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Abstract In this paper, we have identified a new sesquiterpene
synthase gene (ZSS2) from Zingiber zerumbet Smith. Func-
tional expression of ZSS2 in Escherichia coli and in vitro enzyme
assay showed that the encoded enzyme catalyzed the formation
of b-eudesmol and five additional by-products. Quantitative
RT-PCR analysis revealed that ZSS2 transcript accumulation
in rhizomes has strong seasonal variations. To further confirm
the enzyme activity of ZSS2 and to assess the potential for met-
abolic engineering of b-eudesmol production, we introduced a
gene cluster encoding six enzymes of the mevalonate pathway
into E. coli and coexpressed it with ZSS2. When supplemented
with mevalonate, the engineered E. coli produced a similar ses-
quiterpene profile to that produced in the in vitro enzyme assay,
and the yield of b-eudesmol reached 100 mg/L.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Sesquiterpenes, the C15 member of the terpenoid family of

natural products, play a variety of ecological roles in higher

plants. Some of these compounds exhibit antifeedant and anti-

fungal activities [1,2]. In addition, many sesquiterpenes are vol-

atile compounds that are commonly emitted from flowers and

leaves of the plant that function as volatile cues to attract poll-

inators or parasitic and predatory insects [3–5]. Interestingly,
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volatile sesquiterpenes have also been found to be synthesized

and accumulated in rhizomes and roots or released from these

below ground tissues [6,7]. The first committed step of terpene

biosynthesis is the cyclization of the prenyl diphosphate

precursors to the parent structures of terpenes catalyzed by

terpene synthases (TPSs). While a large group of TPS genes

and enzymes has been characterized in above ground tissues

of angiosperms and gymnosperms [8], only a few TPSs have

been identified in plant roots and they are thought to have

some important roles in the rhizosphere [9,10].

The rhizome oil of Zingiber zerumbet contains a complex

mixture of terpenes, with sesquiterpenes predominating.

Recent research on Z. zerumbet has demonstrated that zerum-

bone is a potential drug for the treatment of several cancers as

well as leukemia [11–14]. Therefore, we have initiated a project

devoted to elucidating the biosynthetic pathway of sesquiter-

penes in Z. zerumbet, cloning the genes encoding the corre-

sponding biosynthetic enzymes and high-level production of

valuable sesquiterpene compounds in Escherichia coli by met-

abolic engineering. Our first attempt to investigate sesquiter-

pene biosynthesis in Z. zerumbet has led to the isolation and

characterization of a-humulene synthase (GenBank accession

numberAB247331), a possible key enzyme in zerumbone bio-

synthesis [15].

To improve our understanding of the sesquiterpene biosyn-

thesis in rhizomes of Z. zerumbet and its possible function in

the below ground environment, it is first necessary to isolate

the additional members of the sesquiterpene synthase gene

family. Because many sesquiterpene synthases catalyze the for-

mation of multiple products from a single substrate [16–18],

molecular cloning of cDNAs encoding these key enzymes is

also essential for deciphering whether sesquiterpene formation

in Z. zerumbet requires specialized sesquiterpene synthases for

each component or multi-functional synthases are involved.

Here, we report the isolation and characterization of a sesqui-

terpene synthase responsible for the formation of b-eudesmol

from rhizomes of Z. zerumbet.

Recent studies demonstrated that engineering a mevalonate

pathway in E. coli holds considerable promise for high-yield

production of terpenes [19,20]. Because b-eudesmol is known

to have unique effects on the nervous system, including block-

ing the nerve-evoked contraction and markedly alleviating

muscle fasciculation, tremor and convulsion [21,22], we also

investigated the potential for b-eudesmol production in meta-

bolically engineered E. coli.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Chemical structures of the major sesquiterpenes of the rhizome
oil of Zingiber zerumbet. The percentage contribution to the total
terpene fraction of rhizome oil is indicated.
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2. Materials and methods

2.1. Plant materials
Z. zerumbet were generously provided by SAKATA Co. Ltd.,

Japan. Saplings were grown in a horticulture chamber under natural
light and environmental conditions. Mid-summer plants approxi-
mately 30 cm high were used for cDNA cloning. Rhizomes for analysis
of gene expression were harvested in different seasons, immediately
frozen in liquid N2 and then stored at �80 �C for RNA isolation.

