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SUMMARY
Aberrant expression of vascular cell adhesion molecule-1 (VCAM-1) in breast cancer cells is associated with
lung relapse, but the role of VCAM-1 as a mediator of metastasis has remained unknown. We report that
VCAM-1 provides a survival advantage to breast cancer cells that infiltrate leukocyte-richmicroenvironments
such as the lungs. VCAM-1 tethers metastasis-associatedmacrophages to cancer cells via counter-receptor
a4-integrins. Clustering of cell surface VCAM-1, acting through Ezrin, triggers Akt activation and protects
cancer cells from proapoptotic cytokines such as TRAIL. This prosurvival function of VCAM-1 can be blocked
by antibodies against a4-integrins. Thus, newly disseminated cancer cells expressing VCAM-1 can thrive in
leukocyte-rich microenvironments through juxtacrine activation of a VCAM-1–Ezrin-PI3K/Akt survival
pathway.
INTRODUCTION

Primary tumors can release a large number of cells into the circu-

lation long before the tumor is diagnosed and removed. Although

distant relapse may eventually occur, the limited number of

metastatic lesions that emerge suggests that only a small

proportion of the cells that leave a primary tumor succeed at infil-

trating, surviving, and ultimately overtaking a distant organ (Fi-

dler, 2003; MacDonald et al., 2002). Recent progress in metas-

tasis research has led to the identification of genes and

mechanisms that mediate cancer cell extravasation (Bos et al.,

2009; Gupta et al., 2007; Padua et al., 2008; Ricono et al.,

2009). Other recently identified metastasis genes directly partic-

ipate in the ultimate colonization of the invaded organs, an event

that may take place after a latency period lasting months or

decades depending on the type of cancer (Jones et al., 2006;

Kang et al., 2003; Müller et al., 2001; Pàez-Ribes et al., 2009;

Yin et al., 1999). However, less is known about the mechanisms
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that allow the survival of cancer cells immediately upon entering

a distant organ and being exposed to an often lethal micro-

environment. Cell death upon infiltration of a distant organ is

regarded as the single-most important bottleneck for the estab-

lishment of distant metastases (Cameron et al., 2000; Luzzi et al.,

1998; Wong et al., 2001). To cope with the newly invaded tissue,

cancer cells that leave the circulation must interact with the

newfound stroma and obtain crucial survival and viability signals.

A better understanding of these survival mechanisms is needed

for the development of therapeutic strategies to target dissemi-

nated cancer cells (DTCs) and thereby eliminate residual disease

after the removal of a primary tumor.

The mechanisms that mediate metastasis depend, in part, on

organ-specific determinants (Fidler, 2003; Nguyen et al., 2009).

For example breast cancer metastasis may affect the lungs,

bones, liver, and brain (Anan et al., 2010), organs that present

distinct barriers to the entry and survival of circulating cancer

cells (CTCs). To have a certain probability of entering these
ated cancer cells (DTCs) and the development ofmetastasis.
lopment of strategies to target DTCs. The leukocyte receptor
cer cells and is shown here to transduce prosurvival signals
metastatic cells for survival and outgrowth in the leukocyte-
en leukocyte a4-integrins and VCAM-1 in endothelial cells is
t. Targeting this interaction in VCAM-1+ breast cancer cells
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Figure 1. VCAM-1 in Cancer Cells Enhances Lung

Metastasis

(A–E) Role of cancer cell VCAM-1 in lung metastasis by

mammary tumors. (A) Schematic of the experimental

procedure. (B) VCAM-1 protein levels were detected by

western immunoblotting in control MDA231-LM2 cells

(Ctrl) or these cells expressing independent shRNAs

targeting human VCAM1 (sh1 and sh2).

(C) The indicated cancer cells were injected into the fourth

mammary fat pad of mice. Mammary tumor size was

measured at the indicated times.

(D) Quantification of lung metastasis at week 5 based on

bioluminescent signal.

(E) Lung sections (week 5) were immunostained with

human vimentin. Data are average ± SEM; n = 5 mice.

Scale bar, 100 mm.

(F–J) Role of cancer cell VCAM-1 in lung colonization from

the circulation. (F) Schematic of lung colonization assay

by intravenous injection of cancer cells. (G) Indicated

MDA231-LM2 cells were intravenously injected into NOD/

SCID mice. Lung colonization was quantified by BLI. (H)

Representative images of human vimentin staining of lung

sections 6 weeks after MDA-231 cell injection. (I) VCAM-1

protein level as detected by western immunoblotting in

control 4T1 cells (Ctrl) or these cells expressing indepen-

dent shRNAs targeting mouse VCAM1 (sh1 and sh2). 4T1

cells were intravenously injected into BALB/c mice, and

lung colonization was quantified by BLI 3 weeks after

inoculation. Data are average ± SEM; n = 5 mice. Scale

bar, 500 mm.

See also Figure S1.
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tissues and resisting the new microenvironment, CTCs must

already be primed for infiltration and survival as they leave the

source tumor. Based on this line of reasoning, genes that prime

cancer cells for survival in a distant organ may be found among

gene sets whose expression in primary tumors is clinically asso-

ciated with distant relapse.

To search for mediators of metastasis that would fulfill these

criteria, we focused on an 18 gene lung metastasis signature

(LMS) that is expressed in breast cancer cells. The LMS is

associated with pulmonary relapse in patients and with lung

metastasis in experimental models (Minn et al., 2005). Several

LMS genes, including epiregulin, ptgs2, mmp1, fascin1, and

angiopoietin-like 4, mediate extravasation of CTCs by inducing

vascular permeability, transendothelial migration, or endothelial

cell disjunction (Gupta et al., 2007; Kim et al., 2009; Padua

et al., 2008). Notably, the LMS 18 gene set also includes vascular

cell adhesion molecule-1 (vcam1). VCAM-1 encodes a leukocyte

adhesion molecule whose normal expression is restricted to

endothelial cells and subpopulations of bone marrow cells (Os-

born et al., 1989). Endothelial VCAM-1 binds to the leukocyte

integrins a4b1 (or VLA4) and a4b7 on circulating monocytes,

granulocytes, and lymphocytes, and tethers these cells to the

luminal endothelium surface (Elices et al., 1990; Osborn et al.,

1989). Through these interactions, VCAM-1 mediates the move-

ment of leukocytes from blood to tissue, a process that is partic-

ularly active during inflammatory responses (Elices et al., 1990;

Osborn et al., 1989). Abnormal expression of VCAM-1 has

been reported in various cancer cell types, including breast,

gastric, renal carcinoma, and melanomas (Ding et al., 2003;

Minn et al., 2007; Ruco et al., 1996; Shin et al., 2006). However,

the role of VCAM-1 in cancer progression remains unclear.
C

Therefore, we set out to determine whether VCAM-1 in circu-

lating breast cancer cells participates in the infiltration of these

cells into distant tissues or their survival in the newly invaded

microenvironment.

