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a b s t r a c t

We consider the general question of how the homological finiteness property left-FPn
(resp. right-FPn) holding in a monoid influences, and conversely depends on, the property
holding in the substructures of thatmonoid. This is done by givingmethods for constructing
free resolutions of substructures from free resolutions of their containing monoids, and
vice versa. In particular, we show that left-FPn is inherited by the maximal subgroups in
a completely simple minimal ideal, in the case that the minimal ideal has finitely many
left ideals. For completely simple semigroups, we prove the converse, and as a corollary,
show that a completely simple semigroup is of type left- and right-FPn if and only if it has
finitely many left and right ideals and all of its maximal subgroups are of type FPn. Also,
given an ideal of a monoid, we show that if the ideal has a two-sided identity element then
the containing monoid is of type left-FPn if and only if the ideal is of type left-FPn. Applying
this result, we obtain necessary and sufficient conditions for a Clifford monoid (and more
generally a strong semilattice of monoids) to be of type left-FPn. Examples are provided
showing that for each of the results all of the hypotheses are necessary.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let S be a monoid and ZS be the monoid ring over the integers Z. For n ≥ 0, the monoid S is of type left-FPn if there is a
resolution

An → An−1 → · · · → A1 → A0 → Z → 0

of the trivial left ZS-module Z such that A0, A1, . . . , An are finitely generated free left ZS-modules. Monoids of type right-FPn
are defined dually, working with right ZS-modules.

The property FPn was introduced for groups by Bieri in [7] and since then has received a great deal of attention in the
literature; see [6,8,10,13,39]. One natural line of investigation has been the study of the closure properties of FPn. Examples
include results about the behaviour of FPn under taking: finite index subgroups or extensions, direct (and semidirect)
products, wreath products, HNN extensions, amalgamated free products, and quasi-isometry invariance; see [2,5,7,51].

Inmonoid and semigroup theory the property FPn arises naturally in the study of string rewriting systems (i.e. semigroup
presentations). The history of rewriting systems in monoids and groups is long and distinguished, and has its roots in the
fundamental work of Dehn and Thue. The main focus of this research has been on the so-called complete rewriting systems
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(also called convergent rewriting systems) and in algorithms for computing normal forms. A finite complete rewriting
system is a finite presentation for a monoid of a particular form (both confluent and Noetherian) which in particular gives a
solution of the word problem for the monoid; see [9] for more details. Therefore it is of considerable interest to develop an
understanding of which monoids are presentable by such rewriting systems. Many important classes of groups are known
to be presentable by finite complete rewriting systems, including Coxeter groups, surface groups, and many closed three-
manifold groups. Rewriting systems continue to receive a lot of attention in the literature; see [15–17,23,25,30,45]. The
connection between complete rewriting systems and homological finiteness properties is given by a result of Anick [4]
(see also [12])which shows that amonoid that admits such a presentationmust be of type left- and right-FP∞ (meaning type
FPn for all n). More background on the importance the property FPn (and other related finiteness conditions) in semigroup
theory, and the connections with the theory of string rewriting systems may be found in the survey articles [20,42].

For groups the properties left- and right-FPn are equivalent, so we simply speak of groups of type FPn. However, for
monoids in general the two notions are independent. Indeed, in [19] Cohen gives an example of a monoid, related to the
Thompson group, that is right-FP∞ but not even left-FP1. Several other related homological finiteness properties formonoids
have been defined, which are all equivalent to FPn when applied to groups, but are different formonoids in general. A central
theme of recent research in this area has been to investigate how these various properties relate to one another; see for
example [19,21,35–37,43,44].

On the other hand, in contrast to the situation in group theory, far less attention has been paid to the closure properties
of homological finiteness conditions in semigroup and monoid theory, with only a handful of results of this kind having
appeared in the literature. For monoid constructions that are direct generalisations of group constructions, perhaps
unsurprisingly, some results generalise in a straightforward way from groups to monoids. For example, as observed in [29],
the direct productM × N of two monoids is of type left-FPn if and only if each ofM and N is (this may be proved just as for
groups using Künneth theory). Also generalising from groups, it was shown in [43] that left-FPn is inherited under taking
retracts of monoids (which is known to be true for groups more generally for quasi-retracts [2]). However, the study of
constructions specific to, and important in, semigroup theory has not yet received serious attention in the literature.

In recent work [35,36] Kobayashi considered the behaviour of left- and right-FPn for some basic fundamental semigroup-
theoretic constructions including left and right zero semigroups (andmore generally left and right groups), semilattices, and
the process of adjoining a zero element to amonoid. He thenused these observations to give examples ofmonoids that clarify
the relationship between the properties left-FP1, right-FP1, bi-FP1, and finite generation (see Section 6 for more on this). The
results we obtain here will shed more light on (and in some cases significantly extend) some of the results obtained by
Kobayashi in [35,36]. The importance of understanding the closure properties of FPn is highlighted further still by the work
[44] where a monoid is constructed from two groups, it is shown how the homological finiteness properties of the monoid
relate to those of the groups, and then combined with [6] this is used to give a counterexample to an open question about
homological finiteness properties of string rewriting systems.

In this paper we shall consider the general question of how the property left-FPn holding in a monoid influences, and
conversely depends on, the property holding in the substructures of that monoid. We are particularly interested in relating
the property holding in themonoid to the property holding in the subgroups of themonoid, since such results act as a bridge
between the homology theory of groups and that of semigroups and monoids. The results we present here complement
analogous results regarding cohomology obtained in [1,41].

The paper is structured as follows. After giving some preliminaries in Section 2, we begin our investigation in Section 3
by considering ideals, showing that if T is an ideal of a monoid S, and if T has a two-sided identity element, then S is of type
left-FPn if and only if T is (see Theorem 3). This result is reasonably straightforward to prove. In one direction it generalises
the recent observation of Kobayashi [36] that a monoid with a two-sided zero element is of type left- and right-FP∞. The
result does not extend to ideals in general; see Example 1 in Section 6. Applying this result we show (in Theorem 9) that
a Clifford monoid S, in the sense of [18], is of type left-FPn if and only if it has a minimal idempotent e and the maximal
subgroup that contains e is of type FPn (for any undefined concepts we refer the reader to Section 2).

Results relating properties of monoids with those of their subgroups are known to hold for several other important
finiteness conditions including being: finitely generated, finitely presented, having finite derivation type, and being
residually finite (see [24,26,50]). In particular for each of these properties it is known that if S is a (von Neumann) regular
monoidwith finitelymany idempotents then S has the property if and only if all of itsmaximal subgroups have the property.
In [50, Remark andOpen Problem4.5] the author posed as an openproblem the question ofwhether the corresponding result
holds for the property left-FPn. The results mentioned in the previous paragraph answer this question with a resounding no,
since, for instance, whether a Clifford monoid is of type left-FPn depends only on one of its maximal subgroups (namely the
minimal one), and the other maximal subgroups can have any properties that one desires. This leaves the general question
of to what extent the property left-FPn holding in amonoid relates to the property holding in themaximal subgroups of that
monoid. As we shall see, it is straightforward to show (see Theorem 2) that the property left-FPn is inherited by maximal
subgroups contained in a completely simpleminimal ideal, in the case that the ideal has finitelymany left ideals.Without the
finiteness assumption on left ideals the result no longer holds (see Example 2 in Section 7). In Sections 4 and 5 we consider
themore difficult converse problem, and present results that show how the property left-FPn holding in a completely simple
semigroup relates to the property holding in itsmaximal subgroups (see Theorem4, Corollary 1 and Theorem5). In particular
we show that a completely simple semigroup is of type left- and right-FPn if and only if it has finitely many left and right
ideals and all of its maximal subgroups are of type FPn.
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In Section 6 using recent results of Kobayashi [35] we go on to analyse left-FP1 in more detail and, extending
[35, Corollary 2.7], we give necessary and sufficient conditions for a completely simple semigroup to be of type left-FP1
(see Theorem 7). In Section 7we give examples showing the hypotheses of ourmain results are necessary, and present some
further applications. Finally, in Section 8 we discuss some other related homological finiteness properties, including having
finite cohomological dimension, and explain howonemay construct counterexamples to several other open problems posed
in [49,50] regarding these properties.

2. Preliminaries

Free resolutions and the finiteness property FPn

Let us begin by recalling some basic definitions from homology theory that we need; for more details we refer the reader
to [31].

Let S be a monoid and let ZS be the integral monoid ring of S. We have the standard augmentation

ϵS : ZS → Z, s → 1 (s ∈ S)

and therefore we can regard Z as a trivial left ZS-module with the ZS-action via ϵS :

λ · z = ϵS(λ)z (λ ∈ ZS, z ∈ Z).
A free resolution of the trivial left ZS-module Z is a sequence A0, A1, A2, . . . of free left ZS-modules and homomorphisms
∂0 : A0 → Z and ∂i : Ai → Ai−1, for n ≥ 1, such that the sequence

· · · → A2
∂2
−→ A1

∂1
−→ A0

∂0
−→ Z → 0

is exact (i.e. im∂n+1 = ker∂n for n ≥ 0, and ∂0(A0) = Z). We shall often refer to such a resolution simply as a free left
resolution of S. A monoid S is said to be of type left-FPn if there is a partial free resolution of the trivial left ZS-module Z:

An → An−1 → · · · → A1 → A0 → Z → 0

where A0, A1, . . . , An are all finitely generated. Dually we can regard Z as a right ZS-module via ϵS , and analogously define
free right resolutions, and monoids of type right-FPn. For a semigroup S without a two-sided identity the ring ZS does not
have an identity and the above definition is no longer valid. Thus to extend the notion of FPn to arbitrary semigroups we
utilise the standard device of adjoining an identity element. That is, given a semigroup S we use S1 to denote the semigroup
S = S ∪ {1} with an identity element 1 adjoined with 1 ∉ S and where we define s1 = 1s = s for all s ∈ S. Then for a
semigroup S without a two-sided identity element we say that S is of type left-FPn if the monoid S1 is of type left-FPn.

There are several important differences when working with ZS-modules, where S is a monoid, compared to working
with ZG-modules, with G a group. Two of the most important differences are the following.

