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1. Introduction

We shall consider entire solutions of the following Allen-Cahn equation

Uy —F@)=0, |u<1, (xR’ (11)
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where F is a balanced double-well potential, i.e., F € C%8([—1, 1]) satisfies F(1) = F(—1) =0 and

{ F(-1)=F'(1)=0, F'(-1)>0, F"(1)>0;

F'(t)>0, te(—1,tg); F'(t)<0, te(tg,1) (12)

for some tg € (0,1). Without loss of generality, we may assume that top = 0. A typical example of
balanced double-well potential is F(u) = (1 —u?)?, ueR.

It is well known that there exists a unique transition layer solution g(y) (up to translation) to the
one dimensional Allen-Cahn equation

{ g"(s) — F'(g(s)) =0, seR,
(1.3)

lim g(s) =1, lim g(s)=-1.
5—>00 S——00
We may assume that g(0) = 0. Indeed, g is a minimizer of the following energy functional
o0
1, ,2
E(v):= 5|v |” + F(v) | dx
—00

in H:={veH!

e B =1 < v <1, limgaeo v(S) = £1} and

1
e.=E(g)= / V2Fu)du < oo.
-1

The solution g is non-degenerate in the sense that the linearized operator has a kernel spanned only
by g'.

If u is an evenly symmetric solution in x, we may regard u as a solution in the half plane Ri =
{x,y) x>0, yeR},

U +Uyy — F(u)=0, [ul<1, (xy) eR?, (14)
uX(07 _V) 205 y ER'

We may also assume that u satisfies the monotone condition
ux(x,y) >0, x>0, yeR. (1.5)

Our main theorem states that u must be evenly symmetric with respect to y and monotone for
y>0.

Theorem 1.1. Assume that u(x, y) is even in x and satisfies (1.4) and (1.5). Then u is even in y, i.e.,

ux y)=ux —y), xy) eR: (1.6)
after a proper translation in y. Moreover, uy(x, y) < 0 for x > 0, y > 0, and the nodal set of u for x > xo
can be expressed as the graph of two C># functions y = +k(x) which is asymptotically linear, i.e., k(x) =

kx+ C + o(1) for some constants k > 0, C, as x goes to infinity.
In particular, we have

lim u(x,y)=1, VyeR. (1.7)
X—>00
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This symmetry result may be regarded as the counterpart of De Giorgi conjecture for a half plane.
The original De Giorgi conjecture concerns the symmetry of monotone solutions in the entire space,
and has been studied intensively in last two decades. The conjecture has been essentially solved (see,
e.g., [4,16,3,17,29] and [12]). Fully nonlinear version of similar symmetry results in two dimensions
can be found in [14].

We shall prove Theorem 1.1 in three main steps. First, we carry out a preliminary analysis of the
nodal set I" of u and show that I" can be regarded as graphs of two C3-# functions y =k;(x),i=1,2
for x > x¢ large enough; Second, we show that k(x) must be asymptotically linear. Finally we use the
moving plane method to conclude.

We shall also discuss the even symmetry of entire solutions whose asymptotically behavior at
infinity are roughly prescribed. For example, we can show that an entire solution with finite Morse
index and four ends must be evenly symmetric in both x and y, after a proper translation and rotation.
For a finite integer m > 0, we say that a solution u defined in £2 C R" has finite Morse index m if m is
the maximal dimension of any linear subspace of Sobolev space H!(£2) contained in

N:= {q)eH](.Q): /|V¢|2+F”(u)¢>2dv <o}m{0}. (1.8)
2

If m=0, u is also called a stable solution in £2. If an entire solution u has finite Morse index, then it is
well known that u must be stable outside a large enough ball Bg, (see, e.g., [15,8] and [9]).

An entire solution u is called a solution with 2k ends for some positive integer k if the nodal set
I" of u outside a large disc Bg(0) consists of 2k embedded C! curves I} := {(r;(t), 6;(t)): Vt >0},
1 <i <2k, in polar coordinates, r;(t) — oo as t — oo, and

Lc{re):r=R 607 <0 <6, 1<i<2k}

where 0 <6 <6 <67, <6 <2m, 1<i<2k—1.

We note that there is a similar but slightly different definition of 2k ends solutions in [11,24]
and [23], where the asymptotically behavior of the level sets of 2k ends solutions are prescribed as
straight lines. In their definition, it follows that such solutions must have finite Morse index (see [24]).
On the other hand, with the definition of 2k ends solution in this paper, it can be shown that a 2k
ends solution with finite Morse index must have level sets being asymptotically straight lines if the
spreading angle 91.+ — 6, are less than 7 (see [19]). The latter condition is believed to be a technical
condition, which may be removable. In this sense, the two definitions are almost equivalent among
the finite Morse index solution class, with the definition in this paper being slightly more general.

We have the following symmetry result for entire solutions with four ends.

Theorem 1.2. Suppose that u is an entire solution to (1.1) with finite Morse index and four ends. Assume
also

0<0 -6 <m, 1<i<4 (1.9)
Then, after a proper translation and rotation, u satisfies

ux, y) =ukx, —y) =u(=xy), VY y) ecR? (1.10)

and

uy(x,y) >0, uy(x,y) <0, vx>0,y>0 (1.11)
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and (1.7) holds. Moreover, there exists an angle ® = 260 € (0, ) such that the nodal set of u in the first
quadrant is a graph of a C3-# function y = k(x) for x > Xg large enough, and

k(x) =xtan6 +o0(1), asx— oo.