RESULTS

VCAM-1 Expression in Breast Cancer Cells Enhances
Lung Metastasis
VCAM1 emerged as a gene whose expression is associated

with the propensity of hormone receptor-negative breast tumors

to relapse to the lungs (Minn et al., 2005). In order to investigate

whether VCAM-1 functions as amediator of metastasis, we used

short hairpin RNA interference (shRNA) to stably reduce its

expression in a VCAM-1-overexpressing lung metastatic cell

line, MDA231-LM2-4175 (MDA231-LM2 for short) (Figure 1B;

see Figure S1A available online). MDA231-LM2 was obtained

by in vivo enrichment for lung metastatic clones from the

parental cell line MDA-MB-231 (MDA231 for short) (Minn et al.,

2005), which in turn was established from the pleural fluid of a

patient with metastatic breast cancer (Cailleau et al., 1974).

MDA231 corresponds to the hormone receptor-negative, clau-

din-low subtype of breast cancer (Prat et al., 2010). Control or

VCAM-1-depleted MDA231-LM2 (5 3 105 cells) was implanted

in the mammary glands of immunodeficient mice and subjected

to ametastasis assessment protocol (Figure 1A). VCAM-1 deple-

tion did not significantly alter the growth rate of the resulting

mammary tumors (Figure 1C) or the number of CTCs in

the tumor-bearing mice (Figure S1C). However, VCAM-1

depletion decreased by nearly 10-fold the lung metastatic

activity of the mammary tumors, as determined by quantitative
ancer Cell 20, 538–549, October 18, 2011 ª2011 Elsevier Inc. 539
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C Figure 2. VCAM-1 on Cancer Cells Binds Tumor-

Associated Macrophages

(A) Schematic illustration of VCAM-1 interactions with

leukocyte a4-integrins.

(B and C) Adhesion assays of U937 cells on monolayers of

parental MDA231 or MDA231-LM2 cells. (B) Representa-

tive photomicrographs of adherent TRITC-labeled U937

cells on themonolayer of indicated cancer cells. Scale bar,

100 mm. (C) Quantification of the ratio of adherent U937

cells and cancer cells. Data are average ± SEM; n = 10 unit

areas.

(D) U937 cells treated with anti-a4-integrin antibody

(anti-a4) or Ig control (�) were tested for binding to

monolayers of control or VCAM1-depleted MDA231-LM2.

VCAM-1 knockdown was done using two independent

shRNAs (sh1, sh2). Data are average ± SEM; n = 10 unit

areas.

(E) rVCAM-1 binging assay with different stromal cell

populations from lung metastatic nodules, including

F4/80+ macrophages (Macro), Gr-1+ neutrophils (Neutro),

and CD31+ endothelial cells (Endoth) and GFP+ cancer

cells. Cell surface binding of bovine serum albumin control

(gray closed histogram) or rVCAM-1 (black open histo-

gram) was determined by flow cytometry.

(F) Adhesion assays of stromal cells from lung metastatic nodules onmonolayers of control or VCAM1-depleted (sh1, sh2) MDA231-LM2 cells. The ratio between

adherent F4/80+ macrophages to GFP+ cancer cells was quantified by flow cytometry.

See also Figure S2.
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bioluminescence imaging (BLI) of an integrated luciferase gene

(Figure 1D) or by antihuman vimentin immunohistochemistry

(Figure 1E). In a tail vein inoculation protocol to assess lung colo-

nization by a synchronous influx of CTCs (Figure 1F), VCAM-1

depletion did not affect the accumulation of MDA231-LM2 in

the lungs during the first week after inoculation (Figure 1G).

However, VCAM-1 depletion significantly inhibited the subse-

quent development of metastatic colonies (Figures 1G and 1H).

To probe the role and significance of VCAM-1 in breast cancer

metastasis in a syngeneic, immunocompetent model, we inves-

tigated 4T1 breast cancer cells. 4T1 is a lung metastatic cell line

derived from a mammary tumor that spontaneously emerged in

BALB/c mice (Aslakson and Miller, 1992). Western immunoblot-

ting and qRT-PCR analysis demonstrated that 4T1 cells express

VCAM-1 (Figure 1I; Figure S1B). These data show that lung

metastatic cells from a spontaneous mouse mammary tumor

shared with the human breast cancer counterparts the remark-

able feature of expressing this leukocyte-binding endothelial

cell receptor. Furthermore, shRNA-mediated depletion of

VCAM-1 in 4T1 cells (Figure 1I; Figure S1B) severely inhibited

the lung metastatic activity of these cells in immunocompetent

BALB/c mice (Figure 1J).

VCAM-1 Mediates Binding of Tumor-Associated
Macrophages to Cancer Cells
The extracellular region of VCAM-1 consists of seven immuno-

globulin (Ig) domains, one of which (domain 4) is missing in the

VCAM-1-6D splice variant (Cybulsky et al., 1991). a4-Integrins

bind to separate sites on Ig domains 1 and 4 (Figure 2A), and

therefore, the VCAM-1-6D variant is of low affinity (Vonderheide

et al., 1994). By means of isoform-specific RT-PCR, we deter-

mined that MDA231 and another human metastatic breast

cancer cell model, CN34 (see below), predominantly express

the long, high-affinity VCAM-1 variant (Figure S2A). To determine
540 Cancer Cell 20, 538–549, October 18, 2011 ª2011 Elsevier Inc.
whether VCAM-1 on breast cancer cells can bind leukocytes, we

incubated MDA231monolayers with a suspension of U937 cells,

a human monocyte cell line that expresses a4b1-integrin (Kalo-

geris et al., 1999). The MDA231-LM2 cells bound over 3-fold

as many U937 cells as did the parental MDA231 cells (Figures

2B and 2C). shRNA-mediated depletion of VCAM-1 in

MDA231-LM2 cells or addition of a blocking antibody against

a4-integrin inhibited the binding of U937 cells (Figure 2D). We

concluded that VCAM-1 on cancer cells can bind monocytes.

Monocytic cells including macrophages enhance tumor

progression (Joyce and Pollard, 2009; Qian and Pollard, 2010).