• For a group G, any left ZG-module can be regarded as a right ZG-module, and conversely, by defining ug = g−1u for any
g ∈ G and u in the module. Moreover applying this operation to a free left resolution of Z yields a free right resolution
of Z and hence (as mentioned in the introduction) for groups left-FPn and right-FPn are equivalent, and we simply speak
of property FPn when working with groups. More generally left- and right-FPn coincide for inverse semigroups (see [38]
for more on inverse semigroups). However, as observed in the introduction, the same is far from being true for arbitrary
monoids; see [19].

• If G is a group and H is a subgroup of G then ZG, regarded as a left module over ZH , is free with rank equal to the index
of H in G. This fact is fundamental for the proof that FPn is preserved under taking finite index subgroups or extensions (see
[11, Proposition 5.1]). In contrast, given a monoid S and subsemigroup T , where T has with a two-sided identity element,
then ZS regarded as a left module over ZT will not in general be free.
These two fundamental differences are the main reason for the fairly intricate arguments needed to establish some of the
results below.

We shall make repeated use of the following consequence of the generalised Schanuel Lemma; see [11, p193].

Lemma 1. Let S be a monoid. For n ≥ 0 if

An−1
∂n−1
−−→ · · ·

∂2
−→ A1

∂1
−→ A0

∂0
−→ Z → 0

is a partial free resolution of the trivial left ZS-module Z, with A0, . . . , An−1 finitely generated free left ZS-modules, then S is of
type left-FPn if and only if ker ∂n−1 is finitely generated.

One consequence of Lemma 1 is that if a monoid S is of type left-FPn then there is a partial free resolution:

An−1
∂n−1
−−→ · · ·

∂2
−→ A1

∂1
−→ A0

∂0
−→ Z → 0

of the trivial left ZS-module Z where A0 = ZS and ∂0 = ϵS is the standard augmentation.
Throughout, given a subset X of a left ZS-module A, where S is a monoid, we use ⟨X⟩ZS to denote the left ZS-module

generated by the set X . Unless otherwise stated, we work with left modules and property left-FPn throughout.
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Green’s relations and completely simple semigroups

Wenowoutline someof the basic concepts fromsemigroup theory thatwe shall need; formore detailswe refer the reader
to [33,47]. Green’s relations were first introduced in [28] and have ever since played a fundamental role in the structure
theory of semigroups. For elements x and y of a semigroup S wewrite xRy if x and y generate the same principal right ideal,
xL y if they generate the same principal left ideal, and let H denote the intersection of R and L . In other words, for x, y ∈ S

xRy ⇔ xS1 = yS1, xL y ⇔ S1x = S1y, xH y ⇔ xL y ∧ xRy.

Each of these relations is an equivalence relation on Swhichwe call theR-,L - andH -classes of the semigroup, respectively.
A semigroup S is said to be (von Neumann) regular if for every x ∈ S there exists y ∈ S such that xyx = x. A semigroup is
regular if and only if every R-class (equivalently every L -class) contains at least one idempotent.

We use E(S) to denote the set of idempotents of a semigroup S. Let e be an idempotent in a semigroup S. Then eSe is the
largest submonoid of S (with respect to inclusion) whose identity element is e. The group of units Ge of eSe (i.e. themembers
of eSe that have two-sided inverses in eSe) is the largest subgroup of S (with respect to inclusion) with identity e, and is
called the maximal subgroup of S containing e. If an H -class H contains an idempotent then H is a maximal subgroup of S,
and conversely everymaximal subgroup of S arises in this way. From the definitions it is easily seen that theR-classes (resp.
L -classes) are in one–one correspondence with principal right (resp. left) ideals of the semigroup.

Of particular importance are those semigroups that have no proper two-sided ideals. A semigroup is called simple if it
has no proper two-sided ideals, and is called completely simple if it is simple and has minimal left and right ideals. It is not
hard to see that if a semigroup S has a minimal ideal K then K is a simple semigroup, which is sometimes referred to as the
kernel of the semigroup (see [33, Proposition 3.1.4]). A right zero semigroup is a semigroup U such that xy = y for all x, y ∈ U
(dually one defines left zero semigroup), and a right (resp. left) group is a direct product of a group and a right (resp. left)
zero semigroup. A right (resp. left) group is precisely a completely simple semigroup with a single R-class (resp. L -class).
A rectangular band is a direct product of a left zero semigroup and a right zero semigroup. Free resolutions for completely
simple semigroups will be considered in detail in Sections 4 and 5.

3. Resolutions for subsemigroups

In this section, we make some general observations about the relationship between the property left-FPn holding in a
monoid and the same property holding in certain subsemigroups of themonoid.We shall see that ifM is an ideal of amonoid
S, andM has a two-sided identity element, then passing from free resolutions of S to free resolutions ofM is straightforward.
In particular, we shall prove the following result.

Theorem 1. Let S be a monoid, let R be a right ideal of S and suppose that R ∼= M × B where M is a monoid and B is a right zero
semigroup. If S is of type left-FPn and B is finite then M is of type left-FPn.

Once established, Theorem 1 can then be applied both tomaximal subgroups inminimal ideals (Theorem 2) and to ideals
with identity (Theorem 3). Before proving Theorem 1 we first need some basic lemmas.

Let S be a monoid and let M be a subsemigroup of S such that M has a two-sided identity element e ∈ M . If A is a left
ZS-module then e · A = eA is a left ZM-module with

ea1 + ea2 = e(a1 + a2) (a1, a2 ∈ A), λ(ea) = e(λa) ∈ eA (a ∈ A, λ ∈ ZM).

There is then an obvious functor Φ from the category of left ZS-modules to the category of left ZM-modules defined as
follows. For a left ZS-module A we defineΦ(A) = eA, and for a left ZS-module homomorphism θ : A2 → A1 we let

Φ(θ) : eA2 → eA1

be the restriction of θ to eA2. This is well defined since for all a2 ∈ A2 we have θ(ea2) = eθ(a2) ∈ eA1. It is not hard to see
that the functorΦ is exact, so we omit the proof.

Lemma 2. The functorΦ is exact i.e. if

A2
θ2
−→ A1

θ1
−→ A0

is an exact sequence of left ZS-modules then

Φ(A2)
Φ(θ2)
−−−→ Φ(A1)

Φ(θ1)
−−−→ Φ(A0)

is an exact sequence of left ZM-modules.

For a general subsemigroup M , with a two-sided identity element, of a semigroup S the functorΦ will not map free left
ZS-modules to free left ZM-modules. We now show that when S and M satisfy the conditions given in the statement of
Theorem 1, then freeness is preserved.

Lemma 3. Let R = N × B where N is a monoid and B is a right zero semigroup. Fix y ∈ B and let M = {(n, y) : n ∈ N}. Then,
viewed as a left ZM-module, ZR is free with basis F = {(1, b) : b ∈ B}.
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Proof. Clearly each r ∈ R can be written uniquely in the form r = mf where m ∈ M and f ∈ F . It follows that each α ∈ ZR
can be written uniquely in the form α =

∑
f∈F λf f where λf ∈ ZM for f ∈ F . This proves the lemma. �

Lemma 4. Let S be a monoid with a right ideal R such that R = N × B where N is a monoid and B is a right zero semigroup. Fix
y ∈ B and let M = {(n, y) : n ∈ N}. Then M is a subsemigroup of S with a two-sided identity e = (1, y), and if A is a free left
ZS-module of rank r thenΦ(A) = eA is a free left ZM-module of rank r|B|.

Proof. Let A =


x∈X ZSx be a free left ZS-module with basis X , where X is a non-empty set with |X | = r . It follows from
the hypotheses that eS = R and therefore eA =


x∈X ZRx which is a free left ZM-module with basis

F · X = {f · x : f ∈ F , x ∈ X}

by Lemma 3, where F = {(1, b) : b ∈ B}. Therefore eA is a free left ZM-module of rank |X ||B| = r|B|. �

Proof of Theorem 1. Suppose S is of type left-FPn and that B is finite. Let

A : An
θn
−→ An−1

θn−1
−−→ · · ·

θ2
−→ A1

θ1
−→ A0

θ0
−→ Z → 0

be a partial free left resolution for S where Ai is a finitely generated free left ZS-module for i = 0, . . . , n. It then follows from
Lemmas 2 and 4 that

B : Bn
ψn
−→ Bn−1

ψn−1
−−→ · · ·

ψ2
−→ B1

ψ1
−→ B0

ψ0
−→ Z → 0

is a partial free left resolution for M where Bi = eAi is a finitely generated left ZM-module and ψi is the restriction of Ai to
Bi, for i = 0, . . . , n. ThereforeM is of type left-FPn. �

We can apply Theorem 1 to obtain the following.

Theorem 2. Let S be a monoid and let H be a maximal subgroup of S contained in a completely simple minimal ideal U of S. If S
is of type left-FPn and U has finitely many left ideals then H is of type FPn.

Proof. Let e ∈ H be the identity of H , let R = eS and set F = E(S)∩ R. Since U is a minimal ideal and is completely simple it
follows that R is an R-class of U which by the Rees theorem [33, Section 3.2] implies that R ∼= H × F . But H is a monoid and
F , which is a set of R-related idempotents, is a right zero semigroup. Now the result follows by applying Theorem 1. �

The converse of Theorem 2 does not hold. Indeed, if L is an infinite left zero semigroup, then S = L1 has finitely many left
ideals and all of its maximal subgroups are trivial (and so are of type left- and right-FP∞) but S itself is not of type left-FP1
by Theorem 7 below. The same example shows that the converse of Theorem 1 is also not true in general.

Theorem 2 may, in particular, be applied to completely simple semigroups with finitely many left ideals. Necessary and
sufficient conditions for such a semigroup to be of type left-FPn will be given in Theorem 4 below.

The assumption that B is finite is necessary for Theorem 1 to hold (correspondingly the assumption that U has finitely
many left ideals is necessary for Theorem 2); see Example 2 in Section 7 below. When B is a singleton, M is an ideal with a
two-sided identity, and in this case the converse of Theorem 1 does hold, as we now demonstrate.

