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A homomorphism between the theories of thermodynamics and economics is
introduced. By means of Gibbs-Falkian thermodynamics it is shown that a systems
theory can be set up including economic equations of state, as well as a concise
notion of equilibirum. Indicating strict separations with respect to dynamics in
economics, commonly used at present, and adopting the physico-dynamical con-
cepts of energy, motion, and momentum, connections between the economic
phase space and the related space of events are established.  © 1995 Academic Press, Inc.

True tireory never substitutes practice—it is practice.

T. S. W. Salomon

INTRODUCTION

For a long time economic theory has known attempts to apply methods
and definitions from the natural sciences, above all from physics, for
the description of economic relations and processes [3]. It seems to be
legitimate to cornbine the different scientific concepts of physics and eco-
nomics in the face of decreasing natural resources. The authors propose
to combine them by way of a mathematically stringent analytical eco-
nomic theory. .

Prominent American economists have been fostering such ideas to this
very day. Pre-eminent among these are Paul A. Samuelson (M.I.T.) and
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Nicholas Georgescu-Roegen (Vanderbilt University). In Europe two
Nobel prize winners, Jan Tinbergen and Tjalling Koopmans, ‘‘show the
GIBBSian influence.” [18, p. 256].

In 1970 Samuelson dedicated a substantial part of his programmatic
Nobel prize speech to the adequacy of thermodynamic maximum princi-
ples pertaining to economic problems [17]. It should be noted that he once
called himself a “‘grandson of Josiah Willard GIBBS,”’ the celebrated
American thermodynamicist at Yale [18]. The main points of Samuelson’s
approach are self-evident morphisms between thermodynamics and eco-
nomics. Therein a critical point, however, is the entropy notion and, in this
context, the Second Law of thermodynamics. This problem is concisely
expressed by Samuelson [16]:

In theoretical economics there is no ““irreversibility’* concept, which is one reason
GEORGESCU-ROEGEN [in 1971] is critical of conventional economics.

This critique and also the reasons for it are expounded by Georgescu-
Roegen in his world-renowned book, ‘‘The Entropy Law and The Eco-
nomic Process’” [8]. Therein the necessity is emphasized to postulate
some sort of Second Law also for economics. But Georgescu-Roegen
casts off his belief in to simple analogies or in direct references to
physical entropy laws. His respective statement is definite: ‘‘The true
output of the economic process is not a physical outflow of waste, but
the enjoyment of life.”” And he further points out that without introducing
this concept ‘‘into our analytical armamentarium we are not in the eco-
nomic world.”” [8, p. 282]. This idea, specified by Samuelson’s approach,
was the starting point of the investigation presented here.

Hence, the object of this paper will deal with what is briefly termed
*‘Gibbs-Falkian dynamics,”” reflected by a homomorphism joining the
domains of physics and economics. Clearly, there are no simple analogies.
The crucial point is, at a first glance, that only the mathematical structure
of phenomenological thermodynamics has morphisms with theoretical
economics. Our views coincide with Samuelson’s respective statement
{18, p. 263].

The first part of this paper is concerned with the far-reaching conse-
quences of a typical mathematical property for theoretical economics.
This property is denoted as extensitivity [6, p. 263f] and is well known in
physics. Using Gibbs’ thermostatics, these consequences may easily be
exemplified with regard to some fundamental relations between the vari-
ables of any homogeneous domain in Gibbs’ meaning [9, p. 63]. The
corresponding economic relations are presented for the special case of a
production system which is characterized by a modified production func-
tion of the CES-type.

In the second part it is intended to explain a thermodynamically moti-
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vated concept of’ equilibrium states in economics. In addition, some sug-
gestions will be made concerning the dynamical behavior of economic
systems in an appropriate space of events. The Gibbs-Falkian thermody-
namics [21] can be seen as a theory of nonlinear dynamical systems, for
which the problem of time and space parameters is conclusively arranged
by Noether’s theorem.