There is a simpler version of the above theorem. If we assume that the level sets of a four end
solution are asymptotically straight lines, then the solution must satisfy (1.10) and (1.11), after proper
translation and rotation. We do not need to assume that u is of finite Morse index. See Theorem 4.2.

An entire solution u with four ends may be called a saddle solution. The above theorem may be
regarded as a form of De Giorgi conjecture for saddle solutions. The angle ® may be called the contact
angle of u (see [19] for more discussion).

The condition (1.9) is a technical condition and is believed to be unnecessary. However, we need
it for the proof of an energy bound in Lemma 5.1 for a functional

Er(u) ::/G|Vu|2+F(u)) dxdy. (112)

Bg

If we assume the energy bound (5.2) in Lemma 5.1 directly instead of (1.9), the conclusion of The-
orem 1.2 still holds. Indeed, we have the following general energy quantization result. Note that a
different energy quantization phenomenon has been shown for Ginzburg-Landau equation (see [5]).

Theorem 1.3. Assume that u is an entire solution of (1.1) with finite Morse index. Then there holds either

lim Er(u)/R = oo, (113)
R—o0
or
lim Er(u)/R = 2ke (1.14)
R— o0

for some positive integer k.
In the latter case, u must be an entire solution with 2k ends, and the nodal set of u must be asymptotically
straight lines. Moreover, if we denote the directions of these lines by v; = (cos 6;, sin6;), 1 <i < 2k, then

2k
> vi=1(0.0). (115)
i=1

It is suspected that the first case in Theorem 1.3 may not happen at all. It would be interesting
to show that only (1.14) holds and for a given configuration v;, 1 <i <k there exist only two corre-
sponding solutions with opposite signs after a proper translation. All entire solutions with finite Morse
index could then be classified accordingly.

We note that the existence of entire solutions with finite Morse index and 2k ends has been shown
in [10] for k =2 and in [2] for general k, where the nodal sets are straight lines (see also [31,18,22]
for more discussion on these solutions). More general solutions with nodal sets being almost parallel
lines are found in [13]. It was also pointed out in [13] that there may not be any symmetry for entire
solutions with six or more ends. Note also that (1.15) implies (1.9) for k = 2. Similar saddle solutions
for vector valued Allen-Cahn equation are also constructed in [1].

It is noted that in [11], the moduli space of all 2k end solutions is studied. Since the submission
and the posting of the original version of this paper, there have been new developments in the study
of the moduli space of all four end solutions in [24] and [23]. Because four end solutions are evenly
symmetric, their asymptotic behavior is determined by the contact angle @ of the asymptotic straight
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half lines. It is shown in [24] that for any connected component in the moduli space of four end
solutions the contact angle ® can range from 0 to 7. In addition, in [23] it is proven that there is only
one connected component in the moduli space, which connects the saddle solution with crossing
nodal lines in [10] and the solutions with almost parallel nodal lines in [13]. Thus the study of all
four end solutions is parallel to results in the theory of minimal surfaces developed in [28]. (See [24]
for a detailed discussion on this similarity.)

For a given ® € (0, i), the uniqueness of four ends entire solutions with contact angle @ is still un-
known. It is stated in [11] and [13] that the formal dimension of the moduli space of entire solutions
with 2k ends is 2k. For k = 2, it means that there is a local uniqueness of saddle solutions with a fixed
contact angle, up to a translation and rotation. However, the global uniqueness is a very different and
more difficult question.

The paper is organized as follows. In Section 2, some preliminary results for entire solutions of
Allen-Cahn equation in all dimensions shall be stated. In Section 3, we will prove Theorem 1.1. In
Section 4, a simpler version of Theorem 1.2 shall be proven. Theorem 1.3 and the energy quantization
property will be proven in Section 5.

2. Some basic properties

In this section we shall state some useful properties of entire solutions to the Allen-Cahn equation.
We first state a gradient estimate (1.1) for all dimensions which was proven in [26].

Proposition 2.1. Assume that F(s) > 0, Vs € [—1, 1]. Suppose that u is a solution to (1.1). Then

IVul?(x,y) <2F(u(x, y)), (x,y)eR" (2.1)

It is also well known that u has the following exponential decay with respect to distance from the
level set.

Proposition 2.2. Assume that u is a solution to (1.1). Then there exists constants C and v > 0 such that

[u — 1]+ |Vu| + |V?u| < Ce™ V&) (2.2)

where d(x, y) is the distance to the nodal set I" of u.

This property can be proven by comparing u with a solution ug > 0 of the Allen-Cahn equation in
a ball By centered at (x, y) with zero boundary condition, where R =d(x, y). (See, e.g., [16].)

The following monotonicity property of energy is shown in [27].
Proposition 2.3. Assume that u is a solution to (1.1). Then Eg (u) /R is increasing in R.
3. Even symmetry of solutions on a half plane

We now consider an entire solution u which is even in x. Note that u may be regarded as a
solution of (1.4) on a half plane.

We first study the limit of u(x, y) as x goes to infinity.

Define

ut(x,y):=u(t+x,y), x>-1,V¥yeR.

It is easy to see that u”(x, y) converges to some function ut(y) > —1 in C2 (R?) as T goes to infinity,

loc
and ut(y) satisfies one dimensional Allen-Cahn equation

uyy— F'(u)=0, yeR. (3.1)
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Let

=@mw
uy (0,0)

o (x,y) >0, Vx>-1,yeR.