Theorem 3. Let S be amonoid, let T be an ideal of S and suppose that T has a two-sided identity element. Then S is of type left-FPn
if and only if T is of type left-FPn.

Proof. Applying Theorem 1 in the case |B| = 1 proves that if S is of type left-FPn then so is T . (Alternatively, this direction
follows from [43, Theorem 3], since T is a retract of S.)

For the converse, suppose that T is of type left-FPn and let

A : An
∂n
−→ An−1

∂n−1
−−→ · · ·

∂2
−→ A1

∂1
−→ A0

∂0
−→ Z → 0

be a partial free resolution of the trivial left ZT -module Z. Let e be the two-sided identity element of T . Since e is an
idempotent in the ring ZS it follows that ZSe = ZT is a projective left ZS-module (see [11, Chapter 1, Section 8]). Since
direct sums of projective modules are projective we deduce that A is a partial projective resolution of the trivial left
ZS-module Z where each Ai is a finitely generated left ZS-module. Indeed, that the sequence is exact is immediate, and
each Ai is finitely generated as a left ZS-module since each Ai is finitely generated as a left ZT -module and T ⊆ S. Finally,
each ∂i (with i ∈ {0, 1, . . . , n}) is a homomorphism of left ZS-modules since for all a ∈ Ai and λ ∈ ZS, since e is an identity
element in T and ∂i is a left ZT -module homomorphism, we have

∂i(λa) = ∂i(λ(ea)) = ∂i((λe)a) = λe∂i(a) = λ∂i(a).

Therefore it follows (see [11, Chapter 8, Theorem 4.3]) that S is of type left-FPn. �

Kobayashi [36] recently observed that amonoidwith a two-sided zero element is of type left- and right-FP∞. Kobayashi’s
result is a special case of Theorem 3 where T = {0}.

An analogous result to Theorem 3 regarding cohomology was proved in [1].
Example 1 in Section 6 below shows that Theorem 3 does not hold if we remove the assumption that the ideal T has

a two-sided identity element. Theorem 3 will be applied below in Section 7 to prove Theorem 9 which characterises the
property left-FPn for Clifford monoids (and more generally strong semilattices of monoids).
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4. Resolutions for completely simple semigroups I

Let U be a completely simple semigroup, letH be amaximal subgroup of U , and let S = U1. As we saw above in Section 3,
given a free left resolution for S we may construct a free left resolution for H . In particular, if the free left resolution for S
is finitely generated up to dimension n, and U has only finitely many left ideals, then the free left resolution for H will be
finitely generated up to dimension n also i.e. the property left-FPn will be inherited by H from S.

In this section and the one that follows it we shall consider the converse problem. Given a partial free resolution for the
group H we show how to construct a partial free resolution for S = U1, and then use this to prove the following.
Theorem 4. Let U be a completely simple semigroup with finitely many left ideals and let H be a maximal subgroup of U. Then
U is of type left-FPn if and only if U has finitely many right ideals and the group H is of type FPn.

Examples will be provided in Sections 6 and 7 showing that this theorem fails if any of the hypotheses are lifted.
Theorem 4 has the following immediate consequence.
Corollary 1. Let U be a finitely generated completely simple semigroup. Then the following are equivalent:
(i) U is of type left-FPn;
(ii) U is of type right-FPn;
(iii) All maximal subgroups of U are of type FPn.

We also have the following.
Theorem 5. Let U be a completely simple semigroup and let H be amaximal subgroup of U. ThenU is of type left-FPn and right-FPn
if and only if U has finitely many left and right ideals and the group H is of type FPn.

Proof. Suppose that U is of type left- and right-FPn. Then in particular U is of type left- and right-FP1 which, by Theorem 7
(or alternatively [35, Theorem 2.6]), implies that U has finitely many left and right ideals. Then by Theorem 4 it follows that
H is of type FPn.

The converse is a direct corollary of Theorem 4. �

The rest of this section, and the one that follows it, will be dedicated to the proof of Theorem 4. Results analogous to those
above for other finiteness properties, including automaticity and finite derivation type, have appeared in the literature; see
[14,22,40]. Other important recent work on completely simple semigroups includes [34].

Let us outline our strategy for proving Theorem 4. We shall adopt standard notation for completely simple semigroups.
LetU be a completely simple semigroup.We assume that theR- andL -classes ofU are indexed by sets I andΩ respectively
so that

U =


i∈I

Ri =


ω∈Ω

Lω.

The H -classes of U are the sets Hiω = Ri ∩ Lω for i ∈ I andω ∈ Ω . Every H -class of U contains an idempotent, we use eiω to
denote the idempotent of Hiω which is exactly the identity of the group Hiω . All the group H -classes Hiω (i ∈ I, ω ∈ Ω) are
isomorphic to a fixed group G, called the Schützenberger group ofU . The best way to visualise a completely simple semigroup
U is as a rectangular grid tiled with |I| × |Ω| squares, representing the H -classes, with each row of squares representing
an R-class, and each column of squares representing an L -class (this is sometimes referred to as an egg box diagram).

The following proposition lists some basic properties of completely simple semigroups.
Proposition 1. Let U be a completely simple semigroup with set of R-, L - and H -classes {Ri : i ∈ I}, {Lω : ω ∈ Ω} and
{Hiω : i ∈ I, ω ∈ Ω}, respectively.
(i) If x ∈ Hiω and y ∈ Hjµ then xy ∈ Hiµ.
(ii) Each idempotent is a left identity in its R-class and dually a right identity in its L -class. In other words eiωs = s for all s ∈ Ri,

and seiω = s for all s ∈ Lω .
(iii) For all i, j ∈ I and ω,µ ∈ Ω we have Hiω ∼= Hjµ.

The Rees theorem (see [33, Section 3.2] or originally [46]) characterises completely simple semigroups as Rees matrix
semigroups over groups. We make use of Rees’s result in Section 6.

Let us fix some notation that will remain in force throughout this section. Let U be a completely simple semigroup with
set of R-, L - and H -classes {Ri : i ∈ I}, {Lω : ω ∈ Ω} and {Hiω : i ∈ I, ω ∈ Ω}, respectively. We assume throughout this
section that U has only finitely many left ideals, which is equivalent to saying that the setΩ is finite. We suppose that the
index sets I andΩ each contain the distinguished symbol 1 and let R = R1, L = L1 and H = H1,1 = R1 ∩ L1 = R ∩ L.

Recall (see Section 2) that the maximal subgroups of U are precisely the H -classes of U . So H = H1,1 is both a fixed
maximal subgroup ofU and also anH -class ofU . Also, by Proposition 1(iii) every othermaximal subgroup ofU is isomorphic
to H .

Define S = U1 (the completely simple semigroup U with an identity adjoined) and set T = L ∪ {1} ⊆ S which is a
submonoid of S. Note that L is a completely simple semigroup with underlying group H . In fact, L is a left group. We have
the inclusions H ≤ T ≤ S. This allows us to break down the problem of relating S with H into two stages: first we relate S
and T (in Proposition 3), and then we relate T and H (in Proposition 4). Theorem 4 then follows by combining Propositions 3
and 4.
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It is important to observe that with the above definitions ZT is not free when viewed as a left ZH-module, and also ZS is
not free when viewed as a left ZT -module.

The rest of this section will be devoted to the problem of relating free left resolutions for S with those for T , with the
main result being Proposition 2, from which Proposition 3 is a consequence.

Let e ∈ H be the idempotent in the H -class H , and set let F denote the set of all other idempotents in R i.e. F =

{E(U) \ {e}} ∩ R. Note that F is finite since the index set Ω is assumed to be finite. For y ∈ U we use Ly to denote the
L -class of U containing y. Similarly we define Ry and Hy.

The following self-evident fact will be used repeatedly throughout the section.

Lemma 5. Every element λ ∈ ZS may be written uniquely in the form

λ = λ(1) +
−
f∈F

λ(f )

where λ(1) ∈ ZT and λ(f ) ∈ ZLf for all f ∈ F .

The general observation given in the next lemma will be important to us.

Lemma 6. Let A be a left ZS-module. Then A is finitely generated as a left ZS-module if and only if A is finitely generated as a left
ZT-module.

Proof. For the non-trivial direction of the proof let X be a finite generating set for A as a left ZS-module. For every λ ∈ ZS,
decomposing as in Lemma 5, we obtain

λ = λ(1) +
−
f∈F

λ(f ) = λ(1) +
−
f∈F

λ(f )ef

where λ(1) ∈ ZT , λ(f ) ∈ ZLf (f ∈ F) and by Proposition 1 for all f ∈ F , λ(f ) = λ(f )f = λ(f )ef and λ(f )e ∈ ZL ⊆ ZT . It follows
that for all x ∈ X and λ ∈ ZS:

λx = λ(1)x +

−
f∈F

(λ(f )e)(fx) ∈ ⟨X ∪ FX⟩ZT .

Therefore

X ∪ FX = X ∪ {fx : f ∈ F , x ∈ X} ⊆ A

is a generating set for A regarded as a left ZT -module, where X ∪ FX is finite since X and F are both finite. �

For every partial free left resolution of S we shall associate a partial free left resolution of T andmappings θ andφ relating
the two resolutions. Let

A : An
∂n
−→ An−1

∂n−1
−−→ · · ·

∂2
−→ A1

∂1
−→ A0

∂0
−→ Z → 0

be a partial free resolution of the trivial left ZS-module Z, where A0 = ZS, ∂0 = ϵS is the standard augmentation,
ker ϵS = ⟨X0⟩ZT , and for j = 1, . . . , n

Aj =


x∈Xj−1

ZS[x]

where ker(∂j−1) = ⟨Xj−1⟩ZT and ∂j : Aj → Aj−1 is the left ZS-module homomorphism extending [x] → x (x ∈ Xj−1). Note
here that each Xj−1 has been chosen so that ⟨Xj−1⟩ZT = ker(∂j−1) and not just ⟨Xj−1⟩ZS = ker(∂j−1). By Lemmas 1 and 6 it
follows that if S is of type left-FPn then such a partial resolution A exists with |Xi| < ∞ for all 0 ≤ i ≤ n − 1.