By the way, the idea to demonstrate structural correspondences be-
tween the relations among variables of two theories, different in form and
subject matter, was first taken up in the authors’ publication ‘* Analytische
Produktionstheorie’” back in 1992 {10].

1.1. Homomorphisms and Homogeneous Functions

Let T, be the theory of thermostatics, and let T,, e.g., be the supply-
oriented economic production theory. A homomorphic mapping between
these two theories is proposed, using the common terms of mathematical
mapping techniques {12]. Symbolically,

Thom Tl - TZ* Thom * @ ® b Thom(a) * Thom(b); (l)

a, b as elements of T,; & and * as operations in T, and T,, respectively.

It goes without saying that Samuelson’s isomorphisms between parts of
the theories are included, if the correspondence operation Ty, is one-
to-one.

In all parts of physics, as well as in those of economics, the respective
domains may be characterized by a set of well-defined ‘‘standard vari-
ables.”” Let us dwell for a moment on T,, that is, on physics! In that
science the standard variables are connected among themselves by some
characteristic group-theoretical transformation properties, relevant for the
set of variables and constitutive for the physical system. In addition, it
must be emphasized that all these standard variables are extensive.

One of the most important properties of any extensive quantity is its
additivity; in other words, assume that a reference unit may be divided
into subunits. If, for some given quantity, the sum of the values for all
parts equals the value for the whole, then the respective quantity is called
extensive. Another one of the characteristics of each extensive variables
is its conservation quality. Unlike other ones, this property is not true
for some quantities, e.g., for the heat rates as the most relevant interacting
quantity in physics. Such quantities, just as all the extensive variables,
contain the same constant factor A to be defined by the ratio of the standard
variables X and its related modification x,,

X, =X x; A>0i=1,2,..., n.

i
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For these variables a homogeneous function of degree m may be set up.
The quantitative version of this function may be written in the well-
known form

FX1, Xy oy X)) = FOX ], Mg, ooy AX,) = A - (X, Xy, s X,) (2)

which is generally true.
For the important special case of f being homogeneous of degree one
(i.e., m = 1), Euler’s theorem allows the following differential relation:

< a
Z;Xi'gjgf(Xan’ o Xiy o X)) =fX, Xy, o0 X o0 X)) )

Put ¢ :=af/aX;fori=1,2,...,n
f,>Zl§,-'X,-=f(X,,X2,...,X,.,...,X,,). €))

Equation (4) opens the way for understanding the statement of Callen,
‘‘Extensive parameters play a key role throughout thermodynamic the-
ory.” [2, p. 9].

In physics A is usually identified with total mass taking part in the
variations of all the relevant variables. All ¢; are partial derivatives of f
with respect to each extensive variable X, and as such they do have a
separate name. To take a well-known example, the entropy-conjugate
variable ¢, is called the ‘*absolute temperature.’” Usually all ¢, are termed
“intensive’’ [2, p. 31].

As to economics, the second theory T,, Euler’s theorem clearly offers
advantages for homogeneous functions as a means of describing the reality
of economic activities. And there cannot be any doubt that the advocates
of neoclassical economic theory have been well aware of the fact that
extensive variables may duly represent relevant items of economics. To
a large extent the benefit of these variables is due to their being measured
along a ratio scale. Here is not the place to detail the conditions of whether
any given extensive variable X; may be classified as a standard variable.
Some interesting work on standard variables in physics is reviewed and
extended in a recent paper by one of us [22].

Clearly it is necessary to answer the question which one of the economic
quantities might play the role of the constant A. In order to apply linear-
homogeneous functions to economics according to Eq. (3), it is surely
adequate to pick out for A some quantity which yields for all X, reasonable
related variables x; = X,/A, i =1, 2, ..., n.
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More than two hundred years of economic experience allow the conclu-
sion that in production theory A may be equated with the so-called labor
force, that is, the number N of employed (index ¢), employable, and
unemployed (index «) persons in a nation’s economy. For the benefit of
the observations and statements presented here, it is in no way required
to use the labor force as an equivalent for A.