By the Harnack inequality and the gradient estimate for elliptic equations, we know that o7 (x, y) con-
verges to o *(x,y) >0 in CIZOC(]RZ) as T goes to infinity, and o*(x, y) satisfies the linearized equation
of Allen-Cahn equation

o +0oyy — F'(ut(y))o =0, x,y)e€ R2. (3.2)

Hence u™ is a stable solution of (3.1) and u™ # 0. Then, by solving (3.1) explicitly, we know that there
are three possibilities for u™:

(i) ut =1;
(ii) ut(y) = g(y — K) for some constant K;
(iii) u™(y) = g(K — y) for some constant K.

The next goal is to show that only (i) holds. To do so, we shall prove several basic properties for u.
The first property is an energy estimate of u on a line.

3.1. Energy estimate

We first show a simple but important lemma regarding the energy of u on y-axis.

Lemma 3.1. Suppose that u is a solution to (1.4) and (1.5). Then

1
/{F@MQy»—%Euim“w]dy<3& (3.3)
Proof. Define
o
h(y) :/uyuxdx, Vy eR.
0

In view of (2.1) and the positivity of uy, it is easy to see that h(y) is well defined and

w@ﬂ</\uF@uyn¢uw<e—cwmyn<a vyeR
0

where

t

G(t) ::f\/ZF(s)ds, Vte[-1,1]. (3.4)

-1
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Differentiating h(y) with respect to y and using (1.4), we obtain

h'(y) :/(uyyux+uyuxy)dx

Zo[ <F(u) L u>]dx

~[Fr 0+ )0 - [Fo.m) + Jon] G5)

Here we have used the facts uy(0, y) =0 and limy_, o ux(x, ¥) =0, Vy € R. Then, we derive

b
1
/ [F(u(o, 9) + 510, y)] dy

b
1
:/[F(u+(y)) + E(uj)z(y)} dy + (h(a) — h(b)). (3.6)
Define
1 1

pX) zf[F(U(x, y)+ 5U§(x, y) - 5U§(x, y)] dy (3.7)

R

and
1
pt= / [F(u*(y)) + z(u;)zm] dy. (38)
R

Then, letting a — —oo and b — +o¢ in (3.6), in view of the bound of h(y) we obtain
p(0)=pT+ lim h(a)— lim h(b) < 3e. (3.9)
a——00 b—o0

Therefore, (3.3) is proven. 0O

3.2. A Hamiltonian identity

Next we shall show a Hamiltonian identity for solutions of (1.4).

Lemma 3.2. Assume that u(x, y) satisfies (1.4) and (1.5). Then

px)=p(0), VxeR,. (3.10)
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Proof. By (3.3) and the boundedness of u in C3(R"), we know that the following limits exist
.= yangou(O, ), v i= yElPOOu(O, y)
and
vt|=1, vT|=1.
Indeed, by the standard translation argument it can be shown that
v y) = tgn;ou(x, y+), Voo (X, ¥) == t_ljr_noo u,y+t
exist and are solutions to (1.4), and hence
vixy)=vt, VoY) =vT, (x,y) R

In particular,

: _ + _ H _ - _
Jim (X, y) = (vL),x.») =0, i ux(x, y) = (V). y) =0

Jim uy(x, y) = (v) , (x. y) =0, dimuy(x ) = (vo)  (x. ) =0. (3.11)
Define
R
hr(y) ::/uyuxdx, Vy eR.
0

Then, in view of (3.11), we have

lim hgr(y)=0, VR>O0.

|y|—o0

As before, differentiating hg(y) with respect to y and using (1.4), we can obtain

%(J’) = /(uyyux + Uylyy) dx

O/R[ (- i+ 1) o

1 1
[ (u(R, y))+ S(R.y) — U (R, y)] [ (u(o, y))+ 2.0, y)]
Then, integrating the above with respect to y in R, we derive
p(0) — p(R)= lim hg(a) — lim hg(b) =0. (3.12)
a——0o0 b—o0

The lemma is proven. 0O
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The Hamiltonian identity (3.10) for Allen-Cahn equation was first formulated and proved in [19] by
using an elementary approach. It also follows, at least formally, from a general balancing formula (or
conservation law) for variational problems under deformations generated by a smooth vector field.
See [25,30] and references therein. The Hamiltonian identities in general can be rigorously proven
using the general balance formula once the behavior of solutions at infinity can be taken care of.
However, in the proof of (3.10) a more refined argument is needed due to the lack of information on
the asymptotical behavior of the solution to begin with. For example, we do not know ahead of time
whether the nodal set of u is asymptotically straight lines or not. Indeed, we need the Hamiltonian
identities to show that the nodal set is asymptotically straight.

This general idea of balance formula or conservation law is also used to prove Pohazaev identity.
A nice presentation of Hamiltonian identities using this idea can be found in [11] and [24]. We note
that the Hamiltonian identity is sometimes more fundamental than Pohazaev identity due to it's
simple form and the information on lower dimensional spaces (see [19,20] and [21]).

We can indeed show the following limit.