2.2. Essential oil extraction
Fresh rhizomes were sliced and extracted overnight with excess pen-

tane at 4 �C. The pentane extract was collected and passed through a
column of MgSO4 and silica gel (60 Å, Merck) to remove water and
provide the olefin fraction. The oxygenated metabolites were then
released from the column by washing with diethyl ether. Both fractions
were identified and quantified for monoterpene and sesquiterpene
content by GC–MS.

2.3. Isolation of the ZSS2 cDNA and genomic DNA
Total RNA from rhizomes was isolated with a Spectrum Plant Total

RNA Kit (Sigma–Aldrich). Three micrograms of RNA was reverse
transcribed into cDNA using a SuperScript III First-strand Synthesis
Kit (Invitrogen). Two degenerate primers 5 0-TTYCGAYTIYTIMGR-
MARCAIGG-3 0 (forward) and 5 0-TAIGHRTCAWAIRTRTCRTC-
3 0 (reverse) were used for RT-PCR. Two-rounds of PCR were per-
formed each in a total volume of 50 lL containing 1 lL of cDNA tem-
plate, 1 lM of each primer, 200 lM of dNTP and 1 U of ExTag
polymerase (TaKaRa). Primary reaction (5 lL) served as template in
a secondary amplification. The temperature program for PCR was
denaturation at 94 �C for 2 min, followed by 4 cycles of 94 �C for
30 s, 35 �C for 1 min 30 s, 72 �C for 1 min, 30 cycles of 94 �C for
30 s, 40 �C for 1 min 30 s, 72 �C for 1 min, and the final elongation
at 72 �C for 3 min. The resulting purified 581 bp fragment was cloned
into the pGEM-T easy vector (Promega) and sequenced. To isolate the
full-length cDNA, the partial sequence was extended toward 5 0 and 3 0

end by the Smart RACE cDNA Amplification Kit (Clontech) follow-
ing the manufacturer�s protocol. The two gene-specific primers used for
RACE-PCR were as follows: 5 0-CCCAATAATAACCTTCCA-
CAACTCGG-3 0 for 5 0RACE, 5 0-CCGAGTTGTGGAAGGTTATT-
ATTG G-3 0 for 3 0RACE.

Genomic DNA clone forZSS2 was amplified from genomic DNA
using the forward primer 5 0-ATGGAGAAGCAATCACTAAC-30

and the reverse primer 5 0-CTTATTGAAGTAGTCACAAGATTC-
3 0. Intron junctions were mapped by nucleotide sequence comparison
of cDNA and genomic clones.

2.4. Bacterial expression and in vitro enzyme assays of ZSS2
The full-length ORF of ZSS2 were amplified by PCR using

Advantage� HF 2 polymerase (Clontech) with the forward primer
5 0-CACCATGGAGAAGCAATCACTAC-3 0 and the reverse primer
5 0-CTTATTGAAGTAGTCACAAGATTCAAC-3 0. The amplified
product was cloned into a pET101/DTOPO vector (Invitrogen). The
recombinant plasmid pET-ZSS2 was transformed in E. coli TOP10F�
cells for sequence characterization and into E. coli BL21-CodonPlus
(DE3) (Stratagene) for expression.