Using A, our aim is to construct a resolution B for T . Define

B0 = ZT [e] ⊕


f∈F

ZT [f ],

and, using the natural decomposition given in Lemma 5, define a mapping θ : A0 → B0 by

θ(λ) = λ(1)[e] +

−
f∈F

λ(f )e[f ] (λ ∈ A0 = ZS).

Then for 1 ≤ m ≤ n define

Bm =

 
x∈Xm−1

ZT [x]


⊕

 
i=m−1,...,0
x∈Xi,f∈F

ZT [f , x]

⊕


f∈F

ZT [f ]


,



3012 R. Gray, S.J. Pride / Journal of Pure and Applied Algebra 215 (2011) 3005–3024

and a mapping θ : Am → Bm given by

θ

 −
x∈Xm−1

λx[x]


=

−
x∈Xm−1

λ(1)x [x] +

−
x∈Xm−1

f∈F

λ(f )x e[f , x]

where λx ∈ ZS for x ∈ Xm−1. The fact that θ(Am) is a subset of Bm follows from the definition of θ along with Proposition 1.
We view θ as a mapping with domain ∪· 0≤i≤nAi such that for every 1 ≤ m ≤ n the restriction of θ to Am maps Am to Bm.

We may now state the main result of this section which relates free resolutions of S with free resolutions of T .

Proposition 2. Let U be a completely simple semigroup with finitely many left ideals, let L be an L -class of U, and set S = U1

and T = L1. Let

A : An
∂n
−→ An−1

∂n−1
−−→ · · ·

∂2
−→ A1

∂1
−→ A0

∂0=ϵS
−−−→ Z → 0

be a partial free resolution of the trivial left ZS-module Z where A0 = ZS, ∂0 = ϵS is the standard augmentation, ker ϵS = ⟨X0⟩ZT
and for 1 ≤ j ≤ n

Aj =


x∈Xj−1

ZS[x]

where ker(∂j−1) = ⟨Xj−1⟩ZT and ∂j : Aj → Aj−1 is the left ZS-module homomorphism extending [x] → x (x ∈ Xj−1). Then with
the above notation:

B : Bn
∂ ′
n

−→ Bn−1
∂ ′
n−1

−−→ · · ·
∂ ′
2

−→ B1
∂ ′
1

−→ B0
∂ ′
0

−→ Z → 0

is a partial free resolution of the trivial left ZT-module Z where ∂ ′

0 : B0 → Z is the left ZS-module homomorphism extending:

∂ ′

0


λe[e] +

−
f∈F

λf [f ]


= ϵT (λe)+

−
f∈F

ϵT (λf ),

where ϵT is the standard augmentation, and for 1 ≤ m ≤ n, ∂ ′
m : Bm → Bm−1 is the left ZT-module homomorphism extending:

∂ ′
m([x]) = θ(x) (x ∈ Xm−1), and for f ∈ F and x ∈ Xi,

∂ ′

m([f , x]) =


θ(fx) if i = m − 1
(1 − e)[f , x] if i = m − 2,m − 4, . . .
e[f , x] if i = m − 3,m − 5, . . .

and

∂ ′

m([f ]) =


e[f ] if m is even
(1 − e)[f ] if m is odd.

Furthermore ker ∂0 is finitely generated if and only if ker ∂ ′

0 is finitely generated; and if A0, A1, . . . , An are all finitely generated
then B0, B1, . . . , Bn are finitely generated as well, in which case ker ∂n is finitely generated if and only if ker ∂ ′

n is finitely generated.

Remark 1. Note that the definition of ∂ ′
m given in Proposition 2 makes sense since for x ∈ Xm−1 and f ∈ F we have

x, fx ∈ Am−1 which by definition of θ implies

θ(x), θ(fx) ∈


x∈Xm−2

ZT [x] ⊕


x∈Xm−2

f∈F

ZT [f , x] ⊆ Bm−1. (1)

Before embarking on the proof of Proposition 2 we shall give one of its important consequences.

Proposition 3. Let U be a completely simple semigroup and let L be a left ideal of U. If U has finitely many left ideals then U is of
type left-FPn if and only if L is of type left-FPn.

Proof. This is equivalent (in the above notation) to proving that if F is finite then S = U1 is of type left-FPn if and only if
T = L1 is of type left-FPn.We prove the result by induction on n. The base case n = 1 is easy to verify directly. Alternatively, it
follows from amore general result that we prove below (see Theorem 7 in Section 6). Now let n > 1 and assume inductively
that the result holds for values strictly less than n.

If S is of type left-FPn then by Lemmas 1 and 6 the partial resolution A given in the statement of Proposition 2 may be
chosen so that Xi is finite for all 0 ≤ i ≤ n−1. By Proposition 2,B is then a partial free resolution of the trivial leftZT -module
Z with each Bi free of finite rank. Therefore T is of type left-FPn.
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Conversely suppose that T is of type left-FPn. In particular T is of type left-FPn−1 which by induction implies that S is of
type left-FPn−1. By Lemma 1 and Proposition 2, using the definitions given in Proposition 2, we have that

A : An−1
∂n−1
−−→ An−2

∂n−2
−−→ · · ·

∂1
−→ A0

∂0=ϵS
−−−→ Z → 0,

B : Bn−1
∂ ′
n−1

−−→ Bn−2
∂ ′
n−2

−−→ · · ·
∂ ′
1

−→ B0
∂ ′
0

−−−→ Z → 0
are both partial free resolutions with Aj and Bj finitely generated for j = 0, 1, . . . , n − 1. By Lemma 1 since T is of type
left-FPn it follows that ker ∂ ′

n−1 is finitely generated which by the last clause in the statement of Proposition 2 implies that
ker ∂n−1 is finitely generated (both as a left ZS-module and a left ZT -module, by Lemma 6). It now follows from Lemma 1
that S is of type left-FPn. �

We now work through several technical lemmas which will then be utilised at the end of the section where we prove
Proposition 2.

First we define a mapping φ : Bm → Am which taken together with θ : Am → Bm (defined above) will help clarify the
relationship between A and B.

Define φ : B0 → A0 by:

φ


λe[e] +

−
f∈F

λf [f ]


= λe +

−
f∈F

λf f ,

and for 1 ≤ m ≤ n define φ : Bm → Am by:

φ

 −
x∈Xm−1

λx[x] +

−
i=m−1,...,0
x∈Xi,f∈F

λf ,x[f , x] +

−
f∈F

λf [f ]

 =

−
x∈Xm−1

λx[x] +

−
x∈Xm−1

f∈F

λf ,xf [x].

In a similar way as for θ above, we view φ as a map with domain ∪· 0≤i≤nBi where the restriction of φ to Bm maps Bm to
Am. The relationship between the mappings thus far defined is illustrated below:

An
∂n
−→ An−1

∂n−1
−−→ · · ·

∂1
−→ A0

∂0=ϵS
−−−→ Z → 0

θ ↓↑ φ θ ↓↑ φ θ ↓↑ φ

Bn
∂ ′
n

−→ Bn−1
∂ ′
n−1

−−→ · · ·
∂ ′
1

−→ B0
∂ ′
0

−−−→ Z → 0.
Lemma 7. For all 0 ≤ m ≤ n the mapping θ : Am → Bm is a homomorphism of left ZT-modules.
Proof. For all λ,µ ∈ ZS and f ∈ F , decomposing as in Lemma 5, it is easily seen that

(λ+ µ)(1) = λ(1) + µ(1) and (λ+ µ)(f ) = λ(f ) + µ(f ).

From this and the definition of θ it follows that
θ(α + β) = θ(α)+ θ(β)

for all α, β ∈ Am. Hence θ is a homomorphism of abelian groups.
By Proposition 1, under its action on S by left multiplication, T stabilises itself and each of the sets Lf (f ∈ F) setwise. It

follows that for all µ ∈ ZS, λ ∈ ZT and f ∈ F :
(λ · µ)(1) = λ · µ(1) and (λ · µ)(f ) = λ · µ(f ).

From this and the definition of θ we conclude that λ · θ(α) = θ(λ · α) for all λ ∈ ZT and α ∈ Am. �

Lemma 8. For all 0 ≤ m ≤ n the mapping φ : Bm → Am is a homomorphism of left ZT-modules.
Proof. This follows easily from the definition of φ. �

Lemma 9. For 0 ≤ m ≤ n the composition φθ : Am → Am is the identity map on Am. In particular, θ is injective.
Proof. Suppose thatm ≥ 1, the casem = 0may be handled similarly. Let

∑
x∈Xm−1

λx[x] ∈ Am, where λx ∈ ZS for x ∈ Xm−1.
Then from the definitions of φ and θ we have

φθ

 −
x∈Xm−1

λx[x]


= φ

 −
x∈Xm−1

λ(1)x [x] +

−
x∈Xm−1

f∈F

λ(f )x e[f , x]


=

−
x∈Xm−1

λ(1)x [x] +

−
x∈Xm−1

f∈F

λ(f )x ef [x] =

−
x∈Xm−1

λx[x]

since, by Proposition 1, for f ∈ F and x ∈ Xm−1 we have λ(f )x ef = λ
(f )
x f = λ

(f )
x , because λ

(f )
x ∈ Lf and f is a right identity in

its L -class. �
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Lemma 10. The mapping φ satisfies φ(ker ∂ ′
m) ⊆ ker ∂m for all 0 ≤ m ≤ n.