Blockage of macrophage recruitment significantly decreases

lung colonization by MDA231-LM2 cells in mice (Qian et al.,

2009, 2011). However, the specific contribution of macrophages

to metastatic colonization is not well understood. To identify

metastasis stromal cell types that bind VCAM-1, we generated

lung metastatic nodules by tail vein inoculation of MDA231-

LM2 cells expressing green fluorescent protein (GFP). Single-

cell suspensions prepared from the resulting nodules were

incubated with fluorochrome-conjugated recombinant VCAM-1

ectodomain (rVCAM-1) or bovine serum albumin as a control.

Specific cell surface markers were used to identify and quantify

different types of stromal cells (Figure S2B). VCAM-1 bound

to metastasis-associated CD45+F4/80+ macrophages and

CD45�CD31+ vascular endothelial cells, but not to Gr1+ neutro-

phils or GFP+ cancer cells (Figure 2E). Next, we prepared cell

suspensions from lung metastasis nodules, depleted these

suspensions of human EpCAM+ cancer cells, and panned the

remaining cells over control or VCAM-1-depleted MDA231-

LM2 monolayers. Analysis of the monolayer-bound fraction

demonstrated VCAM-1-dependent binding of F4/80+ cells to

MDA231-LM2 cells (Figure 2F).

In 4T1 lung metastatic nodules, CD45+CD4+ and CD45+CD8+

lymphocytes expressed low levels of cell surface a4-integrin
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Figure 3. Cancer Cell VCAM-1 Is Dispensable for Transendothelial Migration or Leukocyte Recruitment but Enhances Tumor Seeding

(A) MDA231-LM2 cell migration across monolayers of HPMECs, with or without activated monocytes in the lower chamber of a transwell. Migrated cancer cells

were quantified. Data are average ± SEM; n = 10 unit areas.

(B–E) Association of cancer cells with leukocytes in the lungs. (B) Schematic of the experimental procedure. (C) CMFDA-labeled 4T1 cells were intravenously

inoculated into BALB/c mice, and the association between cancer cells and CD4+ and CD8+ T cells and CD68+ macrophages was analyzed 24 hr later. Shown

are two representative micrographs per experimental group. Scale bar, 10 mm. (D) Percentage of cancer cells interacting with the indicated leukocyte cells.

(E) Quantification of CD68+ cells surrounding cancer cells. Data are average ± SEM; n > 30 cancer cells.

(F–H) Tumor self-seeding assay. (F) Schematic of experimental procedure. GFP/luciferase expressing cancer cells of inoculation of into the arterial circulation

of mice bearing primary tumors formed by unlabeled cancer cells. (G) Representative images of mammary tumors seeded with indicated GFP+ MDA-231 LM2

cells. GFP+ cancer cells and tumor-associated macrophages were stained with anti-GFP and anti-CD68 antibodies in primary tumors (week 4). Scale bar, 10 mm.

(H) Seeding of control (Ctrl) or VCAM-1 depleted (sh1 and sh2) MDA231-LM2 cells in mammary tumors after intracardiac inoculation was determined by BLI

quantification. Data are average ± SEM; n = 10 mice.

See also Figure S3.
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compared to CD45+F4/80+ macrophages (Figure S2C). Macro-

phages comprised approximately 7% of the total cell population

in the metastatic nodules (Figure S2C), whereas CD4+ and CD8+

lymphocytes collectively comprised 4% of the tumor cell

population. Moreover, endothelial cells, which also bind to

rVCAM-1 (Figure 2E), comprised <1% of the cell population

from MDA231-LM2 lung nodules (Figure S2B). Overall, macro-

phages were the most abundant source of potential a4-integrin

contacts in these lung nodules.

Cancer Cell VCAM-1 Is Dispensable for Extravasation
and Macrophage Recruitment
Contacts with macrophages enhance cancer cell extravasation

(Qian et al., 2009). Although U937 monocytes enhanced the
C

ability of MDA231-LM2 cells to migrate through human pulmo-

nary microvascular endothelial cell (HPMEC) monolayers,

VCAM-1 depletion did not influence this process. This was

observed when the monocytes were activated with PMA to

induce adherence (Yamamoto et al., 2009) and were placed on

the lower side of the transwell membrane (Figure 3A). Similar

results were obtained when monocytes stimulated with cyclic-

AMP were placed with cancer cells in the upper transwell

chamber, with complement factor C5a as a monocyte chemoat-

tractant (Rubin et al., 1991) in the bottom chamber (Figure S3A).

VCAM-1 depletion also had no effect when U937 cells were

placed together with cancer cells, with CXCL12 as a cancer

cell chemoattractant (Zhang et al., 2009) in the bottom chamber

(Figure S3B). These results are consistent with our in vivo
ancer Cell 20, 538–549, October 18, 2011 ª2011 Elsevier Inc. 541
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evidence that VCAM-1 is not required for entry of breast cancer

cells into the lung parenchyma.

To determine if VCAM-1 on cancer cells influenced the recruit-

ment of macrophages into the tumor, we labeled 4T1 or

MDA231-LM2 cells with CellTracker Green CMFDA, and inocu-

lated these cells into mice via the tail vein. After 24 hr, we exam-

ined the association of CD4+, CD8+ T lymphocytes (for 4T1

model) and CD68+ macrophages (for both 4T1 and MDA231-

LM2 models) with CMFDA+ cancer cells in the lung parenchyma

(Figures 3B and 3C; Figure S3C). Over 95% of cancer cells were

surrounded by macrophages in close juxtaposition, whereas

fewer than 30% of cancer cells were associated with CD4+ or

CD8+ T lymphocytes (Figure 3D). VCAM-1 depletion in cancer

cells changed neither the percentage of cancer cells surrounded

by immune cells nor the average number of interacting macro-

phages per cancer cell (Figures 3D and 3E). Furthermore, the

lung nodules formed by the VCAM-1-depleted cells showed

the same content of F4/80+, CD31+, and Gr1+ cells as did size-

matched control nodules (Figure S2B). Thus, VCAM-1 expres-

sion in cancer cells is not required for their recruitment of, or

exposure to, macrophages.

VCAM-1 inCancer Cells Enhances the Seeding of Breast
Tumors
We further tested the role of VCAM-1 under conditions that

challenged cancer cells to seed new or established tumors.

