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Abstract

We introduce two new bivariate gamma distributions based on a characterizing property involving products of gamma and
beta random variables. We derive various representationsér jpint densities, product maents, conditional densities and
conditional moments. Some of these representations involve special functions such as the complementary incomplete gamma ar
Whittaker functions. We also discuss ways to construct multivariate generalizations.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There have only been a few bivariat@mgma distributions proposed in the statistics literature; see Chapter48in [
for a good review. These distributions have found useful applications in several areas; for example, in the modeling
of rainfall at two nearby rain gaugeg|[ data obtained from rainmaking experimergl], the dependence between
annual streamflow and areal precipitati®h Wind gust data§] and the dependence between rainfall and rundgff [
They have also found applications in reliability theosnewal processes and stochastic routing problems.

The aim of this work is to construct two new bivariate gamma distributions and to study their properties. The basis
for their construction is théollowing characterization of gamma andth distributions due to Yeo and Milng][ We
s& that a random variabl¥ is beta distributed with shape parameteendg if its probability density function (pdf)

forO < x <1, > 0andB > 0, where

1
B(a, b) = f 211 — t)P 1t
0
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denotes the beta function. Likewise, a random variablis gamma distributed with shape parameteand scale
parametep if its pdfis

BEx*~Lexp(—Bx)
I'()

forx > 0,a > 0andg > 0.

f(x) =

Lemmal (Yeoand Milne [8]). Suppose U and V are independent, absolutely continuous and non-negative random
variables such that U has bounded support. Then for any@and b> 0, any two of the following three conditions
imply the third:

(i) UV isgamma distributed with shape parameter a and scale paranig¢jerwhere0 < u < oo;

(ii) U is beta distributed with shape parameters a and b;
(i) V isgamma distributed with shape parameteta and scale parametet/ ..

An obvious way to generate a bivariate gamma from this lemma is to consider the joint distributoa-0f) V
andV. The jdant pdf of U andV is

ua—l(l _ u)b—l va+b—1 exq_v/u)
B(a, b) 13T (a + b)

and thus the joint pdf oK andV becomes

x3 1w — x)P~Texp(—v/w)
s NCVIN()

for x < v andv > 0. Unfortunately, the pdfl) corresponds to a known bivariate gamma distribution—McKay'’s

bivariate gamma distribution (see Section 48.2.11pf¢r detals).

TakeU, V andW to be independent, absolutely continuous and non-negative random variables. Then two new
bivariate gamma distributions can be constructed as follows:

f(x,v) =

@)

1. Assume thalV is beta distributed with shape parametarandb. Assume father thatU andV are gamma
distributed with common shape parametemnd scale parameterg/l; and 1/u2, resgectively, wherec = a + b.
Define

X=UW, Y=VW. )

Then, byLemma 1 X andY will be gamma distributed with common shape parame#erd scale parametergl;
and ¥/ o, resgectively. However, they will be correlated so th&¢, Y) will have a bivariate gamma distribution
over (0, o) x (0, 00).

2. Assume thaty and V are beta distributed with shape paramet@s b;) and (a, bp), resgectively, where
ai + b1 = ax + by = c (say). Assume further thal/ is gamma distributed with shape parametend scale
parameter L. Define

X=UW, Y=VW. ©)

Then, byLemma 1 X andY will be gamma distributed with common scale parameferdnd shape parametexs
anday, respectively. However, they will be correlated so thiat, Y) will again have a bivariate gamma distribution
over (0, oco) x (0, 00).

In the rest of this work, we derive various representadifor the joint densities, product moments, conditional
densities and conditional moments associated \{@hand (3). We also dscuss ways to construct multivariate
generalizations.

The calculations of this work make use of the following special functions: the complementary incomplete gamma
function defined by

o
r'@x) = f t2 Lexp(—t)dt;
X
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and the Whittaker function defined by

att2exp—a/2) [
Tu—2+1/2) Jo

The properties of these special functions can be founé, I0].

Wi (@) = thA Y21 4 tyr 12 exp—at)dt.

2. Joint PDFs

Theorem 1staes that the joint pdf of X, Y) for the first construct can be expressed in terms of the Whittaker
function.

Theorem 1. Under the assumptions @), the jant pdf of X and Y is given by
a—1
=2 ¢ 1/ X y X y
f(x,y) = CI'(b)(x C_l(—x+—y> ex {——(—+—>}W —a a<—+—> 4
*y) ey n1 o p2 I 2\a e L L AV )
for x > 0and y > 0, where the onstant C is given by

1 c
¢ = ) TOI @I ().