Proof. The fact that φ(ker ∂ ′

0) is a subset of ker ∂0 is an easy consequence of the definition of φ : B0 → A0. This deals with
the casem = 0. Now let l ∈ ker ∂ ′

m for some 1 ≤ m ≤ n. Say:

l =
−

x∈Xm−1

λx[x] +

−
i=m−1,...,0,
x∈Xi,f∈F

λf ,x[f , x] +

−
f∈F

λf [f ],

where each of the terms λx, λf ,x and λf belongs to ZT . Suppose thatm is odd, the case whenm is even is dealt with similarly.
Then since l ∈ ker ∂ ′

m applying ∂ ′
m gives−

x∈Xm−1

λxθ(x)+

−
x∈Xm−1

f∈F

λf ,xθ(fx)+

−
i=m−2,m−4,...

x∈Xi,f∈F

λf ,x(1 − e)[f , x]

+

−
i=m−3,m−5,...

x∈Xi,f∈F

λf ,xe[f , x] +

−
f∈F

λf (1 − e)[f ] = ∂ ′

m(l) = 0. (2)

From this along with (1) and the definition of θ : Am−1 → Bm−1 we deduce:

λf ,xe = 0 for f ∈ F , x ∈ Xi (i = m − 3,m − 5, . . .)
λf ,x(1 − e) = 0 for f ∈ F , x ∈ Xi (i = m − 4,m − 6, . . .)
λf (1 − e) = 0 for f ∈ F ,

and hence Eq. (2) becomes:−
x∈Xm−1

λxθ(x)+

−
x∈Xm−1

f∈F

λf ,xθ(fx)+

−
x∈Xm−2

f∈F

λf ,x(1 − e)[f , x] = 0. (3)

(When m = 1 the third term here is
∑

f∈F λf (1 − e)[f ] but the rest of the argument follows the same lines as below.) It
follows from Eq. (3) and Lemma 7 that−

x∈Xm−2
f∈F

λf ,x(1 − e)[f , x] ∈ θ(Am−1) ⊆ Bm−1,

which from thedefinition of θ implies thatλf ,x(1−e) ∈ ZL, for all f ∈ F and x ∈ Xm−2. Thereforeλf ,x(1−e) = λf ,x(1−e)e = 0
since e is a right identity in the L -class L. Now substituting this back into Eq. (3) and applying Lemma 7 gives

θ(∂m(φ(l))) = θ

 −
x∈Xm−1

λxx +

−
x∈Xm−1

f∈F

λf ,xfx


=

−
x∈Xm−1

λxθ(x)+

−
x∈Xm−1

f∈F

λf ,xθ(fx) = 0.

But by Lemma 9, θ is injective and so since θ(0) = 0 = θ(∂m(φ(l)))we conclude ∂m(φ(l)) = 0. �

Lemma 11. The mapping θ satisfies θ(ker ∂m) ⊆ ker ∂ ′
m for all 0 ≤ m ≤ n.

Proof. It is an immediate consequence of the definition of θ : A0 → B0 that θ(ker ∂0) ⊆ ker ∂ ′

0. This shows that the result
holds when m = 0. Next let 1 ≤ m ≤ n and take an arbitrary element α =

∑
x∈Xm−1

λx[x] ∈ ker ∂m. Then from the
definitions and Lemma 7 we have:

∂ ′

m


θ

 −
x∈Xm−1

λx[x]


= ∂ ′

m

 −
x∈Xm−1

λ(1)x [x] +

−
x∈Xm−1

f∈F

λ(f )x e[f , x]


=

−
x∈Xm−1

λ(1)x θ(x)+

−
x∈Xm−1

f∈F

λ(f )x eθ(fx)

= θ

 −
x∈Xm−1

λ(1)x x +

−
x∈Xm−1

f∈F

λ(f )x efx


= θ

 −
x∈Xm−1

λxx


= θ(∂m(α)) = θ(0) = 0,

where λ(f )x ef = λ
(f )
x f = λ

(f )
x by Proposition 1 since λ(f )x ∈ ZLf . �
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The next result relates generating sets of kernels from the sequence B with generating sets of kernels from the sequence
A.

Lemma 12. Let Y be a subset of ker ∂ ′
m for some 0 ≤ m ≤ n. If ⟨Y ⟩ZT = ker ∂ ′

m then ⟨φ(Y )⟩ZT = ker ∂m.

Proof. It follows from Lemma 10 that φ(Y ) ⊆ ker ∂m. Let α ∈ ker ∂m be arbitrary. Sinceφθ is the identity on Am by Lemma 9,
we have α = φθ(α)where θ(α) ∈ ker ∂ ′

m = ⟨Y ⟩ZT by Lemma 11. Write:

θ(α) =

−
y∈Y

γyy, (γy ∈ ZT ).

Then by Lemma 8:

α = φθ(α) = φ

−
y∈Y

γyy


=

−
y∈Y

γyφ(y) ∈ ⟨φ(Y )⟩ZT .

Since α was arbitrary it follows that ⟨φ(Y )⟩ZT = ker ∂m. �

We are now in a position to prove the main result of this section.

Proof of Proposition 2. For 0 ≤ m ≤ n, we define the following subset Ym of Bm:

Ym = θ(Xm) ∪ {(1 − e)[f , x] : f ∈ F , x ∈ Xi (i = m − 1,m − 3, . . .)}
∪ {e[f , x] : f ∈ F , x ∈ Xi (i = m − 2,m − 4, . . .)}
∪ Q ,

where

Q =


{(1 − e)[f ] : f ∈ F} ifm is even
{e[f ] : f ∈ F} ifm is odd.

Claim. For 0 ≤ m ≤ n we have Ym ⊆ ker ∂ ′
m and ⟨Ym⟩ZT = ker ∂ ′

m.

Proof of Claim. Suppose that m is odd, the case when m is even is similar. In particular the case m = 0 may be dealt with
using a similar argument.

Since Xm ⊆ ker ∂m it follows from Lemma 11 that θ(Xm) ⊆ ker ∂ ′
m. It then rapidly follows from the definition of ∂ ′

m and
Lemma 7 that Ym ⊆ ker ∂ ′

m.
To see that ⟨Ym⟩ZT = ker ∂ ′

m let l ∈ ker ∂ ′
m be arbitrary, say

l =
−

x∈Xm−1

λx[x] +

−
i=m−1,...,0,
x∈Xi,f∈F

λf ,x[f , x] +

−
f∈F

λf [f ],

where each of the terms λx, λf ,x and λf belongs to ZT . Exactly as in the proof of Lemma 10 from ∂ ′
m(l) = 0 we deduce:

λf ,xe = 0 for f ∈ F \ {e}, x ∈ Xi (i = m − 3,m − 5, . . .)
λf ,x(1 − e) = 0 for f ∈ F \ {e}, x ∈ Xi (i = m − 2,m − 4, . . .)
λf (1 − e) = 0.

It then follows from the definition of Ym, and sincem is odd, that−
i=m−2,m−3...,0

x∈Xi,f∈F

λf ,x[f , x] +

−
f∈F

λf [f ]

=

−
i=m−2,m−4,...

x∈Xi,f∈F

λf ,xe[f , x] +

−
i=m−3,m−5,...

x∈Xi,f∈F

λf ,x(1 − e)[f , x] +

−
f∈F

λf e[f ]

∈ ⟨Ym⟩ZT .

In other words l − l1 ∈ ⟨Ym⟩ZT where

l1 =

−
x∈Xm−1

λx[x] +

−
x∈Xm−1

f∈F

λf ,x[f , x] ∈ ker ∂ ′

m.

Since l1 ∈ ker ∂ ′
m, by Lemma 10 we have φ(l1) ∈ ker ∂m = ⟨Xm⟩ZT , and applying Lemma 7:

θ(φ(l1)) =

−
x∈Xm−1

λx[x] +

−
x∈Xm−1

f∈F

λf ,xe[f , x] ∈ ⟨θ(Xm)⟩ZT ⊆ ⟨Ym⟩ZT .
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We conclude, again by inspection of Ym, that

l1 = θ(φ(l1))+

−
x∈Xm−1

f∈F

λf ,x(1 − e)[f , x] ∈ ⟨Ym⟩ZT ,

and hence l = (l − l1)+ l1 ∈ ⟨Ym⟩ZT , completing the proof of the claim. �

Returning to the proof of Proposition 2, by definition each of B0, B1, . . . , Bn is a free left ZT -module. Next we must show
that B is exact. It is an immediate consequence of the definitions that ∂ ′

0(B0) = Z. Now let 1 ≤ j ≤ n − 1 and consider
im∂ ′

j+1. For all x ∈ Xj ⊆ ker(∂j) and f ∈ F we have fx ∈ ker(∂j) and so by Lemma 11 and the claim:

θ(fx) ∈ θ(ker(∂j)) ⊆ ker ∂ ′

j = ⟨Yj⟩ZT .

Using this observation, it is then easy to verify that im∂ ′

j+1 ⊆ ⟨Yj⟩ZT . From the definition of ∂ ′

j+1 we see that Yj ⊆ im∂ ′

j+1.
Therefore, applying the above claim we conclude that B is exact.

The last clauses in the statement of Proposition 2 follow from the claim and Lemma 12. �

5. Resolutions for completely simple semigroups II

In this section, we finish off the proof of Theorem 4. In Section 4 above, in the notation of that section, we saw how to
pass between free resolutions of S and free resolutions of T . We now go on to consider the relationship between resolutions
of T and those of H with the aim of proving the following result.

Proposition 4. Let L be a left group and let H be a maximal subgroup of L. Then L is of type left-FPn if and only if L has finitely
many idempotents, and H is of type FPn.

Recall that a left group is the direct product of a left zero semigroup and a group.We note that a recent result of Kobayashi
[35, Corollary 2.7] is exactly Proposition 4 in the special case n = 1.

Note that Proposition 4 does not simply follow from the dual of Proposition 3, since all statements are about left
ZS-modules.

Proposition 4 will follow from Proposition 5 and Theorem 7 which will be proved below. We continue using the same
notation that was introduced above in Section 4, with the exception of F which will be used to denote a different set of
idempotents from before. So T = L ∪ {1} ≤ S where L = L1 is a completely simple semigroup with a single L -class. Fix an
idempotent e in L, let F = E(L) and set H = He. For f ∈ F we use Hf to denote the H -class of f . Note that now F is the set of
idempotents of an L -class, while in the previous section above F was used to denote a set of R-related idempotents.

Onedirection of Proposition 4 is straightforward. Suppose that T is of type left-FPn. ThenH is of type left-FPn byTheorem2.
Also, since T is of type left-FP1, it follows from Theorem 7 below (see also [35, Theorem 2.6]) that L has finitely many
idempotents.

The main result of this section is the following which, when combined with the previous paragraph, has Proposition 4 as
a consequence.