Lemma 3.3.

lim u(x,y)=-1, VxeR. (3.13)

[y|—>o00

Proof. We shall show the lemma by considering different cases.
In Case (i), i.e., u™ =1, there are four possibilities:

(1) vt=1,v =1,

(2) V+=—], v =1;
) vrt=1,v =-1;
4 vt=-1,v =-1

From (3.9) and the Hamiltonian identity (3.10) we have
lim h(a) — lim h(b) + p* = p(0) = lim p(x). (3.14)
a——o0 b—o0 X— 00
In subcase (1), we can estimate
lim |[h(@]|< lim [G(1)—G(u(0,a))]=0
a——o0 a——00
and

Jlim [hd)| < lim [G(1) — G(u(0. b)) ] =o0.

lim
b— o0
Then (3.9) becomes

p(0)= lim h(a) — lim h(b) =0.
a——00 b—o0

This is a contradiction, and therefore subcase (1) is excluded.
In subcase (2), we can estimate

Jim [h@[ < _lim [G(1) - G(u©.a)]<e
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and

Jim [h(b)] < lim [G(1) — G(u(0.b))] =0.

lim
b—o0
Then (3.9) becomes

p0) <e.

On the other hand, by the definition of e, we have p(0) > e. Then we have u(0, y) = g(xy + K1)
for some K; € R. Then u(x,y) — u(0, y) is nonnegative and satisfies a linearized equation of (1.1).
By the Harnack inequality, we can derive u(x, y) = u(0, y). This contradicts with (1.5), and hence
subcase (2) is excluded. Subcase (3) is similar to subcase (2). The lemma then follows easily from
(3.11).

In Case (ii), i.e., uT(y) = g(y — K), in view of the monotone condition (1.5) we know only sub-
cases (2) and (4) are possible. If subcase (2) happens, then (3.9) becomes

p(0)=e+ lim h(a)— lim h(b)=e.
a——00 b—o0

Since p(0) > e, we get a contradiction immediately as in Case (i). Therefore subcase (2) is excluded.
Case (iii) is similar to Case (ii). In all cases, we have proved that only subcase (4) holds. Hence
(3.13) is proven. O

In the level set analysis below, we shall focus on Case (i): u™ = 1. The other two cases can be dis-
cussed similarly with minor modifications, and can be excluded eventually at the end of this section.

In view of (1.5) and (3.13), the nodal set I" of u can be represented by the graph of a function
x =y (y) which is defined for y < Ky, and y > K, with K; < K and is C3. By Lemma (3.3), we also
know

lim y(y) = oo. (3.15)

[y|—=o0
3.3. The slope of the level set has a limit

First we show the limits of y’(y) exist as y — +oo.

Lemma 3.4. There exist 01 € [0, 7w /2] and 6, € [—m /2, 0] such that

lim y’'(y) =tané, lim y’(y) =tané,. (3.16)
y—>00 y—>—00
Here we use the convention that tan (7t /2) = oo, tan (—m /2) = —o0.

Proof. We first show that u behaves like a one dimensional solution along the level set curve y as y
goes to infinity. For any sequence {yn,} and constant 6 € [—7m /2, 7w /2] with |y;| — oo and

lim y'(ym) =tané,
m—0o0
we define

um(x, y) :=u(x+y@m). ¥y +Ym). x=-Ym), yER.
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Then u™ converges to u* in Cic(Rz) after taking a subsequence if necessary, where u* is a solution
of (1.1) with %*(x, ¥) >0, (x, y) € R2. By the Harnack inequality, we know that either %(x, y) =0,
or é’aix*(x, y)>0, (x,y) € R2. In the first case, we define

up(x, y)

o"(x,y) = 170, 0)

>0, Vx=—-y(m), yeR.

By the Harnack inequality and the gradient estimate for elliptic equations, we know that o™ (x, y)

converges along a subsequence to o *(x, y) > 0 in CIZOC(RZ) as m goes to infinity. Furthermore, o*(x, y)

satisfies the linearized equation of Allen-Cahn equation at u*

oxx+oyy — F'(u*)o =0, (x,y) eR% (3.17)

Hence u* is stable in both cases. By the De Giorgi conjecture for n =2 [16], we know that u*
depends only on one direction. Since u*(0,0) =0, we conclude

u*(x, y) = g(xcos0 — ysin@), V(x,y) e R%. (3.18)

Note that straightforward computations can lead to
“©):= [ |Fu* L2 LI dy = esiné 319
p*(0) := (u (x,y))+5(uy) (x,y)—i(ux) (x,y) |dy =esing. (3.19)
R

(See, e.g., [19].) This relation between the angle 6 and p shall be used to show (3.16), intuitively by
using Hamiltonian identity (3.10). However, due to the involvement of two interfaces which may not
be separated far enough, we need to argue more carefully as follows.

Let

limsup y’(y) = tané, (3.20)
y—>o0

for some 07 € [0, T /2].

If liminfy,_, o y’(y) =tanfp < tand; for some 6y € [—7 /2, 61), then, for any fixed 6 € (Ao, H1) there
exists a sequence {y;;} with limp_ 0o ¥'(¥m) =tané and y, — oo as m — oo.

