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1. INTRODUCTION

[t is a well-known fact that the theory of differential equations provides a
broad mathematical basis for an understanding of continuous time dynamic
processes. But the theory of difference equations is of very little help because
of lack of qualitative features. There are many results on continuous time
dynamical systems which are needed in a discrete time context. In most of
the situations those results, not the proofs, are merely translated into the
discrete time language and then they are applied without any care. This
is very dangerous and in some prominent cases things may go wrong. One
should be careful in dealing with such problems because continuous time
orbits and discrete time orbits are topologicallly different. For a general
treatment and for the notation, we refer to B. Aulbach and S. Hilger [2].
In this paper, by a time-scale we mean any closed subset of R, where R is
the real line. We also mean that any closed subset of R is a time-scale and
call our time-scales in-homogeneous. As pointed out by B. Aulbach and
S. Hilger, it provides a new direction of research in dynamical processes
with in-homogeneous time-scale.

This paper is organised as follows. In Section 2, we briefly describe some
salient features of time-scales, i.e., closed subsets of R, functions defined on
time-scales, operations with those functions, and the qualitative theory of
linear dynamic processes. Section 3 presents the variation of parameters
formula and a few notions on boundary value problems. Existence and
unicity of solutions to two-point boundary value problems are discussed in
Section 4. The properties of the Green’s matrix are also discussed in this
section. Section 5 generalises the results obtained in Section 4 to multi-
point boundary value problems.
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2. PRELIMINARIES

We denote the time-scales by the symbol 7. As subsets of R time-scales
carry an ordered structure and topological structure in a canonical way.
A time-scale T may be either bounded below or above. All order theoretical
notions such as bounds, supremum and infimum, and intervals are
available in 7 as in the case of R. If A is a bounded subset of T then A has
both infimum and supremum belonging to 7 not necessarily to 4. By an
interval we mean the intersection of the real interval with a given time-
scale. If 4 is any subset of T which is open in R it is also open in T. The
converse is not in general true. The jump operators introduced on a time-
scale T may be connected or disconnected. To overcome this topological
difficulty the concept of jump operators is introduced in the following way.
The operators ¢ and p from 7T to T, defined by [1]

.{T—a T
> t—Inf{seT:s>t}

_{T—-»T
P t—Sup{seT:s<t}

are called jump operators. If ¢ is bounded above and p is bounded below
then we define

o(max T)=max T
and
p(min T)=min T.

These operators allow us to classify the point of time-scale 7. A point te T
is said to be right-dense if o(¢) = ¢ and left-dense if p(t) =, right-scattered
if o(1) >t and left-scattered if p(r) <.

DerFmNITION 2.1. Let 7 be a time-scale, X a real Banach space, and
f: T— X. We say that f is differentiable at a point ¢, € 7T, if there exists an
a € X such that for any ¢ > 0 there exists a neighbourhood U of #, such that,

| fla(te)) = f(1)—(a(te) —n)al <elalty) —t)  VieU
or more specifically, f is differentiable at ¢, if

i SO =S(o(10) _df

t—otr)  t—al(ty) dt

(1) =1"(1)

provided the limit exists.
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If fis differentiable for every te T we say that f: T — X is differentiable
on T.

ResuLT 2.1. Let f: T — X and tye T. Then if f is differentiable at t, then
[ is continuous at t,.

Proof. By hypothesis,
(1) — fla(1o))

[t) = lim et
consider,
710 flotion =HE=LED (1 o110
lim L= f(o(16)] = /(16)0
=0:

lim (1) = f(a(1,)).

t—a(ty)

If T has a left-scattered maximum T * then at T* any function /: T - X
is differentiable and the definition of differentiability can be satisfied with
any a€ X.

THEOREM 2.1. If f is continuous at t, and t, is right-scattered then f is
differentiable at t, with derivative

£(t) =f(0(i:)lz;)f(’0),
where ©*: TX — R defined by

p*(t) = pla(1), 1)
is called grainyness [2].

Proof. By hypothesis, we have
lim f(1)= f(a(t,))

t—oll,)
and ¢, is right-scattered implies o(¢,) — ¢, > 0. Now consider,

lim flo(20)) — f(¢,) _

oty =1, O(tg)— Iy

S (a(te))-
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If f and g are two differentiable functions at #, then fg is differentiable at
to and (fg)* (to) = f(o(t)) g°(15) + f(to) gl1o).

A function g: T* — X is rd-continuous if it is continuous in every right-
dense point 7€ T* and if lim, _, - g(s) exists for each left-dense e T*.