Proposition 5. Let L be a left group, H be a maximal subgroup of L with identity e, and set F = E(L) and T = L1. Let

A : An
∂n
−→ An−1

∂n−1
−−→ · · ·

∂2
−→ A1

∂1
−→ A0

∂0=ϵH
−−−→ Z → 0

be a partial free resolution of the trivial leftZH-moduleZwhere A0 = ZH, ∂0 = ϵH is the standard augmentation, ker ϵH = ⟨X0⟩ZH
and for 1 ≤ m ≤ n

Am =


x∈Xm−1

ZH[x]

where ker(∂m−1) = ⟨Xm−1⟩ZH and ∂m : Am → Am−1 is the left ZH-module homomorphism extending [x] → x (x ∈ Xm−1). Then

B : Bn
∂ ′
n

−→ Bn−1
∂ ′
n−1

−−→ · · ·
∂ ′
2

−→ B1
∂ ′
1

−→ B0
∂ ′
0=ϵT

−−−→ Z → 0

is a partial free resolution of the trivial left ZT-module Z where B0 = ZT , ∂ ′

0 = ϵT is the standard augmentation, and for
1 ≤ m ≤ n:

Bm =


i=m−1,...,0

x∈Xi

ZT [x] ⊕


f∈F

ZT [f ],

where, viewing Am ⊆ Bm under the natural inclusion arising from ZH ⊆ ZT , ∂ ′
m : Bm → Bm−1 is the left ZT-module

homomorphism extending:

∂ ′

m([x]) =


x if x ∈ Xm−1

(1 − e)[x] if x ∈ Xi, i = m − 2, m − 4, . . .
e[x] if x ∈ Xi, i = m − 3, m − 5, . . .
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and

∂ ′

m([f ]) =


f − 1 if m = 1
(f − 1)[f ] if m odd and m ≠ 1
f [f ] if m even.

Moreover if F is finite, and A1, . . . , An are all finitely generated then B1, . . . , Bn are finitely generated. Thus if H is of type left-FPn
then T is of type left-FPn.

Proof. Let Y0 = X0 ∪ {(1 − f ) : f ∈ F}, and then for 1 ≤ m ≤ n define:

Ym = Xm ∪ {(1 − e)[x] : x ∈ Xi (i = m − 1,m − 3, . . .)}
∪ {e[x] : x ∈ Xi (i = m − 2,m − 4, . . .)}
∪ Q ,

where

Q =


{(1 − f )[f ] : f ∈ F} ifm is even
{f [f ] : f ∈ F} ifm is odd.

Claim. For 0 ≤ m ≤ n we have Ym ⊆ ker ∂ ′
m and ⟨Ym⟩ZT = ker ∂ ′

m.

Proof of Claim. We prove the result form odd. The proof in the casem even (and in particular the casem = 0) is similar.
First we must verify that Ym is a subset of ker ∂ ′

m. From the definitions we see that ∂m is the restriction of ∂ ′
m to Am ⊆ Bm,

and it follows from this that Xm ⊆ ker ∂ ′
m since Xm ⊆ ker ∂m. For x ∈ Xm−1 since e is a left identity for H we have

∂ ′

m((1 − e)[x]) = (1 − e)x = 0 (x ∈ Xm−1).

It is then easily verified from thedefinition of ∂ ′
m that the remainingmembers ofYm belong to ker ∂ ′

m. This provesYm ⊆ ker ∂ ′
m.

To see that ⟨Ym⟩ZT = ker ∂ ′
m, let α ∈ ker ∂ ′

m be arbitrary, say:

α =

−
i=m−1,...,0

x∈Xi

λx[x] +

−
f∈F

λf [f ],

where each λx, λf ∈ ZT , and sincem is odd ∂ ′
m(α) = 0 implies−

x∈Xm−1

λxx +

−
i=m−2,m−4,...

x∈Xi

λx(1 − e)[x] +

−
i=m−3,m−5,...

x∈Xi

λxe[x] +

−
f∈F

λf (f − 1)[f ] = 0. (4)

Recalling that

Xm−1 ⊆ ker ∂m−1 ⊆ Am−1 =


x∈Xm−2

ZH[x], (5)

it is then immediate from Eq. (4) that

λxe = 0 for x ∈ Xi (i = m − 3,m − 5, . . .)
λx(1 − e) = 0 for x ∈ Xi (i = m − 4,m − 6, . . .)
λf (f − 1) = 0 for f ∈ F .

(Whenm = 1 thingswork slightly differently, as we shall explain below.) From these observations, alongwith the definition
of Ym, we deduce:−

i=m−3,m−4,...,0
x∈Xi

λx[x] +

−
f∈F

λf [f ] =

−
i=m−3,m−5,...

x∈Xi

λx(1 − e)[x] +

−
i=m−4,m−6,...

x∈Xi

λxe[x] +

−
f∈F

λf f [f ] ∈ ⟨Ym⟩ZT .

In other words α − α1 ∈ ⟨Ym⟩ZT where:

α1 =

−
x∈Xm−1

λx[x] +

−
x∈Xm−2

λx[x], (6)

and −
x∈Xm−1

λxx +

−
x∈Xm−2

λx(1 − e)[x] = ∂ ′

m(α1) = 0. (7)

Now

α1 =

 −
x∈Xm−1

λx(1 − e)[x] +

−
x∈Xm−2

λxe[x]


+ α2
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where

α2 =

−
x∈Xm−1

µx[x] +

−
x∈Xm−2

σx[x],

with µx = λxe ∈ ZL (x ∈ Xm−1), and σx = λx(1 − e) ∈ Z (x ∈ Xm−2) since l(1 − e) = 0 for all l ∈ L. Since

(1 − e)[x] (x ∈ Xm−1), e[x] (x ∈ Xm−2),

all belong to Ym we deduce that α1 − α2 ∈ ⟨Ym⟩ZT . Applying ∂ ′
m to α2 gives:−

x∈Xm−1

µxx +

−
x∈Xm−2

σx(1 − e)[x] = ∂ ′

m(α2) = 0, (8)

whereµx ∈ ZL (x ∈ Xm−1) and σx ∈ Z (x ∈ Xm−2). For each x ∈ Xm−1, sinceµx ∈ ZL it decomposes uniquely in the following
way

µx =

−
f∈F

µ(f )x , (µ(f )x ∈ ZH f ). (9)

In the next step of the argument our aim is to deduce σx = 0 for all x ∈ Xm−2. First we consider what happens whenm ≥ 3
(recall thatm is odd by assumption), and then we shall explain how to modify the argument in the casem = 1.

Suppose m ≥ 3. Then, for each x ∈ Xm−2 by considering the coefficient of [x] in Eq. (8), and recalling (5) and the facts
µx ∈ ZL (x ∈ Xm−1) and σx ∈ Z (x ∈ Xm−2), we immediately deduce that σx = 0 for all x ∈ Xm−2.

Turning our attention to the special case whenm = 1. In this case the above argument leads to:

α2 =

−
x∈X0

µx[x] +

−
f∈F

σf [f ]

where µx ∈ ZL (x ∈ X0) and σf ∈ Z (f ∈ F), and−
x∈X0

µxx +

−
f∈F

σf (1 − f ) = ∂ ′

1(α2) = 0. (10)

For every f ∈ F and x ∈ X0 ⊆ ZH since H stabilises Hf under its action by right multiplication it follows that, in the notation
of (9), µ(f )x x ∈ ZH f . Thus from equation (10) we conclude that for each f ∈ f :−

x∈X0

µ(f )x x − σf f = 0, (11)

where µ(f )x ∈ ZH f and σf ∈ Z. But X0 ⊆ ker ϵT where ϵT is the standard augmentation, and so from Eq. (11) it follows that
σf f ∈ ker ϵT and so since σf ∈ Z we have σf = ϵT (σf f ) = 0 for all f ∈ F .

Thus both in the casem = 1 andm ≥ 3 we conclude that

α2 =

−
x∈Xm−1

µx[x], (12)

where µx ∈ ZL (x ∈ Xm−1), and−
x∈Xm−1

µxx = ∂ ′

m(α2) = 0.

For all l ∈ L and x ∈ Xm−1, from (5) we deduce

lx ∈


x∈Xm−2

ZH f [x] ⇔ l ∈ Hf ,

and it follows that

α2 =

−
f∈F

α
(f )
2

where, using the decomposition (9), α(f )2 =
∑

x∈Xm−1
µ
(f )
x [x] ∈ ker ∂ ′

m for every f ∈ F . Let f ∈ F be arbitrary. Then

α
(f )
2 =

−
x∈Xm−1

µ(f )x [x] (µ(f )x ∈ ZH f ),

and −
x∈Xm−1

µ(f )x x = ∂ ′

m(α
(f )
2 ) = 0. (13)
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To complete the proof of the claim it suffices to show that α(f )2 ∈ ⟨Ym⟩ZT . Clearly

f · Xm = fXm ⊆ ⟨Ym⟩ZT .

From Eq. (13) we deduce that eα(f )2 belongs to ker ∂m = ⟨Xm⟩ZH . So we can write:

eα(f )2 = µ1z1 + · · · + µrzr , (µi ∈ ZH, zi ∈ Xm).

But then since fe = f and f is a left identity for α(f )2 we obtain

α
(f )
2 = feα(f )2 = f (µ1z1 + · · · + µrzr)

= (fµ1)(fz1)+ · · · + (fµr)(fzr) ∈ ⟨fXm⟩ZT ⊆ ⟨Ym⟩ZT ,

since fµi ∈ ZH f (i = 1, . . . , r) and f is a right identity for Lf . Since f was arbitrary this shows that α2 ∈ ⟨Ym⟩ZT , completing
the proof of the claim. �

Returning to the proof of Proposition 5, by definition each of B0, B1, . . . , Bn is a free left ZT -module. To complete the
proof we must show that B is exact. Clearly ϵT maps B0 onto Z. Now let 1 ≤ j ≤ n − 1 and consider im∂ ′

j+1. It follows from
the claim that Yj ⊆ ker ∂ ′

j which, along with the definitions of Yj, Bj and ∂ ′

j , shows that im∂ ′

j+1 ⊆ ⟨Yj⟩ZT ⊆ ker ∂ ′

j . Since Yj is
a subset of im∂ ′

j+1 it then follows from the claim that the sequence B is exact.
The last clause in the statement of the proposition follows since if X0, . . . , Xm−1 (for some 1 ≤ m ≤ n) are all finite, and

F is finite, then from its definition Bm will clearly be finitely generated. �

Proof of Theorem 4. Let L be the L -class of U that contains H . Then:

U is of type left-FPn

⇐⇒ L is of type left-FPn (by Proposition 3)
⇐⇒ |E(L)| < ∞ & H is of type FPn (by Proposition 4)
⇐⇒ U has finitely many right ideals

& H is of type FPn. �

6. Kobayashi’s criterion and the property FP1

In this section, we turn our attention to the particular case n = 1 and examine the behaviour of the property FP1 in more
detail. As mentioned in the introduction, a group is of type FP1 if and only if it is finitely generated. For monoids this is no
longer the case. In a recent paper [35] Kobayashi characterised the property left-FP1 for monoids in the following way.