For any fixed R > 0, by the monotone condition (1.5) and (3.18) we have

Y (Ym)+R
lim h(ym) = lim Uxlly dx
m—0o0 m— o0
Y (Ym)—R

+0()- lim [G(1) = G(u(y (¥m) + R. ym))]
+0(1) - lim [G(u(y (¥m) = R.ym)) — G(u(0. ym))]
= —sin6[G(g(Rcosh)) — G(g(—Rcos))] + 0(1)[G(g(—R))] (3.21)
where G is defined in (3.4) and O(1) is with respect to R — oc. Letting R go to infinity, we obtain

lim h(ym,) = —esiné.
m—o0
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By (3.6), we know that lim,_, o h(a) exists and hence
lim h(y) = —esin6.
y—00
This leads to
lim y’(y) =tan6
y—>00

which contradicts (3.20). Therefore the first limit in (3.16) is proven.
Similarly, we can show the second limit in (3.16). O

Furthermore, by (3.14) we have

e(sinf; —sinfy) = p(0) = lim p(R). (3.22)
R— o0
We note that in Case (ii), the above discussion can be modified with 6 = —7/2 and y — —c0

being replaced by y — K. Similar modifications can be done for Case (iii) with 6; =7 /2.
3.4. The limits of slopes differ by a sign

We shall show that the limits of the slopes of the level set differ only by a sign, ie., 6; = —6; €
0,7/2).

Lemma 3.5. There holds

01 = —6s. (3.23)

Proof. Recall that u is an even solution in R? with respect to x.

Let us choose an angle 6 € (0,7 /2), 6 # 61, —0, and a Cartesian coordinate system (zi,zp) such
that zq-axis and y-axis form an angle 6. In other words, we have x = z; sinf + z; cos6, y = z1 cos6 —
zpsinf. By (2.2), we know that

[u(z1,22) — 1] + |Vu(z1, 22)| + | VZu(z1,2)| < Ce ™41l vz e R (3.24)
for some positive constants v > 0 and C.
Therefore, there holds a Hamiltonian identity like (3.10) with respect to z. Namely,

p0,22) = /[F(u(z1,z2)) + %u; (21, 22) — %uﬁz(z1,zz)] dz; = p(0,0) <oco.  (3.25)

(The proof is similar to (3.10); See also Theorem 1.1 in [19].) When 6 > 01, 6 > —0,, a straightforward
computation can lead to

lim p(6, z2) = e(sin(0 — 61) + sin(6 + 61));
Zp—> 00

lim (0, z2) =e(sin(® — 6) + sin(6 + 62)). (3.26)
Zp—>—0Q
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Then we have
sin(@ — 07) + sin(0 + 61) = sin(@ — 6,) + sin(6 + 6,)
and hence 61 = —0;.

The same conclusion can be reached if 6 is in other range compared to 6;, —6,, with only slight
difference in the expression in (3.26). The details is left to the reader. See also (2.12) in [19]. O

Since p(0) > 0, an easy consequence of Lemma 3.5 and (3.22) is 6; = —6, > 0. Next we shall show
01 <7 /2.
If 61 = /2, we choose 6 € (0,7 /2) and carry out the same computation as (3.26) to obtain

0(6,0) :ZIim p(6,22) =2esin(mwr /2 — 0). (3.27)
2 —>00
Letting 6 — 71 /2, we obtain
li 0(6,0) =0.
e—lrrlrl/zp( )

On the other hand, by (2.1) we have

1
im p > | —u? )
0221/2/)(9,0)//2%()(, 0)dx >0
R

This is a contradiction, and hence proves 6, < /2.
3.5. The level set is asymptotically a straight line

Below we quote a lemma from [19] on the asymptotical behavior of the level set.

Lemma 3.6. Suppose that u(y1, y2) is a solution of (1.4) in a cone C := {y € R%: |y1| < yztanoyg,
y2 = M > 0} for some 0 < og < 7 /2. The nodal set of u in C is given by the graph of a function y1 = k(y>).
Assume

lim k' (y)=0. (3.28)
Y2—>00
Then there is a finite number A such that
lim k(yz) = A;1. (3.29)
Y2—> 00

The lemma can be shown in three steps. First, we show that an energy of u on a line segment
[—y2tanc, yatanp], o € (0, ®p) is exponentially close to e as y» tends to co. Second, we construct
an optimal approximation of u(-, y) by a shift of the one dimensional solution g(y; — I(y2)), and
show that the error is exponentially small in L? norm as y, goes to infinity. Finally, we deduce that
the shift [(y,) has a finite limit, and then conclude that k(y) has a finite limit. For the details of the
proof, the reader is referred to [19].

Now we choose the coordinate system (y1, y2) so that y,-axis form an angle 6; with y-axis, and
oo < min{rr /2 — 61, 61}. Using Lemma 3.4 and Lemma 3.6, we conclude that

y(y) = (tanby)y + A2 +0(1), asy— oo. (3.30)
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Similarly, we can show

y(y) =—(tanby)y + A3 +0(1), asy— —oo. (3.31)

Then, for Yo large enough, the inverse functions of y(y) for y > Yo and y < Y exist, and may be
written as y = kq(x), y = ky(x) respectively. Moreover,

k1(x) =Kkx+ By +o0(1), ky (%) = —kx+ By +0(1) (3.32)
as x — 0o, where k = cot6; is a positive (finite) constant, and B1, B, are constants.
3.6. The moving plane method

Next we shall use the moving plane method to show the even symmetry of u with respect to y.
Due to the fact that the asymptotical behavior of u is not homogeneous near infinity, in particular,
there is a transition layer along the nodal set, the classic moving plane method has to be carefully
modified. Indeed, we have to use the exact asymptotical formulas of the nodal sets y =kj(x),i =1, 2
near infinity as well the asymptotical behavior of u along these curves.

For this purpose, we define u;(x,y) :=u(x,2A — y) and w;, :=u, —u in D; :={(x,y): x>0,
y=ah

Lemma 3.7. When A is sufficiently large, there holds w; > 0 in D,.