VCAM-1 depletion significantly diminished the rate of tumor

outgrowth when only 5 3 104 cells were implanted in mammary

fat pad tumor assays (Figures S3D–S3F, compare to tumor

formation by 5 3 105 implanted cells in Figure 1C). Recently,

we showed in experimental models that established breast

tumors are powerful magnets for CTCs (Kim et al., 2009). In

this process, called ‘‘self-seeding,’’ CTCs that pass through a

breast tumor can effectively reinvade the tumor by virtue of their

metastatic abilities, the leaky tumor vasculature, and the attrac-

tion of inflammatory cytokines IL6 and IL8 in the tumor microen-

vironment. Once in that environment, aggressive seeder clones

can attract myeloid cells through the release of CXCL1 and

expand in that myeloid-rich microenvironment (Kim et al.,

2009). In a tumor self-seeding assay (Figure 3F), MDA231-LM2

seeder cells were indeed surrounded by CD68+ macrophages

(Figure 3G). MDA231 seeder cells that were depleted of

VCAM-1 showed a marked decrease in the ability to populate

the recipient tumors (Figure 3H). Collectively, these results

suggest that VCAM-1 supports the outgrowth of cancer cells

that infiltrate the lungs and other restrictive sites. Moreover,

these results raised the possibility that VCAM-1-leukocyte inter-

actions are a source of this advantage.

VCAM-1 Protects Breast Cancer Cells from Apoptosis
in the Lung Microenvironment
To determine how VCAM-1 expression in breast cancer cells

contributes to tumor outgrowth in the lungs, we transduced

a doxycycline-driven VCAM1 shRNA expression system in

MDA231-LM2 cells. Doxycycline addition to the culture media

decreased VCAM1 expression within 48 hr, whereas a full

recovery of VCAM-1 expression after doxycycline removal took

5 days (Figures 4A and 4B). Cells cultured without doxycycline

were inoculated into tail vein, and 1 day after the inoculation,
542 Cancer Cell 20, 538–549, October 18, 2011 ª2011 Elsevier Inc.
doxycycline was administered to the mice for the remainder of

the experiment (Figure 4C). This treatment caused a sustained

inhibition of lung metastatic colonization. In a converse experi-

ment, cancer cells were incubated with doxycycline for 3 days

in order to suppress VCAM-1 expression prior to inoculation of

these cells into mice. The recipient mice were not treated with

doxycycline. Metastatic colonization of the lungs under these

conditions was as extensive as with control MDA231-LM2 cells

(Figure 4D). Therefore, VCAM-1 was dispensable for cancer

cell entry into the lungs but was required for their subsequent

outgrowth.

VCAM-1 depletion caused amarked increase in the proportion

of apoptotic cells in the lung metastatic colonies (Figure 4E). We

also observed a high incidence of apoptosis in lung nodules

seeded from mammary tumors (Figure 4; refer to protocol in

Figure 1B).We saw no effect of VCAM-1 depletion on the expres-

sion of the cell proliferation marker Ki67 or the endothelial cell

marker CD31 in lung nodules that were either size matched or

timematched relative to controls (Figures S4A–S4C). The lesions

formed by VCAM-1-depleted cells remained low in VCAM-1

expression compared to size-matched control lesions, as deter-

mined by qRT-PCR analysis of lung nodules (Figure S4D).

Collectively, the results suggest that VCAM-1 specifically

enhances the survival of breast cancer cells that infiltrate the

lung parenchyma.

The VCAM-1 Intracellular Domain Mediates Metastatic
Cell Survival
We investigated the mechanism underlying this unprecedented

role of VCAM-1. We generated a truncated form, VCAM-1(Dcyt),

lacking the cytoplasmic region (Figure 5A) and compared this

construct with the wild-type VCAM-1 for the ability to restore

lung metastatic activity in VCAM-1-depleted cancer cells. In

addition to the MDA231-LM2 model system, we also used the

CN34-LM2 cell line. This line is a lung metastatic derivative

from the pleural fluid of a patient with stage IV metastatic breast

cancer (Tavazoie et al., 2008). The VCAM-1 and VCAM-1(Dcyt)

constructs were expressed at similar levels in these two cell

lines, as determined by immunoblotting analysis (Figure 5B)

and flow cytometry (Figure 5C). Both constructs similarly

increased the ability of MDA231-LM2 and CN34-LM2 cells to

bind U937 monocytes (Figure 5D). However, whereas the

expression of wild-type VCAM-1 increased the ability of both

cell lines to colonize the lungs (Figure 5E) and to avert apoptosis

(Figure 5F), VCAM-1(Dcyt) was defective in these functions in

both cell lines (Figures 5E and 5F).

Engagement of VCAM-1 Triggers Survival Signals
The interaction of leukocyte a4-integrin with VCAM-1 induces

cytoskeletal rearrangements in endothelial cells, and this effect

can be mimicked with the use of anti-VCAM-1 crosslinking anti-

bodies (van Wetering et al., 2003). We adopted this approach to

test the effect of VCAM-1 clustering on the apoptotic respon-

siveness of cancer cells to TRAIL (tumor necrosis factor-related

apoptosis-inducing ligand), a proapoptotic cytokine expressed

in human lung metastatic nodules (Zhang et al., 2009). In both

MDA231-LM2 and CN34-LM2 cell cultures, addition of TRAIL

induced the activation of effector caspase-3, as determined by

the accumulation of cleaved caspase-3 (Figure 6A) (Nicholson
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Figure 4. VCAM-1 Protects Cancer Cells from

Apoptosis in the Lung Microenvironment

(A and B) MDA231-LM2 cells with a doxycycline (Dox)-

inducible shVCAM-1 vector were cultured in the presence

of doxycycline (A) or were placed in doxycycline-free

medium after culturing with doxycycline (B), in order to

determine the kinetics of VCAM1 depletion and recovery,

respectively.

(C) Control or doxycycline-driven VCAM1 shRNA cells

were inoculated into mice, and all mice were treated with

doxycycline. Lung colonization was assessed by quanti-

tative BLI.

(D) BLI quantification of lung colonization after the indi-

cated cancer cells pretreated with doxycycline were

injected into mice that were not given doxycycline. The

mice were not administrated with drug. Data are average ±

SEM; n = 8 mice.

(E) TUNEL staining and quantification in the lungs har-

vested 6 weeks after intravenous injection of cancer cells

as indicated in Figure 1E. Representative photomicro-

graphs, and quantification of TUNEL+ cells. Data are

average ± SEM; n = 10 unit area/mouse, 3 mice/group.

Scale bar, 50 mm.

(F) The indicated cancer cells were injected into the

fourth mammary fat pad of mice, and the lungs were

harvested as indicated in Figure 1A. Immunostaining for

human vimentin and cleaved caspase-3was performed on

consecutive lung tissue sections. Scale bar, 100 mm.

See also Figure S4.
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et al., 1995). Incubation with anti-VCAM-1 antibody and

secondary F(ab0)2 fragment markedly blunted this effect in the

cells expressing full-length VCAM-1, but importantly, not in cells

expressing VCAM-1(Dcyt) (Figure 6A).