One might just as well have taken the entire population for that purpose,
and N* would have to include, e.g., the number of children as well, with
the obvious advantage of an easier utilization of national accounting data
in the sectors of consumption. Other conventions, however, might be
considered, e.g., the averaged working hours per annum.

By way of definition the labor force is practically constant within the
domain of the other relevant standard variables. Consequently, the defi-
nition

A=N=N°+ N 5)

is assumed to bz suitable for the modeling of economic theories.

Hence, related variables x; arise from the common standard variables
of production theory, viz. capital (C), output (Q), and the total number
of the actual hours of work (L):

(6)

2ie

Evidently, the set of variables introduced here will generally not suffice
to characterize adequately the highly complex structure of economic activ-
ities. One will, therefore, have to take into account additional variables,
among these even such that are neither extensive variables nor interacting
quantities, but rather quantities which are called intensive.

By means of example the general rate of interest p might be such an
intensive variable. Assuming that p is connected in some way with a
certain sort of capital, say with C!?), then an economic problem could be
described and explained by the set of variables C?!, Q, L, and p itself.
They refer in each moment to an economic state occurring in a domain,
wherein the labor force N may be considered sufficiently constant. Fur-
thermore, it should always be remembered with reference to Gibbs [9,
p. 67] that N is a significant parameter represented by A. Under these
circumstances simple mathematical operations offer some obvious conclu-
sions which have hardly been drawn systematically right up to this day
by traditional economists.
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1.2. Gibbs-Falkian Thermodynamics and Production Theory

Let there be a so-called Gibbs function between capital C!?! and the
other variables according to

Cl = CIPAQ, L, p | A = N). ™

By way of a Legendre contact transformation [2, p. 90f] with regard to
the intensive variable p, an extensive variable V is generated, being worth
aftracting our attention to its conjugate economic meaning.

This special case yields

lp)
c=cn-%,7 ®
ap oL
[p]
:>C=C<Q,L,ia%~ |x=N)

Q.L
)

= CWQ. L, VIN=N).

The formal side of the subject is obvious: The Legendre transformation
replaces the functional equation (7) by (9) which exclusively contains
extensive variables. N remains a variable even if it is assumed to be
constant under the proposed variations of state.

As to the economic theory T,, however, in the authors’ view something
really remarkable happens. Apart from the new extensive standard
variable

FYalld

\%
op

Q.L

which is directly related to p, a second capital quantity arises: the stock
of productive capital C. The rate of interest p may be seen quite tradition-
ally in connection with capital. The variable p is, a fortiori, quantitatively
joined to the set of relevant standard variables for which a closed boundary
surface is additionally adapted to new external and economically proper
conditions. Within this higher-order area real production takes place per
definition. This fact forms one part of economic fundamentals, but does
not inspire dogmatic economics up to now. It is remarkable, nonetheless,
that p emerges as a conjugate variable of V from the theory presented
here. In physics [6, p. 105f] V is one of the most important variables, as
it allows to define spatially homogeneous regions known as phases. Thus,
it seems adequate to term V as the domain of economic activity.
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In accordance with Gibbs-Falkian thermodynamics the linear-homoge-
neous relation (9) is called ‘‘Gibbs—Euler function”” (GEF). This is a
special case of many Gibbs functions [5, p. 21] for the adequate description
of the production problem in such a way that extensive variables are
chosen exclusively.

In any case, if a GEF [21, p. 108] contains all the relevant standard
variables pertaining to the problem in question; it also provides all the
information about the physical or economic system under investigation.
Although such an axiom is well within the scope of any theory using
deductive reasoning, it can only be confirmed by experience afterwards.
Hence, any real system will have to be approximated by a mathematical
model with a set of variables which is complete by definition. Conse-
quently, the total differential of the dependent variable C can be formed
with the help of GEF (9).