For functional expression, recombinant E. coli cells were grown to
OD600 = 0.5–0.6 at 37 �C in LB medium containing ampicillin
(50 g mL�1). Cultures were then induced by addition of IPTG to a final
concentration of 1 mM and grown for another 20 h at 18 �C. The cells
were collected by centrifugation and disrupted with a sonicator (Bran-
son W185 D) in chilled extraction buffer (50 mM MOPSO, pH 7.0,
with 5 mM MgCl2, 5 mM sodium ascorbate, 0.5 mM phenylmethylsul-
fonyl fluoride, 5 mM dithiothreitol, and 10% [v/v] glycerol). Following
centrifugation at 15000 · g for 30 min, the supernatant was collected
and purified on a nickel–nitrilotriacetate agarose column (Qiagen).
The protein eluate was further desalted into assay buffer (10 mM
MOPSO, pH 7.0, 1 mM dithiothreitol, and 10% [v/v] glycerol) by pas-
sage through a Econopac column (Bio-Rad), and the resulting enzyme
eluate was used for enzyme assay. Each assay was done in a volume of
1 mL with 900 lL of enzyme extract, 20 mM MgCl2, 0.2 mM MnCl2,
0.2 mM NaWO4, 0.1 mM NaF and 20 lM [1-3H]-(E,E)-FPP
(555GBq mol�1, American Radiolabeled Chemicals) overlaid with
0.5 mL of pentane to trap volatile products. After incubation at
30 �C for 3 h, the mixture was extracted with pentane (3 · 1 mL) and
the combined extracts were passed through a column of anhydrous
MgSO4 and silica gel (60 Å, Merck) to provide the sesquiterpene
hydrocarbon fraction free of oxygenated products. To collect the oxy-
genated products, assay mixtures were subsequently extracted with
diethyl ether (3 · 1 mL) and the combined extracts were also passed
through the same column. Aliquots of each fraction were taken for
liquid scintillation counting to determine activity. To obtain sufficient
product for analysis by GC–MS, the enzyme reaction was scaled up to
a final volume of 4 mL using 80 lM unlabeled farnesyl diphosphate
(FPP) (Echelon Research Laboratories Inc.) as the substrate.

2.5. Determination of ZSS2 gene expression by RT-PCR and
quantitative real-time RT-PCR

Total RNA isolated from leaves, stems and rhizomes were subjected
to RT-PCR analysis using ZSS2-specific primers: forward 5 0-CAC-
TCATGCAAAGGAGTCCAC-3 0 and reverse 5 0-CTGTAATGGT-
TGTCTCTAATAGTCC-30. The two primers used for amplification
of ubiquitin were: forward 5 0-CACAAGAAGGTGAAGCTCGC-30

and reverse 5 0-GCCTTCTGGTTGTAGACGTAGG-3 0.
For real-time PCR analysis, 1 lg of total RNA was reverse tran-

scribed with the First-strand Synthesis Supermix for qRT-PCR (Invit-
rogen). Relative quantification PCR was performed using SYBR�

Green PCR Master Mix (Applied Biosystems) on an ABI 7300 cycler
with ubiquitin as a reference. Samples collected on June 12 served as a
calibrator for comparative analysis. Specific primers used for PCR
amplification of respective genes were as follows: ZSS2 (forward,
5 0-GAATCTTGTGACTACTTCATAAG-3 0and reverse 5 0-CTGTA-
ATGGTTGTCTCTAATAGTCC-3 0), ubiqutin (forward, 5 0-AAG-
GAGTGCCCCAACGCCGAGTG-3 0and reverse, 5 0-GCCTTCTG-
GTTGTAGACGTAGGTGAG-3 0).

2.6. b-Eudesmol production in metabolically engineered E. coli
The plasmid pAC-Mev for expression of the mevalonate pathway