Proof. The joint pdf ofU, V andW is

f(u, v, w) = Cuv)* w11 - w)bleXp{— (1 + i)}
Mmoo M2

from which the joint pdf ofX, Y andW becomes

f(X, y, U)) — C(Xy)Cflwafchl(l _ w)bfl exp{_i (i + l)} )
w\ g1 p§2
Integraing over O< w < 1, one obtains
fx, y) =Coxy*Hx, y), (5)

wherel (x, y) denotes the integral

1
[(X,y) = f wd 2611 — )bt exp{—i (i + l) } dw.
0 w\ @1 H2

Substitutingu = 1/w — 1 and then using the definition of the Whittaker function, one can write

) ool (5 1)) ()
Ix,y)=IT'b) | —+ = expy—=(—+ =)W —a.al—+—]). 6
ooy ()<M1 Mz) Pl 2\ "z Mevries U T g ©)

The result in(4) follows by substituting6) into (5). O

Corollary 1. If b = 1then the pint pdf (4) reduces to the simpler form

a—-2c
fx,y) = Cixy)** <L+ l) F(Zc—a, a l).
i K2 m1 o g2

Proof. Immediate from properties of the Whittaker function; see, for example, Sections 9.22 and 912R of [0

Theorem Xtates that the joint pdf of X, Y) for the second constru¢3) can be expressed as an infinite sum of the
Whittaker functions.
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Theorem 2. Under the assumptions ¢B), the jant pdf of X and Y is given by

fx.y) = CF(bM(bz)ul%”lxa“?zyazlexp(_zi)
n

0 . s .
Z(—l)’(ux) 1/2y] X

W —by—c—j— —Cc—j — 7
B A D B e 7 ")

for x >y > 0, where the onstant C is given by

1
c= nCI'(c)B(as, by)B(az, by).

The corresponding expression f@ < x < y canbe obtained fron{7) by symmetry, i.e. interchange x with y,\sith
ap, and by with bp.

Proof. The joint pdf ofU, V andW is
f(u, v, w) = Cul Ty (1 — uyPr=1(1 — y)P21yct exp(_%>
from which the joint pdf ofX, Y andW becomes
fx.y, w) = Cxty® L l=Cw — )t (w — y)bz—lexp(_%> ®)

for w > maxX,y). The irtegration of(8) over maxx,y) < w < oo is not easy. Howevewsing the series
represetation

N Ia+1 Zj
1 o _ A+ D 2
e ,;F(a—jJrl)js’
one can write
j
f(x,y) = CI'(bp)x¥~ty%~ 12( VI (%) .

¢ 12— )

for x >y > 0, wherel j (x) denotes the integral

1 (x) = / w2~ ( — x)P171 exp(—ﬂ) dw.
X H

Substitutingu = w/x — 1 andthen using the definition of Whittaker function, one can obtain the expression

+bo—c—j+1 by+by—c—j-1 X X
lj(xX) = F(bl)ul % ] X2 = Xp( M)sz blc]1b1+b2c1(;>. (20)

The result in(7) follows by substitutind10)into (9). O

Corollary 2. If by = 1 then the pint pdf (7) reduces to the simpler form

j j
f(x,y) = CI(bp)ut-2ex2-1y2- 12 J‘]f(b::)— 5 (y) r <1+bz—c— i, 2)

Onthe aher hand, if b = 1then(7) redu:es to

fx,y) = Cf(bl)u = W2 byc 1-ay <§> xazlly""Zlexp(_L).
2 2 \MU 21

If both by = 1 and b = 1 then(7) reduces to

f(x,y) = Cu? Sxaty2-1p (2 —c, 5) .
"
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Proof. AsinCorollay 1. O
3. Product moments

For the two distributions introduced in the previous section, the product moments can expressed in terms of
elementary functions, as shown by the following theorems.

Theorem 3. The product moment of X and Y associated withis given by
wudrc+mr(c+nB@+m-+n,b)

E(X™YM = 11
( ) I'@I'(b)I(c) (11)
form > 1and n> 1. In particular,
pip2ab
Cov(X,Y) = ———
o ) at+b+1
and
Jab
Com(X,Y) = ———. 12
orrX. ¥) a+b+1 (12)

Proof. Note from(2) that E(X™Y") = E(UW)™(VW)") = E(U™ E(VME(W™™). So,(11)follows sinceU and
V are gamma random variables anda beta random variable. O

Theorem 4. The product moment of X and Y associated withis given by
u™N I (m4n4 c)B(m+ ag, b)) B(n + ap, by)

BT = T'(c)B(az, by)B(az, b2 (13)
form > 1and n> 1. In particular,

Cov(X,Y) = pasy
and

Corr(X,Y) = @. (14)

Proof. Note from(3) that E(X™Y") = E(UW)™(VW)") = E(U™ E(VME(W™™). So,(11)follows sinceU and
V are beta random variables ala gamma random variable. O

4. Conditional PDFsand moments

Theorems &nd6 derive the conditional distributions correspondingdpand(7), resgectively.

