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Abstract 

Solid-state photomultiplier (SSPM) arrays are an interesting technology for use in PET detector modules due to their 
low cost, high compactness, insensitivity to magnetic fields, and sub-nanosecond timing resolution. However, the 
large intrinsic capacitance of SSPM arrays results in RC time constants that can severely degrade the response time, 
which leads to a trade-off between array size and speed. Instead, we propose a front-end that utilizes an adaptively 
biased current-to-current converter that minimizes the resistance seen by the SSPM array, thus preserving the timing 
resolution for both large and small arrays. This enables the use of large SSPM arrays with resistive networks, which 
creates position information and minimizes the number of outputs for compatibility with general PET multiplexing 
schemes. By tuning the bias of the feedback amplifier, the chip allows for precise control of the close-loop gain, 
ensuring stability and fast operation from loads as small as 50pF to loads as large as 1nF. The chip has 16 input 
channels, and 4 outputs capable of driving 100  loads. The power consumption is 12mW per channel and 360mW 
for the entire chip. The chip has been designed and fabricated in an AMS 0.35um high-voltage technology, and 
demonstrates a fast rise-time response and low noise performances. 
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1. Introduction 

Solid-state photomultipliers (SSPMs) are interesting candidates to replace photomultipliers (PMTs) in 
positron emission tomography (PET) detector modules due to several advantages. SSPM detectors are 
insensitive to magnetic fields, cheaper, smaller, and lower power than discrete PMTs [1-4]. These 
advantages allow SSPM-based PET detector modules to be more compact therefore, increases the 
sensitivity and resolution of a PET detector. Furthermore, the insensitivity to magnetic fields allows the 
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3. ASIC Design 

Fig. 2. Schematic of the pre-amplifier 
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4. Results 

Fig. 4. ASIC micrograph 
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The plot in figure 8 shows the energy spectra for an Na-22 source. The full-width half maximum 
(FWHM) is 20.4% for the detector without the ASIC, and 20.6% for the detector coupled to the ASIC. 
The noise voltage is measured to be less than 1mVrms, demonstrating the excellent noise performance of 
the ASIC.  

Fig. 8. Energy spectra with a Na-22 source. 
 

The plot in figure 9 shows the consistent performance of the ASIC for both large and small loads. The 
maximum deviation from a linear fit is 4%.   

Fig. 9. Linearity plot of all 4 output channels with input loads of 450pF and 900pF 
 

5. Conclusions 

This paper discusses the design and the results of a fast, tunable ASIC for reading out SSPM detector 
arrays. The ASIC multiplexes the 16 outputs of an SSPM array to 4 four outputs through the use of a 
resistor network, but maintains the fast time response of the array by hiding the large intrinsic capacitance 
of the array from the resistor network. The ASIC also features a method of tuning the loop gain of a 
feedback amplifier, ensuring a stable, fast time response for SSPM array capacitances ranging from 20pF 
to 1nF ensuring interoperability with a wide range of SSPM detectors.  
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The next version of this ASIC will increase the number of input channels from 16 to 64, and 
incorporate a band-gap reference to study temperature stability issues. The expected power consumption 
of the new chip is 910mW.  
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