We say that a mapping 4: T% — B(X) is regressive if for each re T* the
mapping A(t) u*(t) +1d: X - X is invertible, where B(X) is a real Banach
space.

3. VARIATION OF PARAMETERS FORMULA

DEFINITION 3.1 Let 4: T¥ — B(X) be regressive and rd-continuous and
let b: T* — X be rd-continuous. Then a mapping ¢: T — X is said to be a
solution of the linear dynamic equation

x4 = A(t)x+ b(1) 3.1)

¢2(t) = A(t) ¢(1) + b(¢) forall teT*.
The associated homogeneous equation for (3.1) is
x4 =A(t)x. (3.2)

If a solution of x(z) of (3.1) satisfies the condition x(1)=x, for a pair of
(1, xq) e Tx X, it is called a solution of the initial value problem:

xT=A(t)x + b(1)

(3.3)
x(t)=Xxq.

THEOREM 3.1. If A:T*— B(X) is regressive and rd-continuous and
b: T* — X is rd-continuous, then a particular solution %(t) of

x = A(1)x + b(r)
is of the form

[ 441, 05)) b(s) 4,
where ¢ (-, 1) denotes the solution of (3.2).

THEOREM 3.2. If x(t) is any particular solution of the in-homogeneous
problem and ¢ ,(-, t) denotes the solution of

x3=A(t)x



26 MURTY AND RAO

satisfying x(t) = I, then any solution x(t) of (3.3) has the form

X(0) = B4 1) %0+ [ 6401, 0(5)) bls) 4.

Proof. We seek a particular solution of

x?=A(r)x + b(1)
in the form,

X(1)=¢ 4(1) K(1).
Now substituting the value of ¥(z) in (3.1) we get

[4.4(1) K(1)]* = A(2) ¢ 4(1) K(1) + b(1)
¢ 4(0(1)) K4() + ¢5(1) K(1) = A(1) ¢ 1(1) K(1) + b(1)
Gala(1)) K1)+ A(t) ¢ 4(1) K(1) = A(2) ¢ 4(2) K(1) + b(1)
¢A(6(t))K"( )—b(f)
= ¢4 ' (a(1)) b(1)

K(1)= [ 45" (o(5)) bls) 4.
The particular solution is

5(0)= 4.0 K(1)
= [ $u0) 65 (0() b(s) s

- j (8, o(5)) b(s) 4s.
Thus any solution of (3.3) is
(0= 8A0C+] Balt, ols)) bls) 4,

where C is a constant n-vector and will be determined from the initial
conditions. Thus,

x(1)=¢4(1)C
C=¢7'(x)x(r)=¢ ' (1)x0

X(1)=6(0) 63 (%o + [ 84(1,0(5))bls) 4

=4, 1)x0+ [ $a(2, a(s)) bls) 4.
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DermNviTioN 3.2, If ¢ ,(7) is a fundamental matrix of (3.2) then the
matrix D defined by

D=M¢ (a)+ N¢ (b)
is called the characteristic matrix for the boundary value problem (3.1)

satisfying the boundary conditions Mx(a)+ Nx(b)=0.

DerFINITION 3.3 The number of linearly independent solutions of
the boundary value problem is called the index of compatibility of the
boundary value problem. If the index of compatibility of the boundary
value problem is zero then we say that the boundary value problem is
incompatible.

THEOREM 3.3. If the boundary value problem
x4=A()x+5b(?)
Mx(a)+ Nx(b)=0

has a characteristic matrix of rank r then its index of compatibility is
(n—r).

Proof. Let ¢ ,(t) be a fundamental matrix of
x4 =A(t)x.

Then any solution is given by ¢ ,(1)C, where C is a constant n-vector and
will be determined uniquely from the boundary conditions. Substituting the
general solution of

x?=A()x
in the boundary condition matrix we get

(M@ 4(a) + Ng ,(b)]C=0
DC=0

since the rank of D is r, and DC has (n— r) linearly independent solutions.
Hence, the index of compatibility of the boundary value problem is (n —r).
4. MaIN REsULT

We establish our main result, namely, the existence and unicity of
solutions to two-point boundary value problems on an in-homogeneous
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time-scale of a system of the linear dynamic process by utilising the varia-
tion of parameters formula established in Section 2. The solution is estab-
lished as an integral representation of the Green’s matrix and the properties
of the Green’s matrix are also studied. Our main result is stated in the
following theorem.