To determine the effect of engaging VCAM-1 with its natural

a4-integrin counter-receptors, we incubated cancer cells with

U937 monocytes. Cancer cells expressing VCAM-1, VCAM-1

(Dcyt), or no exogenous VCAM-1 were prelabeled with CMFDA,

and apoptosis was assessed by TUNEL staining (Figure 6B).

Expression of VCAM-1 reduced to half the incidence of apo-

ptosis in cancer cells that were exposed to TRAIL, whereas

VCAM-1(Dcyt) provided no protection (Figure 6C). Furthermore,

addition of anti-a4-integrin-blocking antibody prevented

VCAM-1 from exerting this antiapoptotic effect (Figure 6C).

Cancer cell counts corroborated these findings (Figure 6D).

Thus, upon engagement by a4-integrin on leukocytes, VCAM-1

in breast cancer cells delivers antiapoptotic signals via its cyto-

plasmic tail.

VCAM-1 Clustering Activates Akt Signaling
To identify signaling pathways that are activated by VCAM-1

engagement, we performed antibody-mediated clustering of

VCAM-1 in MDA231 and CN34 cells under low concentration

of serum growth factors. Cell lysates were probedwith phospho-

peptide-directed antibodies that detect the activation state of 46

protein kinases and their protein substrates (Phospho-Kinase

Array Kit) as well as Smad2/3 and NF-kB (Table S1). Among

these signal transducers only Akt phosphorylation at S473
C

showed a consistent increase in response to VCAM-1 clustering

(Table S1). S473 phosphorylation is an Akt-activating event

triggered by PI3K stimulation and catalyzed by the TORC2

complex (Alessi et al., 1996; Collins et al., 2003; Sarbassov

et al., 2005). S473 phosphorylation by TORC2 is thought to prime

Akt for further phosphorylation and activation by 3-phosphoino-

sitide dependent protein kinase 1 (PDK1) at T308 (Zoncu et al.,

2011). Using western immunoblotting, we confirmed that

VCAM-1 clustering induces Akt phosphorylation at S473 in

human MDA231, CN34, and mouse 4T1 breast cancer cells

(Figures 7A and 7B). S473 phosphorylation peaked 10–15 min

after VCAM-1 clustering. No Akt phosphorylation was detected

in MDA231 or CN34 cells expressing VCAM-1(Dcyt) (Figure 7A).

Addition of the PI3K inhibitor LY-294002 abolished the induction

of Akt phosphorylation by VCAM-1 clustering (Figure 7B).

Furthermore, in the presence of LY-294002, VCAM-1 clustering

no longer suppressed caspase-3 activation by TRAIL (Figure 7C).

Collectively, these results suggest that engagement of VCAM-1

on breast cancer cells triggers activation of the PI3K/Akt

pathway and protects cancer cells from death signals.

VCAM-1 Clustering Triggers Akt Binding to Ezrin
The short intracellular tail of VCAM-1 and of intercellular cell

adhesion molecules 1–3 (ICAM-1–3) interacts with Ezrin, a

member of the ERM (Ezrin/Radixin/Moesin) protein family (Fehon

et al., 2010). ERM proteins are cytoplasmic proteins that function

as a link between certain transmembrane proteins and the

actin cytoskeleton (Fehon et al., 2010). In endothelial cells the
ancer Cell 20, 538–549, October 18, 2011 ª2011 Elsevier Inc. 543
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Figure 5. The VCAM-1 Intracellular Domain Mediates Survival of Cancer Cells in the Lungs

(A) Domain structure of the wild-type (WT) VCAM-1 with extracellular (EC), transmembrane (TM), and intracellular (IC) domains and VCAM-1 (DCyt) construct

lacking the IC. WT or DCyt VCAM-1 was overexpressed in VCAM1-depleted (by shRNA 1) MDA231-LM2 cells (MDA-LM2-sh1) and CN34-LM2 cells.

(B and C) Expression of the wild-type VCAM-1, VCAM-1(DCyt), or empty vector (Ctrl) in MDA231-LM2 cells that were stably depleted of endogenous VCAM-1 by

the expression of shRNA1 and CN34-LM2 cells. (B) VCAM-1 was detected by western immunoblotting in MDA231-LM2 cells. (C) The expression of VCAM-1 on

the cell surface was detected by flow cytometry.

(D) U937 cell adhesion assays on monolayers of the indicated MDA231 or CN34 cell lines. Data are average ± SEM; n = 10 unit areas.

(E and F) The indicated cell lines were intravenously injected into mice. Six weeks after tumor cell injection, lung BLI was measured (E), and TUNEL+ cells were

quantified in lung tissue sections (F). Data are average ± SEM; n = 5 mice.
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interaction of VCAM-1 with Ezrin triggers cytoskeletal rearrange-

ments for the translocation of VCAM-1-bound leukocytes from

blood into tissue (Barreiro et al., 2002; van Wetering et al.,

2003). In addition to this role, Ezrin can signal cell survival

through the PI3K pathway (Gautreau et al., 1999). Antibody-

mediated crosslinking of ICAM-2 triggers phosphorylation of

Ezrin at Y353, which results in binding and activation of PI3K

(Perez et al., 2002). Y353 is located within the a-helical domain

of Ezrin, and Y353 phosphorylation is thought to indirectly

involve Src kinases (Chuan et al., 2006; Krieg and Hunter,

1992). Based on these clues, we hypothesized that VCAM-1
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engagement may trigger Akt activation though Ezrin. Indeed,

antibody-mediated clustering of VCAM-1 in MDA231-LM2 or

CN34 cells in low-serum conditions led to a rapid phosphoryla-

tion of Ezrin at Y353 (Figure 7D). VCAM-1(Dcyt) failed to mediate

this effect (Figure 7D).Moreover, this effect was accompanied by

the formation of a complex between Ezrin and Akt (Figure 7D)

and an enhanced recruitment of Akt to themembrane (Figure 7E;

Figure S5). The results suggest that VCAM-1 signaling activates

Ezrin Y353 phosphorylation to help PI3K recruit Akt to the

membrane, leading to TORC2 activation of Akt signaling

(summarized in Figure 7F).
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Figure 6. VCAM-1 Engagement by a4-Integrins

Triggers Antiapoptotic Signals via the Cytoplasmic

Domain

(A) VCAM-1 clustering antibodies (Ab X-linking) were

added to the indicated cell lines in the presence or

absence of 10 ng/ml TRAIL for 3 hr. Caspase-3 activation

was detected by western immunoblotting.