gene cluster was constructed as follows. The tac promoter (Ptac) and
rrnB terminator (TrrnB) were amplified from pTTQ18 by PCR and
were moved to the EagI–SalI and HindIII–ClaI sites of pACYC184,
respectively. The genes encoding hydroxy-methylglutaryl CoA syn-
thase (HMGS); hydroxymethylglutaryl CoA reductase (HMGR); mev-
alonate kinase (MK), phosphomevalonate kinase (PMK), mevalonate
diphosphate decarboxylase (MPD) and isopentenyl pyrophosphate
isomerase (IPPI) were isolated from Streptomyces sp. strain CL190
and kindly provided by Dr. T. Kuzuyama [23]. The individual genes
were spliced together and inserted between Ptac and TrrnB to create
pAC-Mev. E. coli BL21(DE3) was co-transformed with pET-ZSS2
and pAC-Mev. The metabolically modified E. coli was grown in terrific
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broth containing ampicillin (100 lg/mL) and chloramphenicol (30 lg/
mL) at 37 �C with shaking until OD600 reached 0.5. After supplemen-
tation with 1 mM of IPTG, 0.5 mg/mL of DD-mevalonolactone (Tokyo
Fig. 2. Comparison of the deduced amino acid sequence of ZSS2 with other t
number AY860846, Elaeis oleifera sesquiterpene synthase; ZSS1 GenBank a
GenBank accession number AF080245, Z. officinale germacrene D synthase;
GenBank accession number AY789791, Actinidia deliciosa germacrene-D sy
black. Amino acid residues conserved in four or five genes are shaded in g
arrows. The universally conserved DDXXD motif [8] is indicated as well.
Kasei) and 20% (V/V) dodecane, cultures were grown for another 48 h
at 25 �C with shaking. The dodecane phase was then extracted and
subjected to GC–MS analysis.
erpene synthase sequences of the highest similarity. GenBank accession
ccession number AB247331, Zingiber zerumbet a-humulene synthase;

GenBank accession number AY561842, Vitis vinifera terpene synthase;
nthase. Amino acid residues conserved in all the genes are shaded in
ray. Regions selected to design degenerate primers are indicated with
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2.7. GC–MS analysis
GC–MS analysis was performed on a Shimadzu QP5050A GC/MS

system with a DB-WAX column (0.25 mm · 0.25 mm · 30 m, J&W
Scientific). Split injections (1 L) were made at a ratio of 22:1 with an
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1.8 mL min�1. Mass spectra were measured with the mass range of m/z
40–400, at an electron voltage of 70 eV, and interface temperature of
230 �C.
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3. Results

3.1. Sesquiterpenoid composition of the rhizome oil

The essential oil from rhizomes of Z. zerumbet has been sub-

jected to extensive chemical and pharmaceutical investigations

because the rhizomes are known to possess medicinal proper-

ties and are used as traditional medicine for indigestion, severe

sprains, toothache and other ailments. The combination of GC

and GC/MS analysis of the rhizome oil revealed the presence

of over 16 sesquiterpeniods comprising 85.81% of the oil, with

the remaining 24.19% of monoterpenoids. The oil was charac-

terized by the presence of zerumbone (48.13%), a-humulene

(17.23%), humulene epoxide I (7.88%) and humulene epoxide

II (5.74%), accounting for 92% of the total sesquiterpenoid

fraction (Fig. 1). b-Caryophyllene (1.15%), caryophyllene

oxide (3.18%), b-eudesmol (0.21%) and other minor sesquit-

erpenoid components were also identified.

3.2. Similarity-based cloning of ZSS2, a sesquiterpene synthase

gene from rhizomes

To isolate genes encoding sesquiterpene synthases of

Z. zerumbet, degenerate primers based on two conserved ami-

no acid domains, present in most angiosperm sesquiterpene

synthases, were employed to isolate partial cDNA fragments

by reverse transcription PCR (RT-PCR) (Fig. 2). A predomi-

nant fragment with the expected size of 581 bp was cloned

and sequenced. A full-length cDNA, named as ZSS2, was sub-

sequently acquired by a combination of 5 0 Rapid Amplifica-

tion of cDNA Ends (5 0RACE) and 3 0RACE. The ZSS2

cDNA contains a putative ORF of 1662 bp that encodes 554

amino acids with a predicted molecular mass of 64.4 kDa

and a PI of 5.09 (GenBank accession number AB247334)

(Fig. 2). The deduced amino acid sequence of ZSS2 was found

to be homologous to sesquiterpene synthases of angiosperms,

with the highest level of similarity (82%) to a-humulene

synthase from the same species, followed by germacrene D

synthase (68% similarity) from Z. officinale [17], and a

sesquiterpene synthase (62% similarity) from Elaeis oleifera

sesquiterpene synthase [24] (Fig. 2).

