

f (x, y) = CΓ (b2)µ
1−a2xa1−1ya2−1

∞∑
j =0

(−1) j

j !Γ (b2 − j )

(
y

µ

) j

Γ
(

1 + b2 − c − j ,
x

µ

)
.

Onthe other hand, if b2 = 1 then(7) reduces to

f (x, y) = CΓ (b1)µ
b1−c+2

2 W2−b1−c
2 ,

1−a1
2

(
x

µ

)
x

a1
2 −1ya2−1 exp

(
− x

2µ

)
.

If both b1 = 1 and b2 = 1 then(7) reduces to

f (x, y) = Cµ2−cxa1−1ya2−1Γ
(

2 − c,
x

µ

)
.
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Proof. As in Corollary 1. �

3. Product moments

For the two distributions introduced in the previous section, the product moments can expressed in terms of
elementary functions, as shown by the following theorems.

Theorem 3. The product moment of X and Y associated with(4) is given by

E(XmYn) = µm
1 µn

2Γ (c + m)Γ (c + n)B(a + m + n, b)

Γ (a)Γ (b)Γ (c)
(11)

for m ≥ 1 and n≥ 1. In particular,

Cov(X, Y) = µ1µ2ab

a + b + 1

and

Corr(X, Y) =
√

ab

a + b + 1
. (12)

Proof. Note from(2) thatE(XmYn) = E((UW)m(V W)n) = E(Um)E(Vn)E(Wm+n). So,(11) follows sinceU and
V are gamma random variables andW a beta random variable. �

Theorem 4. The product moment of X and Y associated with(7) is given by

E(XmYn) = µm+nΓ (m + n + c)B(m + a1, b1)B(n + a2, b2)

Γ (c)B(a1, b1)B(a2, b2)
(13)

for m ≥ 1 and n≥ 1. In particular,

Cov(X, Y) = µ2a1a2

c

and

Corr(X, Y) =
√

a1a2

c
. (14)

Proof. Note from(3) thatE(XmYn) = E((UW)m(V W)n) = E(Um)E(Vn)E(Wm+n). So,(11) follows sinceU and
V are beta random variables andW a gamma random variable. �

4. Conditional PDFs and moments

Theorems 5and6 derive the conditional distributions corresponding to(4) and(7), respectively.

Theorem 5. For the pdf (4), the conditional pdf of Y given X= x is given by

f (y | x) = Cµa
1Γ (a)Γ (b)xbyc−1

(
x

µ1
+ y

µ2

) a−1
2 −c

exp

{
1

2

(
x

µ1
− y

µ2

)}
Wc−b+ 1−a

2 ,c− a
2

(
x

µ1
+ y

µ2

)
.

The corresponding pdf of X given Y= y isobtained by interchanging x with y andµ1 with µ2.

Proof. Immediate from(4) and the fact thatX andY are gamma distributed with the common shape parametera and
scale parameters 1/µ1 and 1/µ2, respectively. �
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Fig. 1. Contours of the joint pdf(4) with (a, b) = (2, 2) for (a), (a, b) = (3, 3) for (b), (a, b) = (4, 4) for (c) and(a, b) = (5, 5) for (d).

Theorem 6. For the pdf (7), the conditional pdf of Y given X= x is given by

f (y | x) = CΓ (a1)Γ (b1)Γ (b2)µ
a1+b2+1

2 x
b2−1−a1

2 ya2−1 exp

(
x

2µ

)

×
∞∑
j =0

(−1) j (µx)− j /2y j

j !Γ (b2 − j )
Wb2−b1−c− j −1

2 ,
b1+b2−c− j

2

(
x

µ

)
(15)

for x ≥ y > 0, and by

f (y | x) = Cµa1Γ (a1)Γ (b1)Γ (b2)µ
b1+b2−c+1

2 y
a2+b1−3

2 exp

(
x

µ
− y

2µ

)

×
∞∑
j =0

(−1) j (µy)− j /2x j

j !Γ (b1 − j )
Wb2−b1−c− j −1

2 ,
b1+b2−c− j

2

(
y

µ

)
(16)

for y ≥ x > 0. The corresponding pdf of X given Y= y is obtained by interchanging x with y, a1 with a2 and b1
with b2.