Let S be a semigroup and let A be a subset of S. A subsemigroup T of S is called right unitary if st ∈ T implies s ∈ T for
any t ∈ T and s ∈ S. The intersection of two right unitary subsemigroups is clearly right unitary, so we may speak of the
right unitary subsemigroup of S generated by A, which we denote by ⟨A⟩r.u.. We say that S is right unitarily finitely generated
if there is a finite subset A of S such that ⟨A⟩r.u. = S. For a subset A of a semigroup S we use ⟨A⟩ to denote the subsemigroup
of S generated by A.

The right Cayley graphΓr(S, A) of S with respect to a subset A of S is the directed labelled graphwith vertices the elements
of S, and a directed edge from x to y labelled by a ∈ A if and only if xa = y in S. (Note here that we do not insist that A is
a generating set for S.) We write this as x

a
−→ y. We say that Γr(S, A) is connected if between any two vertices there is an

undirected path. Kobayashi’s characterisation of the property left-FP1 for monoids may be stated as follows.

Theorem 6. [35, Proposition 2.4 & Theorem 2.6] A monoid S is of type left-FP1 if and only if there is a finite subset A of S such
that one of the following equivalent conditions is satisfied:

(i) S is right unitarily generated by A i.e. ⟨A⟩r.u. = S;
(ii) the right Cayley graph Γr(S, A) is connected.

Kobayashi’s characterisation allows for a more detailed analysis of FPn for monoids in the special case that n = 1. In this
section, among other things we use his criterion as a tool to characterise completely simple semigroups of type left-FP1 in
terms of the number of right ideals and the subsemigroup generated by the idempotents. The following concept will play
an important role.

Definition 1 (Relative Rank). Let S be a semigroup and let T be a subsemigroup of S. Then we define:

rank(S : T ) = inf
A⊆S

{|A| : ⟨T ∪ A⟩ = S}

which we call the relative rank of T in S.

It is not so surprising that the idea of relative rank arises here, since it is a notion that is central for understanding
generating sets of completely simple semigroups; see [27,48].
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Theorem 7. Let U be a completely simple semigroup, let H be a maximal subgroup of U and let ⟨E(U)⟩ be the subsemigroup
generated by the idempotents of U. Then U is of type left-FP1 if and only if the following two conditions are satisfied:

(i) U has finitely many right ideals, and
(ii) the subgroup K of H generated by ⟨E(S)⟩ ∩ H has finite relative rank in H.

Proof. Let S = U1. By the Rees theorem (see [33, Chapter 3], or originally [46]) we may identify U with a Rees matrix
semigroup M[G; I,Ω; P] over a group G where G ∼= H and P = (pωi)ω∈Ω,i∈I is an Ω × I matrix with entries from G. This
semigroup has elements U = I × G ×Ω and multiplication given by:

(i, g, ω)(j, h, µ) = (i, gpωjh, µ).

Moreover, we may assume that the matrix P is in normal form i.e. p1ω = pi1 = 1 for all i ∈ I and ω ∈ Ω (see [33, Chapter 3,
Section 4]) andwemay also suppose without loss of generality thatH = H11. It is well known and easy to prove (see [32] for
example) that the subgroup K of H generated by ⟨E(S)⟩ ∩ H consists of all triples (1, g, 1)where g belongs to the subgroup
of G generated by the entries in the matrix P .

Suppose that I is finite (i.e. thatU has finitelymany right ideals) and K has finite relative rank inH . Let X be a finite subset
of H such that ⟨X ∪ K⟩ = H . Let F be the set of all idempotents in some fixed L -class L of U . We claim that F ∪ X is a right
unitary generating set for U . First observe that E(U) ⊆ ⟨F ∪ X⟩r.u. Indeed, given any e ∈ E(U) there exists f ∈ F such that
eRf and so ef = f and thus e ∈ ⟨F ∪ X⟩r,u. Therefore

⟨F ∪ X⟩r.u = ⟨F ∪ X ∪ E(U)⟩r.u = ⟨X ∪ E(U)⟩r.u
⊇ ⟨X ∪ E(U)⟩ ⊇ ⟨(X ∪ (⟨E(U)⟩ ∩ H)) ∪ E(U)⟩
= ⟨H ∪ E(U)⟩ = U .

Hence ⟨F ∪ X⟩r.u = S and since F ∪ X is finite it follows from Theorem 6 that S is of type left-FP1.
For the converse, suppose that S is of type left-FP1. Let A be a finite subset of S such that Γr(S, A) is connected. Also, we

may assume that A is chosen so that (i, g, ω) ∈ A if and only if (i, g−1, ω) ∈ A for all i ∈ I , ω ∈ Ω and g ∈ G. Since for any
collection of R-classes R1, . . . , Rk of U the union R1 ∪ · · · ∪ Rk ∪ {1} is a right unitary submonoid of S it follows that Amust
intersect every R-class of S, and thus I is finite. To complete the proof we have to show that K has finite relative rank in H .

We claim that ⟨A ∪ E(S)⟩ = S. To see this, suppose for the sake of a contradiction that ⟨A ∪ E(S)⟩ ( S. Since Γr(S, A)
is connected (as an undirected graph) it follows that there exist u, v ∈ S such that u ∈ ⟨A ∪ E(S)⟩, v ∉ ⟨A ∪ E(S)⟩ and u
adjacent to v in Γr(S, A). So there exists a ∈ A such that either ua = v or va = u. Since v ∉ ⟨A ∪ E(S)⟩ we cannot have
ua = v and therefore must have va = u. Clearly none of a, v or u is equal to 1. Let

v = (i, g, ω), a = (j, α, µ), u = (k, β, ν),

where i, j, k ∈ I , ω,µ, ν ∈ Ω and g, α, β ∈ G. Then

(i, gpωjα,µ) = (i, g, ω)(j, α, µ) = va = u = (k, β, ν),

and so

i = k, µ = ν, & g = βα−1p−1
ωj .

Therefore since the matrix P is in normal form:

v = (i, g, ω) = (i, βα−1p−1
ωj , ω) = (i, βpµ11p1jα−1pµ11p1jp−1

ωj , ω)

= (i, β, µ)(1, 1, 1)(j, α−1, µ)(1, 1, 1)(j, p−1
ωj , ω) ∈ ⟨A ∪ E(S)⟩,

since (i, β, µ) = (k, β, ν) = u ∈ ⟨A ∪ E(S)⟩, (j, α−1, µ) ∈ A and (j, p−1
ωj , ω) ∈ E(S). This is a contradiction. We conclude

that ⟨A ∪ E(S)⟩ = S. In particular H ⊆ ⟨A ∪ E(S)⟩ so given g ∈ Gwe can write

(1, g, 1) = (i1, g1, ω1)(i2, g2, ω2) · · · (ik, gk, ωk)

where i1 = 1, ωk = 1 and each (ir , gr , ωr) ∈ A ∪ E(S). It follows that

g = g1pω1 i2g2 · · · pωk−1 ikgk

where each gi is either the inverse in G of an entry from P , or is the middle entry of some triple from A. It follows that if B is
the set of all middle entries of elements of A then N ∪B generates Gwhere N is the subgroup of G generated by the entries in
the matrix P . Since A is finite it follows that B is finite, therefore K has finite relative rank in H and this completes the proof
of the theorem. �

We leave as an open question the problem of extending Theorem 7 to values of n greater than 1. It seems likely that the
formulation of such a result will need the introduction of the notion of a subgroup K being of relative type-FPn in a group G.

The following result shows how left-FP1 holding in an ideal of a semigroup influences the same property holding in the
semigroup.
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Proposition 6. Let S be a monoid and let J be a left ideal of S. If J is of type left-FP1 then so is S.

Proof. Let T = J ∪ {1} ≤ S. Since J is left-FP1 there is a non-empty finite subset A of T such that Γr(T , A) is connected. Let
a ∈ A ∩ J . Then for all s ∈ S we have sa ∈ J , since J is a left ideal, and it follows that Γr(S, A) is connected and hence S is of
type left-FP1. �

The following example shows that the converse of this result fails, even for two-sided ideals and as a consequence also
shows that Theorem 3 above does not hold if we remove the assumption that the ideal has a two-sided identity element.
Moreover, it shows that the finiteness assumption on J in Theorem 8 below really is necessary.

Example 1. Let S be a finitely generated monoid with a minimal ideal R where R is isomorphic to a rectangular band A × B
where A and B are both infinite sets. Since S is finitely generated it is, in particular, of type left-FP1. However, by Theorem 6,
R is neither of type left-FP1 nor right-FP1.

Such an example S may be constructed in the following way. First let U be the submonoid of the full transformation
monoid T (N) (the semigroup of all maps from N to N under composition) generated by α which maps i → i + 1 (i ∈ N)
and the constant map γ with image 1. The monoid U is finitely generated, and has a minimal ideal isomorphic to an infinite
right zero semigroup. Let V be the dual of U , which is finitely generated and has a minimal ideal that is an infinite left zero
semigroup. Then define S = U × V which has a minimal ideal that is a rectangular band with infinitely many left and right
ideals. Also S is finitely generated since it is a direct product of two finitely generated monoids.

Combining Theorem 7 and Proposition 6 we obtain the following.