PCR amplification of genomic DNA yielded a fragment of

3232 bp (GenBank accession number AB263738). Comparison

of the ZSS2genomic DNA and cDNA sequences revealed six

introns of 79–693 bp and seven exons of 126–373 bp, similar

to several previously reported angiosperm TPSs. ZSS2 was

then classified as Class-III TPS family [25].

3.3. Recombinant ZSS2 enzyme expressed in E. coli converts

FPP to b-eudesmol as the principal product in vitro

For functional identification of ZSS2, the partially purified

recombinant protein was incubated with [1-3H] FPP in assay

buffer and the activity was analyzed by scintillation counting.

The recombinant enzyme proved to be active with FPP. After

scaling up the reaction, products were identified by gas chro-

matography–mass spectrometry (GC–MS). The major product

was identified as b-eudesmol, which accounted for 62.6% of

the total products. Several minor products including 10-epi-

c-eudesmol (16.8%), a-eudesmol (10%), aristolene (5.6%) and
two unknown products (5%) were also detected (Fig. 3). A

control extract prepared from E. coli BL21 (DE3) transformed

with pET101/DTOPO without the ZSS2 insert did not pro-

duce any product. Because b-eudesmol is the major product,

this enzyme was then designated b-eudesmol synthase.

3.4. ZSS2 transcript accumulations were strongest in rhizomes

in summer and exhibited strong seasonal variations

To determine the tissue-specific expression of ZSS2 in sum-

mer plants, RT-PCR analysis was performed with RNA iso-

lated from different tissues. The result showed that ZSS2 is

expressed strongest in rhizomes and much less in stems, but

not in leaves (Fig. 4A). To investigate the temporal expression

pattern, we also monitored ZSS2 transcript levels during rhi-

zome development by quantitative RT-PCR. As shown in

Fig. 4B, ZSS2 transcript was detected in all the samples exam-

ined. However, transcript levels increased rapidly in summer,

peaked in early August and declined significantly in fall and

winter.

3.5. Engineering a mevalonate pathway in E. coli results in

b-eudesmol production in vivo

Previous studies showed that engineering a heterologous

mevalonate-dependent pathway in E. coli is superior to engi-

neering E. coli native 1-deoxy-DD-xylulose-5-phosphate (DXP)

pathway for large-scale terpene production [19]. To further

confirm the contribution of ZSS2 to the sesquiterpene profile

and to assess the potential for metabolic engineering of b-eude-

smol production in E. coli, a gene cluster pAC-Mev encoding

six enzymes of the mevalonate pathway: HMGS, HMGR,

MK, PMK, MPD and IPPI was introduced into E. coli

(Fig. 5). The recombinant E. coli harboring pET-ZSS2 was

co-transformed with pAC-Mev and incubated with exogenous

mevalonate. GC–MS analysis of the dodecane phase in the



IPPI

FPP

MK

PMK

MPD

Acetoacetyl-Coenzyme A

Isopentenyl
pyrophosphate

Dimethylallyl
pyrophoshpate

Sesquiterpene

HMG-CoA

Mevalonate

Mevalonate-5-phosphate

Mevalonate-5-diphospahate

2 Acetyl-Coenzyme A

Mevalonate pathway

HMGR

HMGS

Fig. 5. The mevalonate pathway of sesquiterpene biosynthesis. Six
enzymes (HMGS, HMGR, MK, MPK, MDD and IPPI) used in this
study are listed.

41

59

81
93

108
12

0

50

1
0
-e

p
i-

g
a
m

m
a
-e

u
d

e
s
m

o
l 

?

A
b

u
n

d
a

n
c

e

(1
0
0
0
0
's

 o
f 

io
n

s
 )

Rt = 38.3

A

B

Ret

37

600

450

300

150

Fig. 6. Identification of the dedocane-extractable sesquiterpene products pro
of the products produced from E. coli co-transformed with pAC-Mev and
b-eudesmol.