Proof. We first fix Xo sufficiently large so that kq(x),ky(x) are well defined. By the property of
double-well potential (1.2), there exists a sufficiently small constant § > 0 such that F’(t) > 0,
te[—1,—-1+8]U[1—6,1]. There is also a sufficiently large constant Ry > 0 such that —1 < g(s) <
—1+4+68/2,YVs<—Ry and 1—-6§/2 < g(s) <1, Vs > Ry, where g is the one dimensional solution in (1.3).
By (3.32) and (3.18), there exist X1, R, sufficiently large such that for x > Xj,

ux,y)<—1+348, ify>ki(x)+ Ry, ory <—ky(x) —R>,
ux,y)>1-39, if0<y<ki(x) —Ry, or —ko(x)+ Ry <y <0,

lu(x, y) + g(ysinfy —xcos6y — Bysindy)| <38/2, ifki(x) — Ry <y <ki(x) + Ra, (333)

lu(x, y) — g(ysinf; +xcos6; — Bysinfy)| < 8/2, ifka(x) — Ry <y <ka(x) + Ro.
When A > Aq is sufficiently large, by (3.32) we have
K5 (%) := 2% —ka(x) = k1(y) + Ra, Vx> X1,
By Lemma 3.3, we can also choose A so that
ux,y)<—1+6, 0<x<2Xq, ¥y>»Mr.

We claim that w, >0 in D, for A > A1, and shall show this claim in the following three subsets
of D, respectively:

Df :={(x¥): 0<x<X1, y>2, orx> Xy, y >k},
Dy ={x y): x> X1, y <ki®},

DY :={(x y): x> X1, ki(x) <y <K;()}.
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If the claim is not true in DJr then there exists a sequence of points {(Xm, ym)}hq € DJr such that

lim wy (X, ym) = lm (u; Xm, Ym) — U(Xm, Ym)) = infw, (x, y) < 0.
m—o00 m—o00 D}

It can be seen from (3.33) that uy(Xm, ym) < U(Xm, ym) < —1 + & when m is large enough. Then we
can use the standard translating arguments to obtain a contradiction as follows. Define wi'(x, y) :=
Wi (X+Xm, Y+ Ym) in D;"—(xm, ¥Ym). Then w{' converges to wi°(x, y) in C,M(D“) for some piecewise
Lipschitz domain D> in R? which contains a small ball centered at the origin. Furthermore, wg®
attains its negative minimum at the origin and satisfies a linearized equation

Wxx +Wyy — F"(§(x, y))w=0, (x,y)eD*® (3.34)

where £(x, y) =su(x, y) + (1 — s)uy (x, y) for some s(x, y) € (0,1) and F”(£(0,0)) > 0. This is a con-
tradiction, which leads to the claim in D;r.

Similarly, the claim can be shown in D; by the strong maximum principle, due to the fact that
up >1—24in D as in (3.33). The claim is also true in D? when A is large enough, due to the last
two estimates in (3.33).

Then, using the strong maximum principle (or the Harnack inequality) to an elliptic equation sat-
isfied by w; which is similar to (3.34), the lemma is proven. O

Now we define
=inf{A: u; (x,y) > u(x, y), (x,y) € Dp}.
Lemma 3.8. There holds
A= (B +By)/2
where B1, B, are as in (3.32).

Proof. We shall prove this lemma by contradiction. Suppose the lemma does not hold. By (3.32),
we can easily see that A > (B1 + B3)/2 and w4 > 0, V(x,y) € D 4. Then there exists a sequence of
numbers {A;} such that Ay, < A, and limpy—oo Am = A and the infimum of w;,, in D, is negative.
Using (3.18) and the translating arguments as above, we can show that the infimum of wy,, in D),
is achieved at a point (xp, ym), i.e.,

Wy, Xm, Ym) = [i)nf Wy, <0. (3.35)

Am

Since w,,, satisfies an elliptic equation similar to (3.34) with &(Xp, ym) = su(Xm, ym) +
(1 = s)uy,, (Xm, ym) for some s € (0, 1), by the strong maximum principle we know that u(xXm, ym) >
—1+ 6 and hence ym — k1(xm) < Rz if X, > X1. By (3.18) and the assumption A > (B1 + By)/2, we
know x5 < X, for some constant X, independent of m. Therefore there exists a subsequence of {m}
(stlll denoted by itself) such that (xm, ym) converges to (xo, yo) € D4 and w;,, converges to w, in

c(DA) as well as in C3(B1(xg, yo) N D 4). It is easy to see that Vw 4(xg, ¥o) = 0. Furthermore, w 4
1s an even function in x and satisfies an elliptic equation similar to (3.34) in D 4, by the Harnack
inequality we can see that (xg, yo) is not on the y-axis. Hence (xo, yo) must be on the portion of
boundary {(x,y): y = A} of D4. Then by the Hopf Lemma, we have wA(xo yo) > 0. This is a
contradiction, which proves the lemma. O
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We note that uy > u in D, and uy(x,1) = —%%W)L(X, A) <0, Vx € R when A > A. Similarly, we

can use the moving plane method from below, i.e., repeating the above procedure for w; :=u; —u
in DS :={(x,y): x>0, y <A}, and conclude u, >u in D and hence uy <u in D 4. Therefore,
Theorem 1.1 is proven.
4. Even symmetry of entire solutions with four ends

We shall show that certain entire solutions of (1.1) with four ends must be evenly symmetric with

respect to both x-axis and y-axis after a proper translation and rotation. First we consider the case
that the four ends are asymptotically straight lines, i.e., on each 0-level set I there holds

y=tan(@)x+ A;j+o0(1) asx—> o0, 1<i<4 (4.1)
where 0 < 6; <641 < 2m, and 6; # /2, 6; #7/2, i =1,2,3,4. Without loss of generality, after a
proper rotation we may also assume that 0 <6y =2mw — 64 <7 /2 and 6, #, 03 £ 7.