Theorem 8. Let S be a monoid with a minimal ideal J that is completely simple and has finitely many right ideals. Let H be a
maximal subgroup of S in J and K be the subgroup of H generated by ⟨E(J)⟩∩H. Then S is of type left-FP1 if and only if K has finite
relative rank in H.

Proof. One direction is a direct consequence of Theorem 7 and Proposition 6.
For the converse, suppose that S is of type left-FP1. By Theorem 7 to complete the proof it suffices to show that

T = J ∪ {1} ≤ S is of type left-FP1. Let A be a finite subset of S such that Γr(S, A) is connected as an undirected graph.
Fix an L -class L of J and let F = E(S) ∩ L which is finite by assumption. Define B = F ∪ AF which is a finite subset of J . We
shall now prove that B is a right unitary generating set for T = J ∪ {1}.

Let e ∈ F be arbitrary and let R = Re be its R-class. We claim that for every x ∈ R there is a path in Γr(T , B) from x to e.
Let x ∈ R. Since Γr(S, A) is connected it follows that there is a sequence

1 = y0, y1, . . . , yr = x

of elements of S such that for all i, yi and yi+1 are connected by an arc (in some direction) in Γr(S, A). Now consider the
sequence:

z0 = e = e1 = ey0, z1 = ey1, . . . , zr = eyr = ex = x,

recalling that e is a left identity in its R-class. For all i since e, eyi ∈ J and J is a completely simple semigroup, it follows from
Proposition 1(i) that e(eyi)Re. Therefore eyi = eeyi ∈ R for all i. Now for any a ∈ A, yia = yi+1 implies (eyi)a = (eyi+1),
while yi+1a = yi implies (eyi+1)a = (eyi). So the sequence (zi)0≤i≤r is a path in Γ (S, A) contained in R, beginning at e
and terminating at x. Consider a typical arc in this path: ua = v. This implies u(ae) = v(e) and hence, since ae, e ∈ B by
definition, u and v are joined by a path of length atmost 2 inΓr(T , B). We conclude that inΓr(T , B) there is a path from every
vertex x ∈ R to e. Since R was an arbitrary R-class, the same is true for every R-class of J . Also every pair of idempotents ei
and ej of F are connected by a path in Γr(T , B) of length 2 via 1 ∈ T since ei, ej ∈ B. We conclude that Γr(T , B) is connected
and so T is of type left-FP1. �

In particular, in Theorem 8, if E(J) is finite then K has finite relative rank in H if and only if H is finitely generated which
gives the following result.

Corollary 2. Let S be a semigroup with finitely many left and right ideals, let J be the unique minimal ideal of S, and let H be a
maximal subgroup of S in J. Then the following are equivalent:

(i) S is of type left-FP1;
(ii) S is of type right-FP1;
(iii) the group H is finitely generated (equivalently, H is of type FP1).

Currently we do not knowwhether Corollary 2 holds for left-FPn for values of n greater than one. We do however know that
it holds in one direction, passing from S to H , by virtue of Theorem 2.
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7. Further applications and examples

In this section, we give some examples showing that the finiteness conditions imposed in the main results of the paper
really are necessary. We also give some further applications of our results.

The following example shows that without the finiteness assumption on the number of left ideals, Theorem 2 (and
therefore also Theorem 4) no longer holds.

Example 2. Let G be the free group over X where X = {xi : i ∈ N}. Let S = M[G; I,Ω; P] be the Rees matrix semigroup over
Gwith structure matrix

P =


1 1
1 x1
1 x2
...

...

 .
Then by Theorem 7, S is of type left-FP1. But G is not of type FP1 since G is an infinitely generated group.

Simple semigroups

In Theorem 5 we proved that if a completely simple semigroup is of type left- and right-FPn then all of its maximal
subgroups are of type FPn. We shall now see that this result does not extend to simple semigroups in general.

We begin by quoting a well-known result regarding FPn for amalgamated free products of groups; see [7] for a proof.

Proposition 7. Let G be the amalgamated free product A∗C B of groups A,B and C, and let n ∈ N. If G is FPn and A and B are FPn−1
then C is FPn−1.

Example 3. Let S be the monoid defined by the following finite presentation:

⟨a1, a2, a3, a4, a′

1, a
′

2, a
′

3, a
′

4, b, c | aja′

j = a′

jaj = 1, a1a2 = a3a4, bc = 1,
baj = a2j b, ajc = ca2j (j = 1, 2, 3, 4)⟩.

Then from [50, Proposition 3.3] the group of G units of S is defined by the following group presentation:

⟨a1, a2, a3, a4 | a2
i

1 a
2i
2 = a2

i

3 a
2i
4 (i = 0, 1, 2, 3, . . .)⟩.

As observed in [50] S is a Bruck–Reilly extension (see [33, Chapter 5] for a definition of Bruck–Reilly extension) of the
group G and consequently S is simple and every maximal subgroup of S is isomorphic to G. Also, G is the free product with
amalgamation of A1, A2 (both free groups of rank 2) where the amalgamated subgroup is not finitely generated. Therefore
it follows by Proposition 7 that G is not of type FP2. Recalling (see [42, Proposition 5.6] for instance) that every finitely
presented monoid is of type left- and right-FP2 we obtain the following.

Proposition 8. There exists a simple monoid that is finitely presented, and hence of type left- and right-FP2, none of whose
maximal subgroups are of type FP2.

This leads naturally to the following question: is it true that for every n ≥ 1 there is a simple monoid of type left- and
right-FPn none of whose maximal subgroups are of type FPn?

Strong semilattice of monoids

Wemay apply our results to another fundamental construction from semigroup theory, the so-called strong semilattices
of monoids. Let Y = (Y ,≤) be a semilattice, and let Aα (α ∈ Y ), be a family of disjoint monoids indexed by Y . Denote by 1α
the identity of Aα . Suppose that for any two elements α, β ∈ Y , β ≤ α, there exists a homomorphism φα,β : Aα → Aβ such
that

(1) φα,α is the identity homomorphism on Aα
(2) φα,βφβ,γ = φα,γ , for all α, β, γ ∈ Y with γ ≤ β ≤ α.

The set S = ∪α∈YAα can then be made into a semigroup by defining

ab = (aφα,αβ)(bφβ,αβ), a ∈ Aα, b ∈ Aβ .

When all Aα are groups then we obtain exactly the Clifford monoids (originally introduced in [18]) from this construction
(a Clifford monoid is a regular semigroup whose idempotents are central). More details on this construction may be found in
[33, Chapter 4].

The following result characterises the property left-FPn for strong semilattices ofmonoids, and so in particular for Clifford
monoids.
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Theorem 9. Let S = S[Y ; Aα, φα,β ] be a strong semilattice of monoids. Then S is of type left-FPn if and only if Y has a minimal
element e, and the monoid Ae is of type left-FPn.

Proof. Suppose S is of type left-FPn. Then in particular S is of type left-FP1 and hence the semilattice Y , which is a retract
of S, is also of type left-FP1 by [43, Theorem 3]. (In fact, left-FP1 is even preserved by arbitrary homomorphic images, which
is easily seen from Theorem 6.) By Theorem 6 this means that Y is right unitarily finitely generated. Let A be a finite right
unitary generating set for Y . Let X be the subsemilattice generated by A, which is finite since A is finite, and let z be the
unique minimal element of X . Define Z = {y ∈ Y : zy = yz = z}. Clearly Z is a subsemigroup of S, and is right unitary since
for x ∈ Z and y ∈ Y , yx ∈ Z implies yxz = z and so yz = z which gives y ∈ Z . Since A is a right unitary generating set for Y
it follows that Z = Y and so z is the unique minimal element of Y . The result now follows by applying Theorem 3. �

For inverse semigroups it is known that left-FPn and right-FPn are equivalent. In particular this is true for Cliffordmonoids.
The above theorem applies to Clifford monoids.

Corollary 3. A Clifford monoid is of type FPn if and only if it has a minimal idempotent e and the maximal subgroup Ge containing
e is of type FPn.

Another related application of the results of Section 3 is the following.

Corollary 4. Let S be an inverse semigroup with a minimal idempotent e, and let G be the maximal subgroup of S containing e.
Then S is of type FPn if and only if G is of type FPn.

8. Other homological finiteness properties

We conclude the paper with some remarks about some other homological finiteness properties of monoids.

The property bi-FPn

In [3] Alonso and Hermiller introduced a property which they called bi-FPn (the same property is called weak bi-FPn
in [43]).

A monoidM is said to be of type bi-FPn if there is a finite rank length n resolution of Z by (ZM,ZM)-bimodules.
Pride [43] showed that a monoid is of type bi-FPn (in the sense of Alonso and Hermiller) if and only if it is of type left-

and right-FPn. Therefore an alternative way or expressing Theorem 5 above is as follows.

Theorem 10. A completely simple semigroup S is of type bi-FPn if and only if it has finitely many left and right ideals and all of
its maximal subgroups are of type FPn.

Cohomological dimension

Several problems regarding closure properties of homological finiteness conditions ofmonoidswere posed in [50, Remark
and Open Problem 4.5] and in [49, Open Problem 11.1(i)]. Specifically, in [50, Remark and Open Problem 4.5] it was asked
whether for a regular semigroup S with finitely many left and right ideals whether S has property left-FPn (resp. finite
cohomological dimension) if and only if all maximal subgroups of S have property left-FPn (resp. finite cohomological
dimension). We have already observed above that the first of these questions, concerning property left-FPn, has a negative
answer. We may similarly answer negatively the question about cohomological dimension using [29, Theorem 1] which
states that amonoid has left and right cohomological dimension zero if and only if it has a two-sided zero element. Therefore,
by taking a group G with infinite cohomological dimension and adjoining a zero element we obtain a regular monoid with
finitely many left and right ideals, and with finite cohomological dimension, but with a maximal subgroup that has infinite
cohomological dimension.

In exactly the same way we see that neither the property left-FPn, nor that of having finite cohomological dimension,
is inherited by subsemigroups with finite Rees index (the Rees index of a subsemigroup T of a semigroup S is defined as
the cardinality of the complement S \ T ). This answers negatively two further open problems that were posed in [49, Open
Problem 11.1(i)].
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