THEOREM 4.1. Let A: T* - B(X) be rd-continuous and regressive and let
b: T* — X be continuous. Then there exists a unique solution of the linear
dynamic equation,

x=A(t)yx+ b(t)
satisfying the general boundary conditions,
Mx(a)+ Nx(b)=a,

where M and N are constant square matrices of order n, and x(t) is given by
b
x(1) = 4(1) D"a+f G(1, 6(s)) b(s) 4s,

where G(t, o(s)) is the Green’s matrix for the homogeneous linear dynamic
boundary value problem.

Proof. Any solution of the linear dynamic equation
x?=A(t)x + b(1)

is given by
x(1)= 0+ ] Bl 0(5)) bls) 4.

Substituting the general form of x(r) in the boundary condition matrix we
get,

(M4 4(a) + N ((BYIC+ N [ gl o(s)) bls) A5 =

DC=x—N jh & 4(1, a(s)) bs) As

(4]

C=D""a— D"NJ‘b # 4(t, 6(5)) b(s) 4s.
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Hence
X(1)=4,() D= 4,0 DN [ 4.1, 0(5)) b(s) 4s

+[ patt, a(5)) b(s) 45

=40 D"a= (0D 'Ng(B) | 4" (6(6) b(5) 45
04000 [ 621(0(5)) bls) 5

=6.0) D™= g, (00 D~ Np.6)| [ 6200160 805) 4
NRAUBED As] +6.0) [ #3'(0()) bls) 5

=600 D a4 GO =D 'Ng(0)] | #3'(0(5)) b(5) 4
00D N5) [ 83 (o(s)) 45

=$u0 D a4 g, (01D "D =D o)1 [ 43(6(5)) bls) 45
0.0 D NBB) | 82" (0(s) bls) 45

=400 D2+ 4.(1) D~ (D~ Np,()] [ ¢5'(0(5)) bls) 45
— 400D NGB | 42'(0(5)) bls) 45

=600 D" +.6,(1) DM (@) [ 4,°(0(5)) bis) s
00D N 5) [ B2 (o)) bls) 45

=401 D™+ [ G(t,0(5)) bls) s,

where G(t, a(s)) is the Green’s matrix given by

$(1) D~ 'Mé(a) g ' (a(s)), ass<t<b

LIS ey AT
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which can be written conveniently as

¢A(I)D71M¢A(a5 O'(S)), ass<t<

Z4()D " 'Noub o(s), a<i<s<b

G(t, o(s))={

THEOREM 4.2. The green’s matrix G has the following properties:

(1) The components of G(t, a(s)) when regarded as a function of t
with fixed s have continuous first derivatives on [a, s) and (s, b]. At the point
t=s, G has an upward jump discontinuity, i.e.,

G(s*,0(5)) = G(s™, a(s)) =5, 0(s)) = (s) 6 1 '(a(s)).

If ¢ ;'(a(s)) is rd-continuous then G has a finite jump discontinuity of unit
magnitude [4].

(ii) G is a formal solution of the homogeneous boundary value
problem and it fails to be a true solution because of the discontinuity at t =s.

(ili) G is unique with properties (i) and (ii).

Proof. The Green’s matrix G defined in the above theorem may be
conveniently written as

G(I, U(S))={¢A(I)H+, s<t

d()H_, s>, (4.2)

where H, and H _ are free from ¢ and are given by
H,=D""'M¢(a,o(s))
and
H_= —D7'N¢ (b, 6(s)).
Consider,
H,—H_ =D""M¢(a,c(s))+ D 'Ng (b, o(s))
=D""'M¢ ,(a) ¢, (a(s))
+D7'Ng ,(b) 4 ' (a(s))
=D~ '[M¢(a)+ Ng (b)] 4, '(a(s))
=D"'D¢ ;' (a(s))
=¢4'(a(s)
SG(sT,0(s) = Gs T, 0(s))=@(s) H, — @ (s)H _
=¢4()H, —H_]
=¢4(5) 63" (a(s)).
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If ¢ ;'(o(s)) is rd-continuous then

¢1'(a(s)=9¢,'(s)
in which case
G(s*,0(5))—G(s™, a(s)) = (s) ¢ '(s)
=1
(ii) The representation of G(t, o(s)) by (4.2) shows that G(z, a(s)) is

a formal solution of (3.2); it fails to be a true solution because of discon-
tinuity at t=s. G(¢, o(s)) satisfies homogeneous boundary conditions for,

MG(a, o(s))+ NG(b, a(s))

= —M¢ (a) D™'N§ (b, 6(5)) + Ng ,(b) D' M¢ 4(a, o(s))