(B–D) The indicated cancer cells were cocultured with

U937 cells in the presence of TRAIL and a4-integrin anti-

body (anti-a4) or comparable Ig control (�). (B) After 24 hr,

TUNEL+ (red) and Green CMFDA-labeled cancer cells

were scored under a fluorescent microscope. Arrowheads

indicate a TUNEL+/CMFDA+ cancer cell, and asterisks

indicate a (CMFDA-negative) U937 cell. (C) Percentage of

TUNEL+/CMFDA+ cancer cells. Data are average ± SEM;

n = 10 unit areas; p value calculated using t test. Scale bar,

20 mm. (D) Cancer cells were quantified after 48 hr of

coculture. Data are average ± SEM; n = 4 samples.
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Figure 7. VCAM-1 Clustering Activates PI3K/Akt Signaling with the Involvement of Ezrin

(A) Time course of Akt phosphorylation at the TORC2 site S473 after addition of VCAM-1 clustering antibodies. The indicated human MDA-231 and CN34 and

mouse 4T1 breast cancer cells were used in low-serum media. The ratio of phospho-Akt to total Akt is shown below each lane.

(B) Cancer cells overexpressing VCAM-1 were pretreated with PI3K inhibitor LY294002 (LY) or vehicle DMSO (�) for 30 min. VCAM-1 antibody clustering was

applied for 10 min, and activated Akt (S473) was detected by western blotting. The ratio of phospho-Akt to Akt is shown below each lane.

(C) Cancer cells overexpressing VCAM-1 were pretreated with LY294002 (LY) or vehicle (�) for 30 min, and VCAM-1 clustering antibodies and TRAIL (10 ng/ml)

were added for 3 hr as indicated. Caspase-3 activation was detected by western immunoblotting.

(D) Time course of Ezrin phosphorylation at Y353 and Ezrin-Akt interaction after addition of VCAM-1 clustering antibodies to the indicated cells. The indicated

proteins were analyzed by western immunoblotting of whole-cell lysates (Input) or anti-Ezrin immunoprecipitates (IP: Ezrin).

(E) Time course of Akt association with the cell membrane fraction after addition of VCAM-1 clustering antibodies to the indicated cells. Immunoblotting with

antibodies against EGFR and b-actin served as markers of membrane and cytosolic fractions, respectively.

(F) Model of VCAM-1-mediated Akt activation. VCAM-1 clustering triggers Ezrin phosphorylation at Y353, which is a known docking site for PI3K. This event is

accompanied by Akt binding to Ezrin, Akt association with the cell membrane, and Akt phosphorylation at the TORC2 site S473 for propagation of survival signals.

See also Figure S5 and Table S1.
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VCAM-1 Association with Leukocyte-Rich Breast
Tumors and Metastases
Unlike the lungmetastatic populations derived from theMDA231

and CN34 parental cell lines, brain metastatic and bone meta-

static populations that we isolated from these same sources

(Bos et al., 2009;Minn et al., 2005) did not show elevated expres-

sion of VCAM1 (Figure 8A). This phenomenon was noteworthy in

the case of the brain metastatic derivatives, which otherwise

share various organ infiltrative genes and function with the lung

metastatic counterparts (Bos et al., 2009). To investigate the

association in human tissue material, we determined the
C

VCAM1 transcript level in lung, brain, and bone metastasis

samples from patients with breast cancer (Figure 8B). The results

demonstrated a significantly higher expression of VCAM-1 in the

lung and bone metastases compared to the brain metastases

(Figure 8B). There was no correlation between the expression

of VCAM1 and that of the vascular endothelial marker CD31

in metastasis tissues (Figure S6A), arguing that the level of

VCAM1 expression was not a reflection of the endothelial cell

content of the metastatic lesions. The bone marrow is rich with

a4-integrin-expressing hematopoietic cells. Paradoxically, the

overexpression of VCAM-1 in MDA231 (Figures S6B and S6C)
ancer Cell 20, 538–549, October 18, 2011 ª2011 Elsevier Inc. 545
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Figure 8. VCAM1 Expression Is Associated with

Leukocyte Content in Breast Tumors

(A) Relative VCAM1 mRNA level in lung metastatic, brain

metastatic, and bone metastatic cells derived from

parental MDA231 or CN34 cell lines. Data are average ±

SEM; n = 3.

(B) VCAM1 expression in metastatic tissues from patients

with cancer including samples from lung (n = 18), brain (n =

19), and bone metastasis (n = 17).

(C and D) VCAM1 expression in metastatic lesions with

high or low leukocyte content. (C) Clustering of 67 meta-

static samples of patients with breast cancer by LeukoS.

(D) VCAM1 expression in leukocyte signature high and low

clusters of metastatic lesions.

(E) Model of the survival advantage obtained by breast

cancer cells that express VCAM-1 in leukocyte-rich tissues

such as the lung. On exposure to macrophages and other

leukocytes, the engagement of VCAM-1 by a4-integrin

counter-receptors triggers Ezrin phosphorylation and

activation of PI3K/Akt signaling. PI3K/Akt signaling

opposes the effects of death cytokines in the pulmonary

microenvironment.

See also Figure S6.
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did not enhance the ability of these cells to initiate bone marrow

colonization (Figures S6D–S6F).

The selective association of VCAM1 expression with lung

metastasis was intriguing in light of our functional evidence link-

ing stromal leukocytes and VCAM-1-mediated cancer cell

survival. Therefore, we sought evidence for a possible associa-

tion of VCAM1 expression with the leukocyte content of primary

tumors. From a gene expression signature of CD45+CD10�

leukocytes isolated from human breast tumors (Allinen et al.,

2004), we generated a bioinformatic classifier. Using this tool,

we classified 67 metastasis tissue samples from patients with

breast cancer into leukocyte gene expression signature (Leu-

koS)-high and -low groups (Figure 8C). The LeukoS-high group

was highly enriched for lung metastasis samples and excluded

most of the bone and brain metastasis samples (Figure 8C).

This finding is consistent with the natural capacity of the lung

parenchyma to be infiltrated by lymphoid and myeloid cells

(Lipscomb et al., 1995). Furthermore, a comparison of the

VCAM1 transcript levels with the leukocyte signature score of

these tumors revealed that VCAM1 expression was enriched in

the LeukoS-high metastases (Figure 8D). These results with clin-

ical samples are consistent with the implication from our func-

tional studies that VCAM-1-expressing cancer cells have

a survival advantage to initiate metastasis at sites that are rich

in leukocytes, such as the lungs (Figure 8E).