By Proposition 2.2, we know that Hamiltonian identity (3.10) holds. Moreover, in view of (3.18), on
a fixed cone {(r,0) = (x, ¥): 6i—1 + 38 <6 < 0;11 — &} with a sufficiently small § > 0 there holds

|u(x, y) — g(xsin; — y cosb; + A cos&i)| — 0, uniformly asr — oo. (4.2)

As in (3.19), by Hamiltonian identity (3.10) we can easily obtain that

p(X) =e(cosby + cosby) = e(—cosfy — cos63).

Similarly, when x-axis is replaced by y-axis in Hamiltonian identity (3.10), we obtain

e(sinfq + sinfy) = e(—sinf3 — sindy).
We can easily derive that
T —6y=01=03—1.

Now we follow the moving plane procedure as in the proof of Theorem 1.1. It can be shown that
Lemma 3.4 still holds with D, being modified as {(x, y): y > A}. Furthermore, Lemma 3.5 also holds
with

A =max{(A1 + A4)/2, (A2 + A3)/2}.
Without loss of generality, after proper translation in y we may assume that A =A; + A4 =0>

Ay + As.
Next we shall show

Ay + A3 =0. (4.3)

For this purpose, let us now state another Hamiltonian identity for u, which was used in [6] and
[21] for solutions of nonlinear Schrodinger equation before. A similar identity for certain parabolic
equations is also used in [7] and may be regarded as conservation of moment.

Define

1 1
E(x) = / y[F(u(x, M)+ U5 y) = S, y)] dy. (4.4)
R

Then, by (2.2), E(x) is well defined. We have
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Proposition 4.1.

Ex)=C, xeR. (4.5)

The proof of this Hamiltonian identity is based on (2.2) and is similar to those in [6] and [21]. The
details is left to the reader.
Now, using (4.2), straightforward computations can lead to

lim E(x) = (A1 + Ag)ecos6; =0
X—> 00

and

lim E(x) = (Az + A3)ecoséb;.
X——00

Therefore, (4.3) is proven.

The moving plane method then leads to the even symmetry and monotonicity of u in y. Repeating
the above arguments with x and y switched, we can show the even symmetry and monotonicity of u
in x. Therefore, we have shown

Theorem 4.2. Assume that u is an entire solution with four ends satisfying (4.1). Then, after a proper trans-
lation and rotation, u satisfies (1.10) and (1.11).

5. Energy quantization of entire solutions

In this section we shall show that (4.1) holds under very mild conditions on u. Indeed, we shall
consider entire solutions with 2k ends in general and show some energy quantization properties for
entire solutions with finite Morse index.

Lemma 5.1. Suppose u is an entire solution of (1.1) with 2k ends. Assume
+ — .
0 —67 <m, 1<i<2k (5.1)
Then
Er(u) <CR, VR (5.2)

for some positive constant C.

Proof. We only need to focus on conic region C; and show

1
f <§|Vu|2+F(u))dxdy<CR, VR.
BrNCq

Without loss of generality, we may assume

0<6; <m/2, m/2<6 <m. (53)
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Choose 0 <™ <6;, 6; <a™ <7 and let C; :={(r,0): &~ <6 <a™}. Define

ycota™

1
o1(y) = / [F(u)+ (u2 —uf,)}dx.

ycotat

Then, in view of (2.2), it is easy to see that

x=ycoto™
lp1(W)| = ‘[F(u) 5 (u —u )+uxuy}
x=ycotat
<Ce ™ Y Vy >R
for some positive constants C, (1. Hence we have
|o1(R1) — p1(R2)| < Ce™#1R1 YRy <R, (54)
for some constant C > 0. In particular, we have
()| <C, Yy =Ro.
By (2.1), we have
1 1
Fu)+ = (u - u?v) > iu)zc
Hence
/ uy 2dxdy < CR < 00 (5.5)

BRQCT
for some constant C > 0.

Now we choose another Cartesian coordinates (x’, y’) so that the x’-axis is a small rotation of
x-axis and (5.1) and (5.3) still hold. Then we can obtain

/ui,dxdy: / ui,dx’dy’<C<oo.
BRQCT Bkﬂci

Therefore we obtain

/ <%|Vu|2 + F(u)) dxdy

BRHCT
< / (F(u)+ (u —u ))dxdy+C / (uZ +u2)dxdy
BRﬁC]+ BRQCT
< CR, VR=>=DO0.

Similarly, we can show that this estimate holds for all i € [1, 2k].
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In view of (2.2), it is easy to see that

o0
1
/ (§|Vu|2+F(u)) dxdyg/Cre*l”dmc

R2\Uj_12kC;" 0
for some constant C > 0. Hence (5.2) is proven. O

In [27], Modica showed Proposition 2.3 which says that Eg(u)/R is increasing in R. It follows
immediately that limg_ oo Er(u)/R exists. Indeed, we can show the following energy quantization
property for entire solutions with finite Morse index.