= —M¢(a)D"'N§(b) ¢, ' (a(s))
+ N (b) D™ ' M4 ,(a) § ;'(a(s))

= —Mp(a) D '[D—Mp,(a)] ¢,'(a(s))
+ Ng (b) D~ 'Mé (a) ¢ (a(s))

= —M¢ ,(a)$,'(a(s)) + M [(a) D 'M¢ ,(a) ¢ ' (a(s))
+[D—Mp(a)]1 D™'M¢ 4(a) $ ;' (a(s))

= —M¢ (a, o(s))+ Mp (a) D" 'Mp ,(a, a(s))
+ M4 ((a, a(s)) — M¢ ,(a) D~ 'M¢ ,(a, 5(5))

=0.

Thus G is a formal solution of the boundary value problem.
(ii) Now to prove G is unique with properties (i) and (ii). Let

G (1, 6(s)) be another Green’s matrix with properties (i) and (ii).
Let X(t, o(5)) =G4, a(s)) — G, (¢, o(s)). At t =5 we have,

X(s™, 0(s))— X(s7, a(s))
=G(s",0(5))—Gi(s7, 0(s)) — G(s 7, a(s)) = Gi(s ™, a(s))
=G(s*, 0(s))—G(s, a(s)) = G\(s*, a(s)) = Gi(s 7, a(s))
=¢(s, a(s)) — (s, a(s))
=0.

Thus X{(¢, o(s)) has a removable discontinuity at t=s.
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By regarding X appropriately we can make X(¢, o(s)) rd-continuous for
all re[a, b].

Now the boundary conditions are linear and X is a linear combination
of G and G,

MX(a, a(s)) + NX(b, a(s))
=M[G(a, a(s))— G(a, a(s))] + NLG(b, a(s)) — G (b, a(s))]
=[MG(a, o(s)) + NG(b, a(s))]
— [MG\(a, 6(s))+ NG (b, 0(5))]

=0 4(s,0(5)) — @ 4(s, 6(5))
=0.

For each fixed s, X(¢, o(s)) is a solution of the homogeneous boundary
conditions.

Note that if X(t, o(s)) is rd-continuous and posesses continuous first
order derivatives at all points except at t=s, then X(t, o(s)) is also a
solution of the homogeneous boundary value problem.

Note that continuity implies rd-continuity but the converse need not be
true.

GENERALIZATIONS TO MULTI-POINT BOUNDARY VALUE PROBLEM

In this section we generalise the results obtained in the previous section
to multi-point boundary value problems. The proofs of the theorems are
simple consequences of the previous theorems and hence will not be given.
We consider the following multi-point boundary value problem,

x4 = A(t)x + b(1) (3.1)

Y, Mx(t)=q, (5.1)
i=1
where a=t¢,<t,< --- <t,=b and where the differential equation satis-
fies all the conditions assumed in the previous sections and the Ms
(i=1,2, .., n) are constant square matrices of order ».

DermNniTION 5.1, If ¢ ,(¢) is a fundamental matrix of (3.2) then the
matrix D, defined by

D, = i Mg ()

i=1

is called the characteristic matrix for the boundary value problem (3.1),
(5.1).
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THEOREM 5.1. Let A: T* - B(X) be rd-continuous and regressive and let
b: T* > X be continuous. Then there exists a unique solution of the linear
dynamic equation (3.1) satisfying the general n-point boundary conditions
(5.1) and is given by,

X(1)= () D} 2+ | Glt, 0(s)) b(s) s

where G(t, o(s)) is the Green’s matrix for the homogeneous linear dynamic
equation (3.1) satisfying the general n-point boundary conditions (5.1) and is
given by,

¢A(I)Dfl i M4 4(&;, o(s)), r<s
G(t, o(s)) = j=!

_¢A(t)D;l Z Mj¢A( j’a(s)), tzs

J=1+1

for te[&, &,,), 1<I<n—1.

THEOREM 5.2. The Green's matrix G has the following properties.

(1) The components of G(t, 6(s)) when regarded as a function of t with
fixed s have continuous first derivatives on [a, s) and (s, b]. At the point
t=s, G has an upward jump discontinuity, i.e.,

G(s*, 0(s))—G(s, a(s)) = B (s, a(s))
=@ (s) ¢ ' (a(s)).
If ¢  '(o(s)) is rd-continuous then G has a finite jump discontinuity of unit
magnitude.

(i1) G is a formal solution of the homogeneous multi-paint boundary
value problem and it fails to be a true solution because of the discontinuity
att=s.

(iii) G is unique with properties (i) and (ii).
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