Proof. Immediate from(7) and the fact thatX andY are gamma distributed with common scale parameter 1/µ and
shape parametersa1 anda2, respectively. �

The conditional moments of the formE(Xm | Y = y) andE(Yn | X = x) for (4) and(7) appear mathematically
intractable to obtain.

It is of interest to know how the McKay’s bivariate gamma distribution given by(1)compares to the two new models
given by(4) and(7). It is known that the correlation coefficient corresponding to(1) is

√
a/(a + b). Comparing with

the correlation coefficient in(12), wenote that
√

a/(a + b) ≥ √
ab/(a + b+ 1) for all a > 0 andb > 0. Thisimplies

that the correlation structure exhibited by(4) is always weaker than that of the McKay’s bivariate gamma distribution.
The correlation coefficient in(14)depends on the three parameters(a1, a2, c) and so the correlation structure of(7) is
more flexible than that of McKay’s bivariate gamma distribution (this means that the amount of correlation exhibited
can be stronger, weaker or about the same).

Figs. 1and2 illustrate the correlation structures of the joint pdfs(4) and(7) for selected values of their parameters.
If a = b then the correlation coefficienta/(2a + 1) in (12) is an increasing function ofa. This is supported by the
joint contours inFig. 1. If a1 > a2 (respectively,a1 < a2) then the correlation betweenX andY is skewed to the left
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Fig. 2. Contours of the joint pdf(7) with (a1, a2, c) = (4, 1, 8) for (a), (a1, a2, c) = (4, 3, 8) for (b), (a1, a2, c) = (4, 5, 8) for (c) and
(a1, a2, c) = (4, 7, 8) for (d).

(respectively, to the right) as shown inFig. 2. It is also evident fromFig. 2that larger values ofa1 or a2 correspond to
stronger correlation betweenX andY.

5. Multivariate case

It is natural to ask how the pdfs(1), (4) and(7) can be generalized to the multivariate case.Lemma 1can be applied
in several ways to generate multivariate gamma distributions. Some of these are:

1. Assume thatW is a beta distributed random variable with shape parametersa andb. Assume further thatUj ,
j = 1, 2, . . . , p, are gamma distributed independent random variables (and independent ofW) with common
shape parameterc and scale parameters 1/µ j , j = 1, 2, . . . , p, wherec = a + b.

2. Assume thatUj , j = 1, 2, . . . , p, are beta distributed random variables with shape parameters(aj , bj ), j =
1, 2, . . . , p, whereaj + bj = c (say) for j = 1, 2, . . . , p. Assume further thatW is a gamma distributed random
variable(independent ofUj , j = 1, 2, . . . , p) with shape parameterc and scale parameter 1/µ.

In both these cases, byLemma 1, (U1W,U2W, . . . ,UpW) will have ap-variate gamma distribution over(0,∞)p.
The following generalization ofLemma 1provided by Yeo and Milne [8] provides other ways to generate

multivariate gammas.

Lemma 2 (Yeo and Milne [8] ). Suppose for a fixed integer p≥ 2 that X1, X2, . . . , Xp are independent and
identically distributed (iid) non-negative random variables which are independent of another non-negative random
variable X with bounded support, and that

Y = X(X1 + X2 + · · · + Xp).

Then the two following conditions are equivalent.

(i) Y has the same distribution as each of X1, X2, . . . , Xp and belongs to the class of distributions whose
characteristic function is of the form

φ(t) = 1 − A|t|{1 + o(t)}
as t → 0, where A is a real constant.

(ii) X is beta distributed with shape parameters 1 and p− 1.

One can generate several multivariate gammas by takingX1, X2, . . . , Xp to be iid gamma distributed. This
investigation will be the subject of a future paper.
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