570 F. Yu et al. / FEBS Letters 582 (2008) 565–572
engineered strains observed a similar product profile to that

produced in the in vitro assay, with b-eudesmol accounting

for 72.4% of the total products, followed by 10-epi-c-eudesmol

(11.2%), a-eudesmol (7.1%) and aristolene (6.1%) (Fig. 6). No

sesquiterpene products were detected in the control strains co-

transformed with pET and pAC-Mev. The in vivo production

of b-eudesmol reached 100 mg/L, indicating that ZSS2 was

functionally expressed in metabolically engineered E. coli.
4. Discussion

In this paper, we provide the first cloning and functional

characterization of a cDNA (ZSS2) encoding b-eudesmol syn-

thase from natural sources. b-Eudesmol synthase is a typical

plant sesquiterpene synthase in terms of amino acid sequence,

gene architecture and multi-functional nature.

It is interesting to note that despite the apparently high level

of ZSS2 gene expression in rhizomes of Z. Zerumbet, no

b-eudesmol and other products of ZSS2 were detected in this tis-

sue, except for a trace amount of c-eudesmol (0.21%). The high

content of sesquiterpenes in rhizomes implies that b-eudesmol

biosynthesis is not limited by the substrate (FPP) supply. The

lack of accumulation of b-eudesmol and other products may

also be due to their further conversion to other derivatives.

However, despite thorough analysis, eudesmane-type metabo-

lites have not been found in rhizomes. Therefore, it is highly

possible that b-eudesmol and other products formed in rhi-

zomes of Z. zerumbetare released as volatiles to the rhizosphere.
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In aerial plant organs, many sesquiterpenes are mainly emit-

ted during mid-summer, and the emission rates are highly cor-

related with ambient temperature [26,27]. In addition, the

activities and gene expression levels of some TPSs were also

found to be strongly temperature dependent [28,29]. Because

Z. zerumbet grows fast from June until December, the obvious

seasonal fluctuations of ZSS2 transcript accumulations in rhi-

zomes should also be temperature-regulated but not develop-

ment-dependent (Fig. 4B). This finding raises intriguing

questions about the biological roles of volatile terpenes in be-

low ground environment. Several terpenes have been reported

to be released from plant roots and their emission is considered

to be critical for their biological significance [7,9]. For exam-

ple, maize roots release b-caryophyllene in response to beetle

attack as a volatile signal to attract predatory nematodes [7].

b-eudesmol is found to be an active compound responsible

for resistance of plants to ant attack [30,31], and also has anti-

fungal activity [32,33]. The remarkable high transcript accu-

mulation of ZSS2 in early August suggests that b-eudesmol

may serve as a defensive agent against active summer patho-

gens or insects. However, it is difficult to assess the specific

roles of b-eudesmol in this plant without further investigation.

Besides its potential roles in plant defense, b-eudesmol is

also known to have various beneficial effects on human health

and is considered to be a lead compound for treating epileptic

seizures [34], angiogenic diseases [35] and dementia [36].

Because insufficient supply of terpene precursors, isopentenyl

pyrophosphate (IPP) and dimethylallyl pyrophosphate

(DMAPP) by the native DXP pathway is one of the largest

obstacle to high-yield production of terpenes in E. coli, we

introduced a heterologous mevalonate pathway that can effi-

ciently convert mevalonate to IPP and DMAPP into E. coli.

The metabolically engineered E. coli produced a similar sesqui-

terpene profile to that observed in the in vitro assay in the pres-

ence of mevalonate, confirming that ZSS2 encodes b-eudesmol

synthase. The relatively high-level production of b-eudesmol

(100 mg/L) in E. coli from an inexpensive carbon source (mev-

alonate) suggests that large-scale production of b-eudesmol

without being affected by plant cultivation is feasible. Our

efforts are underway to optimize the expression of the mevalo-

nate pathway and maximize the sesquiterpene production.
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