DISCUSSION

The adaptation of newly arrived cancer cells to themicroenviron-

ment of distal organs is a stringent rate-limiting step in metas-

tasis, and the probability of completing this step varies widely

depending on the tumor type and the target organ. The specific

stromal interactions that dictate the compatibility of DTCs with

a particular organ site have remained largely amystery. Focusing

on VCAM-1 as an overexpressed gene in breast cancer cells that

preferentially colonize the lungs, we show that this cell adhesion

molecule is engaged by counter-receptor a4-integrins on leuko-
546 Cancer Cell 20, 538–549, October 18, 2011 ª2011 Elsevier Inc.
cytes to trigger PI3K/Akt activation and cancer cell survival in the

pulmonary parenchyma (Figure 8E). Our findings provide a bio-

chemical explanation for the clinical association of VCAM-1

expression in breast tumors with cancer relapse to the lungs

(Minn et al., 2005). Our findings also show that VCAM-1 expres-

sion is high in leukocyte-rich lung metastasis samples from

patients with breast cancer compared to brain metastasis

samples. We propose that these associations are based on a

prosurvival advantage provided by VCAM-1 in cancer cells that

invade leukocyte-rich sites such as the lungs.

Tumor-associated macrophages and other stromal leuko-

cytes play crucial roles in various aspects of tumorigenesis

through the secretion of specific cytokines and proteases

(Cheng et al., 2007; Giraudo et al., 2004; Gocheva et al., 2010;

Lin et al., 2006; Sangaletti et al., 2008; Wyckoff et al., 2004).

The present results reveal an unprecedented role for juxtacrine

stimulation of cancer cells by macrophages during metastatic

colonization. VCAM-1 on the surface of cancer cells mediates

a4-integrin-dependent binding of macrophages, and its oligo-

merization triggers PI3K/Akt signaling in the cancer cells. High-

resolution imaging techniques recently demonstrated physical

contacts between macrophages and breast cancer cells during

macrophage-facilitated CTC extravasation in mice (Qian et al.,

2009). However, we found no contribution of VCAM-1 to cancer

cell extravasation or macrophage recruitment into tumors.

Rather, our evidence suggests that the a4-integrin-VCAM-1

interaction promotes cancer cell survival through PI3K/Akt

pathway activation by the VCAM-1 cytoplasmic domain. During

leukocyte transmigration, VCAM-1 on endothelial cells can

communicate with the cytoplasmic proteins Ezrin and Moesin,

and trigger Rac1 activation (Barreiro et al., 2002; van Wetering

et al., 2003). Our data indicate that VCAM-1 clustering in breast

cancer cells mediates Ezrin phosphorylation, Akt binding to

Ezrin, and Akt phosphorylation at the TORC2 site S473 to acti-

vate prosurvival signaling. The protein kinase(s) responsible

for Ezrin phosphorylation at Y353 remains unknown, although

Src has been implicated as an indirect mediator (Chuan et al.,
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2006; Krieg and Hunter, 1992). Thus, leukocyte engagement of

VCAM-1 in breast cancer cells may serve to amplify the activa-

tion of the PI3K/Akt pathway in a mitogen-poor microenviron-

ment during the initial stages of seeding and adaptation of

DTCs to new sites.

We propose that VCAM-1 expression confers breast cancer

cells with a selective survival advantage in leukocyte-rich

tissues. As organs exposed to the outside environment, the

lungs are rich in resident immune cells (Lipscomb et al., 1995).

In tumor-bearing mice the lungs accumulate bone marrow-

derived mononuclear phagocytes and endothelial progenitors,

cell types that express a4-integrins (Gao et al., 2008; Kaplan

et al., 2005). Our data suggest that a4-integrin-expressing leuko-

cytes and endothelial cells in lungs mediate Akt prosurvival

signaling by directly interacting with VCAM-1 in metastatic

breast cancer cells. The pulmonary parenchyma thereby

provides a matching receptive soil for CTCs that express

VCAM-1, explaining the observed link between VCAM-1 expres-

sion in primary tumors and selective relapse to the lungs (Minn

et al., 2005).

Cancer cells departing from a breast tumor with high expres-

sion of VCAM-1 would be primed for survival in the leukocyte-

rich microenvironment of the lungs. In comparison the brain

has a limited presence of microglial macrophages, which is in

line with the lack of an association of VCAM-1 with brain metas-

tasis that we observed. In the case of bonemetastasis, we found

no association between VCAM-1 expression in primary tumors

and bone relapse, and no effect of VCAM-1 overexpression on

the ability of breast cancer cells to initiate bonemarrow coloniza-

tion in mice. VCAM-1 may not provide an early advantage in the

bone marrow because Akt activation in cancer cells that enter

this site can be provided by other mechanisms, such as Src-

dependent CXCL12 signaling (Zhang et al., 2009). We do not

rule out a role of VCAM-1 later in the osteolytic phase of bone

metastasis.

What drives the selection for VCAM-1-expressing cancer cells

in breast tumors is unknown, but it is possible that VCAM-1-rich

clones are positively selected in breast tumor areas of active

infiltration or inflammation. Macrophage-rich areas of a primary

tumor would nurture the expansion of VCAM-1-expressing

cancer cell clones. Furthermore, breast cancer cells in lung

metastatic nodules can reenter the circulation, seed back a

mammary tumor, and abundantly proliferate in leukocyte-rich

tumor areas (Kim et al., 2009), and we provide evidence that

VCAM-1 favors the outgrowth of CTCs that infiltrate a self-seed-

ing mammary tumor. Accordingly, lung metastatic clones ex-

pressing VCAM-1 might undergo recurrent cycles of amplifica-

tion by shuttling between lung nodules and a leukocyte-rich

primary tumor microenvironment.

By disrupting the a4-integrin-VCAM-1 interaction between

macrophages and cancer cells with anti-a4-integrin-blocking

antibodies, we were able to cancel the prosurvival action of

VCAM-1 in the cancer cells. The interaction between endothelial

VCAM-1 and leukocyte a4-integrins is a validated target in

multiple sclerosis and other diseases that involve rampant

recruitment of circulating leukocytes into tissue (Comi, 2009;

Schmidt et al., 2009). Our results point at a potential application

of such targeted drugs to suppress VCAM-1-mediated survival

of DTCs after the removal of a primary tumor.
C

EXPERIMENTAL PROCEDURES

Animal Studies

All experiments using animals were done in accordance to a protocol

approved by MSKCC Institutional Animal Care and Use Committee (IACUC).