Lemma 5.2. Assume that u is an entire solution of (1.1) with finite Morse index and 2k ends. Assume also

the technical condition (5.1). Then the nodal sets I" of u are asymptotically straight lines, i.e., there exist 6; €

[6;,6;"1, 1 <i < 2k such that on I},

y=tan(@)x+ A;j+o(1) asx— oo, 1<i<2k (5.6)
where 6; # 1 /2, 0; # 31 /2, Vi € [1, 2k] after a proper rotation. Moreover, (1.14) holds.
Proof. It is easy to see that u(x) :=u(x/€) is a critical point of functional
€ 2 1
Eer(U) = §|Vu| + EF(u) dxdy. (5.7)
Br\B1/22R)
Fix R =1, uc is a stable critical point of (5.7) with & 1(u¢) < C < oco. By a I'-convergence result of

Tonegawa (Theorem 5 in [32]), there exists a sequence €, and a union L of N non-intersecting lines
of By \ By/2 such that

€n- (I N (BRrje, \ B1/@2e,r))) — L in Hausdorff distance as n — oo. (5.8)

Now fix R =2,3,... and repeat the argument above for a subsequence of {€;} in the previous step,
by the diagonal procedure we can find a subsequence, still denoted by ¢,, such that (5.8) holds for all

R=1,2,.... Therefore L must be the union of N different rays starting from the origin, and
lim Eg(u)/R = Ne. (5.9)
R— o0

Fix a ray in L. Without loss of generality, we may assume it to be the positive x-axis which belongs
to C; after some rotation. Then, for any fixed small angles o, > o1 > 0, there exists a sequence of
conic regions Cr, m,,¢; :={(X, ¥): Rn <X< My, |yl <tanea;}, i =1,2 such that R, — oo, My/Ryp — o0
and

CRmMnsaZ nIrc CRn’Mnsal .

On the other hand, thanks to the stability of u in R? c B R, When R is large enough, by similar
arguments to the proof of (3.18) we can show that

CRoMua; N T ={(X, ¥)1 y =k(x), Rp <x< My}
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for some C2 function k(x) and

max |k’ (x)| < tanay, max [k”"(x)| -0, asn— oo. (5.10)
X€[Rn,Mn] X€[Rn,Mn]

Moreover,

”u(X, y) - g(y - k(x)) ||C2(CR” 0, asn — oo.

—
.Mn,atz)

We may also assume that k'(R,) — 0. We claim that when n is large enough, M, can be chosen
as any number R > R, and (5.10) still holds. If this is not true, we can choose M, such that (5.10)
holds but k'(My) = tana. We claim that (Cr, My,as \ CRy,2Mp, (@1 +02)/2) 0 BM, (M, k(My)) is empty. If
we assume otherwise, without loss of generality, we may assume that M, is the first such sequence
related to a ray in L. Now we use €; = 1/M, as in (5.8), and obtain the limit as L’ which is the
union of at least N + 1 rays. This is a contradiction to (5.9). Hence the claim is true. Then, using the
modified Hamiltonian identity in Cg, m,,«, as in (5.4) with the y-axis being replaced by the tangential
direction of k(x) at (My, k(Mpy)), we obtain

e<ecosaq +0o(1), asn— oo.

This is a contradiction, and hence proves that M, can be chosen as any R > R, when n large enough.
Therefore

CRuc0; N T ={(x,¥): y =k(x), x> Rn}
and
[K'(x)| <tanay, x> Ry.
Since o1 > 0 is arbitrary, we obtain that
lim k' (x) =0.
X—00

Now use Lemma 3.6, we conclude that I" N C; is asymptotically straight line. The lemma then fol-
lows. O

Remark 5.3. Given that u satisfies the condition in Theorem 1.2. If we assume further that, after a
proper rotation, the level set in C; outside a large ball By is a graph of a C? function k(x), i.e.,

rncnBy={xy:y=kx, x>R}, 1<i<2k, (5.11)

then the conclusion of Lemma 5.2 can be shown directly without using the result in [32]. We just
start the proof from (5.10) with M, = oo and exploits the modified Hamiltonian identity. The details
is omitted.

Theorem 1.2 follows from Lemma 5.2 and Theorem 4.2 directly. If we replace (1.9) in Theorem 1.2
by (5.2), the conclusion of Theorem 1.2 still holds.

Proof of Theorem 1.3. If (1.13) does not hold, by the monotonicity formula of Modica we know that
(5.2) must be true. Using the I'-convergence result of Tonegawa as in the proof of Lemma 5.2, we
know that there exists a sequence {R} such that R, — oo and
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1
e (I' N Bumg,) — L in Hausdorff distance asn — oo (512)
n

for any M > 0, where L is the union of N rays from the origin. Moreover, (5.9) holds. It follows that I
must be asymptotically straight lines at infinity, as in the proof of Lemma (5.2). Note that I" is a union
of C2 curves except at singular points where u and Vu both vanish, and u u behaves like harmonic
function near these singular points. Therefore N must be an even positive integer 2k. We denote the
directions of these lines by v; = (cos6;, sin6;), 1 <i < 2k with 0 <6; <6;11 <2m, 1 <i<2k—1, after
a proper rotation. Using Hamiltonian identity similar to (3.26) but with more terms (see also [19]),
we obtain

2k
Zesin(@i +6)=0 (5.13)

i=1
for almost all #. Hence (1.15) holds. The proof of Theorem 1.3 is complete. O
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