Theorem 5. For the pdf(4), the conditional pdf of Y given X x is given by

a—1

z ¢ 1/x y X y
fylx)=C aFanXbc_l(i-l-l) ex{—(———)}w _a a<—+—>.
1% = Cuy HE@I O n1 o g2 P12 n1 o p2 cbiife-3 i e

The corresponding pdf of X given ¥ y isobtained by interchanging x with y and, with 2.

Proof. Immediate from(4) and the fact thaX andY are gamma distributed with the common shape pararaetad
scale parameters/L; and 1/ o, resgectively. O
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(a) (b)

Fig. 1. Contours of the joint pd#) with (a, b) = (2, 2) for (a), (a, b) = (3, 3) for (b), (a, b) = (4, 4) for (c) and(a, b) = (5, 5) for (d).

Theorem 6. For the pdf(7), the conditional pdf of Y given X x is given by

ay+bp+1  bp-1-ag

fy|x)=Cr@)rplbyu 2z x 2 y2t eXp(%)

"
.
=Dl (ux) 172yl X
Woy—by—c—j— - | — 15
e e e AT o)

forx > y > 0,and by

F(y %) = Cut @)l M = 5 y 27— exp(% - %)

N S
(=D (uy)=1/2x) y

W —by—c—j— —Cc—j - 16
ij:o e B e S V7 (o

for y > x > 0. The corresponding pdf of X given ¥ y is obtained by interchanging x with y; avith ap and by
with bp.

Proof. Immediate from(7) and the fact thaX andY are gamma distributed with common scale parametgrdnd
shape prameters; andap, resgectively. O

The conditional moments of the fora(X™ | Y = y) andE(Y" | X = x) for (4) and(7) appear mathematically
intractable to obtain.

Itis of interest to know how the McKay'’s bivariate gamma distribution give(ilygompares to the two new models
given by(4) and(7). It isknown that the correlation coefficient correspondingitpis /a/(a + b). Conparing with
the correlation coefficient i(iL.2), we note that,/a/(a + b) > v/ab/(a+b+ 1) foralla > 0 andb > 0. Thisimplies
that the correlation structure exhibited @) is always weaker than that of the Mal{s bivariate gamma distribution.
The correlation coefficient ifL4) depends on the three parametes ay, ¢) and so the correlation structure(@f) is
more flexible than that of McKay’s bivariate gamma distribution (this means that the amount of correlation exhibited
can be stronger, weaker or about the same).

Figs. 1and2 illustrate the correlation structures of the joint pf$and(7) for selected values of their parameters.
If a = b then the correlation coefficiemt/(2a + 1) in (12)is an increasing function af. This is supported by the
joint conburs inFig. 1 If a; > ap (respectivelya; < ap) then he correlation betweeK andY is skewed to the left
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(a)

Fig. 2. Contours of the joint pdf7) with (a1, a,¢) = (4,1,8) for (a), (a1, ap,¢) = (4,3,8) for (b), (a1, a,¢) = (4,5,8) for (c) and
(a1, @, ©) = (4,7, 8) for (d).

(respectively, to th right) as shown ifrig. 2 It is also &ident fromFig. 2that larger values cdy or a correspond to
stronger correlation betweex andy.

5. Multivariate case

Itis natural to ask how the pdt4), (4) and(7) can be generalized to the multivariate cdssmma 1can be applied
in several ways to generate multivagaganma distributions. Some of these are:

1. Assume thatV is a beta distributed random variable with shape parameteaadb. Assume futher thatUj,
j = 12,...,p, ae gamma distributed independenhdam variables (and independent\&f) with common
shape prametec and scale parameterg/dj, j =1,2,..., p, wherec=a+b.

2. Assume that)j, j = 1,2,..., p, are beta distributed random variables with shape paraméagrdj), j =
1,2,..., p,wherea; + bj = c(say) forj = 1,2,..., p. Assume futher thatW is a gamma distributed random
variable(independentotlj, j = 1, 2, ..., p) with shape parameterand scale parametey /1.

In both these cases, hyemma 1 (U1 W, U2W, ..., UpyW) will have a p-variae gamma distribution ovep, co)P.
The following generalization of.emma 1provided by Yeo and Milne§] provides other ways to generate
multivariate gammas.

Lemma 2 (Yeoand Milne [8]). Suppose for a fixed integer p 2 that Xg, Xo, ..., Xp are independent and
identically distributed (iid) non-negative random variables which are independent of another non-negative random
variable X with bounded support, and that

Y = X(X14+ Xo+ -+ Xp).
Then the two followinganditions are equivalent.
(i) Y has the same istribution as each of X Xp,..., Xp and belongs to the class of distributions whose

characteristic funtion is of the form
o) =1—Alt|{l+o(®)}

ast— 0, where A § areal onstant.
(ii) X is beta distributed with shape parameters 1 and- .

One can generate several multivariate gammas by taKingXo, ..., X, to be iid gamma distributed. This
investigation will be the subject of a future paper.
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