Female NOD/SCID or BALB/c mice (NCI; Charles River Lab and Taconic

Farm) between 5 and 7 weeks old were used. Lung metastasis assays from

orthotopic inoculation followed previously described procedures (Padua

et al., 2008). A total of 5 3 105 cancer cells in 50 ml of 1:1 mix of PBS/growth

factor-reduced Matrigel (BD Biosciences) was injected into the fourth right

mammary fat pad of mice. The primary tumors were surgically removed

when they each reached approximately 300 mm3. After 7 days, lung metas-

tases were quantified using BLI. For lung colonization assays, 2 3 105 cells

in 100 ml PBSwere intravenously injected, and lung colonization was quantified

using BLI. For inducible knockdown experiments, doxycycline hyclate (Sigma-

Aldrich) was added into the drinking water (2 mg/ml). For the primary tumor

implantation with a low number of cells, 5 3 104 cells were injected. Tumor-

seeding assays followed previously described procedures (Kim et al., 2009).

A total of 5 3 105 unlabeled MDA231 parental cells were injected into the

second right mammary fat pad of mice. After 7 days, 100,000 GFP/lucif-

erase-integrated LM2 cells were intracardially injected into tumor-bearing

mice. To detect tumor-immune cell interactions in the lungs, cancer cells

were labeled with 5 mM CellTracker Green CMFDA (Molecular Probes), and

106 labeled cells were intravenously injected. Lung tissues were harvested

24 hr after injection, and CD4, CD8, and CD68 staining was performed. To

detect CTCs, the whole-blood perfusate from tumor-bearing mice was

collected, and total RNA was extracted. The relative expression of human

b2-microglobulin was assessed by qRT-PCR and normalized to murine

b2-microglobulin.

Cell-Cell Binding Assays

A total of 2 3 106 prelabeled U937 cells were allowed to adhere to the mono-

layer of cancer cells. Adherent cells (red) and the nucleus of total cells (DAPI

staining in blue) were scored by fluorescence microscopy. The ratio of

adherent U937 cells to cancer cells was calculated as red counts/(blue

counts � red counts). In the indicated experiments, U937 cells were preincu-

bated with functional blocking antibody of a4-integrin (10 mg/ml; clone PS/2

fromAbD Serotec) or Ig control for 30min. To identify the cell types that adhere

to cancer cells, human EpCAM-depleted stromal cell suspensions from lung

metastatic nodules were allowed to adhere to GFP+ cancer cell monolayers.

Single-cell suspensions of cancer cells and adherent cells were incubated

with fluorochrome-conjugated F4/80 antibody. F4/80+ macrophages and

GFP+ cancer cells were quantified using flow cytometry.

VCAM-1 Clustering Assays

VCAM-1 in human cancer cells was crosslinked with 10 mg/ml of mouse

anti-human VCAM-1 monoclonal antibody (clone 1G11; Beckman Coulter)

and 50 mg/ml goat anti-mouse IgG1 F(ab0)2 (Jackson ImmunoResearch) for

indicated time frames, whereas 10 mg/ml of mouse anti-human VCAM-1

monoclonal antibody (Clone MVCAM.A429; AbD Serotec) and 50 mg/ml goat

anti-rat IgG1 F(ab0)2 (Jackson ImmunoResearch) were used in 4T1 mouse

breast cancer cells. Mouse or rat IgG was used as control. For apoptosis

analysis, cancer cells were incubated with 100 ng/ml TRAIL (PeproTech) for

3 hr. Caspase-3 was detected by western immunoblotting. To identify

signaling mediators, VCAM-1 clustering was performed in serum-starved

human breast cancer cells for the indicated time periods. Where indicated,

50 mM LY294002 or DMSO control was added during the incubation with

anti-VCAM-1 and F(ab0)2. Cell lysates were analyzed using Human Phospho-

Kinase Array Kit (R&D Systems). In the indicated experiments, western blot

was performed using antibodies against phospho-Akt (S473), Akt, phospho-

NF-kB p65 (S468), or phospho-Smad2 (S465/467) and phospho-Smad3

(S423/425) (all from Cell Signaling). The ratio of phospho-Akt to total Akt was

quantified by ImageJ software (Abramoff et al., 2004). For coimmunoprecipita-

tion assays, cell pellets were lysed with IP buffer (Pierce). Equal amounts of

protein were incubated with anti-Ezrin (clone 3C12; Abcam) and protein G

(GE Healthcare). Ezrin, phospho-Ezrin (Y353; BD PharMingen), and Akt were

detected in the immunoprecipitates. For cell fractionation, membrane and

cytosolic fractions were harvested using Subcellular Protein Fractionation kit
ancer Cell 20, 538–549, October 18, 2011 ª2011 Elsevier Inc. 547
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(Pierce). Akt was detected in each fraction, whereas EGFR or b-actin (Cell

Signaling) was used as the loading control for membrane or cytosolic fraction,

respectively.

To clustering VCAM-1 in tumor cells by physiologically interacting with

a4-integrin in macrophages, confluent cancer cells were cocultured with

U937 cells (2.5 3 105 U937 cells/cm2) in the presence of 20 ng/ml TRAIL. To

detect the percentage of apoptotic cancer cells, cancer cells were prelabeled

with Green CMFDA before the coculture. TUNEL staining was performed 24 hr

after incubation and observed under the fluorescent microscope. To quantify

survived tumor cells, cells were lysed by Passive Lysis Buffer (Promega), and

the luciferase activity was detected by Luciferase Assay System (Promega)

using GloMax 96 Microplate Luminometer (Promega). Standard curve was

generated by detecting the luciferase activity of a series number of cancer

cells, and the absolute number of survived cancer cells was calculated. In

the indicated experiments, a4-integrin antibody was applied in the coculture

system.

Analysis of Human Metastatic Tissue Samples

VCAM1 transcript level was analyzed in 18 lung, 19 brain, and 17 bone meta-

static samples from patients with breast cancer (GSE14020) (Zhang et al.,

2009). A correlation coefficient was calculated between VCAM1 and CD31

expression in each data set. A LeukoS, including 182 genes, was based on

the SAGE data from CD45+CD10� leukocytes isolated from breast tumors

(Allinen et al., 2004). After mapping these genes on the Affymetrix U133A plat-

form, the probe sets of these genes were queried in a data set from 67 meta-

static samples from patients with breast cancer (GSE14020) (Zhang et al.,

2009). We clustered all these samples using the heatmap.2 function in the R

statistical package. The most robust subcluster was defined as the leukocyte

signature high (LeukoS-high) group. VCAM1 expressions were compared

between these two groups.

Statistical Analysis

Pairwise comparisons were performed by two-tailed Student’s t test. Signifi-

cance was set at p values less than 0.05.
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