Let us repeat. each GEF consists of a complete set of exclusive exten-
sive variables and consequently reflects the system under investigation
(5, p. 74]: GEF <> System. Within the framework of the production theory
(T,) the constitutive relations

0+ 4 v Iy (10)

¢= 3V aN

aC
0Q
and

dC = Q dQ+— dL+Q—C— dv (11)

hold. They represent the simplest version, as only one *‘particle number”’
Nis considered, for which the constraint dNV = 0 is presupposed. Extended
versions may easily be realized by the introduction of some additional
“*particle numbers’’ corresponding to (5), for instance.

The partial derivatives of productive capital with respect to every other
variable, ceteris paribus, can now be named according to their economic
meanings; for some of them quite new expressions had to be formu-
lated—as there are no correspondences to contemporary economic
theory:

ac
Q

—:=§;, Marginal intensity of capital

=0, Marginal capital output ratio
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_aC._

AR Rate of interest of the economic system [new]
aC . . .
N = pu, Technological potential of a production system [new].

1.3. Equations of State

Using the new symbols, Egs. (10) and (11) can simply be represented
by the forms

C=¢p-Q— & -L—p-V+ u- N& Equation for capital (12)
dC=¢,-dQ — ¢, -dL —p-dV; & Equation of capital forms  (13)

to be subjected to the conservation rule dN = 0.

Note that the negative signs with £; and p are mere conventions; these
intensive variables are changing their values in directions opposite to
those of their respective extensive variables.

Equation (12) may also be called ‘‘Euler—Reech function’’ of economic
systems, whilst the Pfaffian (13) is denoted by *‘Gibbs fundamental equa-
tion,”” in correspondence to Gibbs [9, pp. 86, 357) and conventions in
physics [21]. Both are only compatible iff the second part of the total
differential dC vanishes identically. Then, the compatibility requirement
of (12) and (13) asks for the relation

Ndu + Qd¢, — Ld¢, ~ Vdp = 0 (14)

which is an inevitable consequence of the set of variables introduced
above.

In physics this corresponding identity is known as the ‘‘Gibbs—Duhem
relation™’; it is valid both there and in its Aiomomorphic counterpart for
an economic system. From this basic relation one can a fortiori deduce
a functional connection

u=wuéy, £, p), (15)

between only the intensive system variables corresponding to, and inde-
pendent of, the special mode of the economic behavior observed.
Obviously, the existence of (15) is formally conclusive, if it is admitted
that the economic system may be described by the GEF of Eq. (9) given
in the form of (12), the equation for productive capital. Equations of this
kind, like the one for the technological potential u, should, in the authors’
opinion, belong to the basic tools of any macro-economic theory. Nonethe-
less, one asks oneself why such marginal system equations are not known
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in economics. Marginal quantities [8, p. 190] themselves, like £, or &,
are of course well known in the textbooks; their statistical treatment in
many cases, however, is deplorably dubious.

Partial differentiation of the technological potential . with respect to
€5, £, and p shows that these derivatives are joined to the extensive
standard variables of the production system, for the Gibbs—Duhem rela-
tion (14) allows us to compute a set of straightforward differential expres-
sions:

Il

L.
N’ ap

£9.é1

-9
N (16)

zl<

The number of intensive variables, capable of independent variation, is
called the number of degrees of freedom for any given system [2, p. 50].

The performance of an economic system is traditionally described by
a production function [15, p. 158f]. If such a mathematical expression can
be equated to a GEF of type (9), then both the marginal system equation
and the so-called equations of state may explicitly be derived from it.
The latter are cobtained from (16) by differentiating the function p with
respect to each of the intensive quantities and considering (6). Symboli-
cally we have

Xo = xQ(st £, P)

or

xp =x(€p, &L, P)

or
xy = xyl€g, €1, ).

The set of equations of state is compiled, expressing each related standard
variable as a function of the intensive parameters only. These ideas will
be expounded in: the second part of the paper presented.

Concluding the first part, it should be emphasized that the existence of
{15) has a paradigmatical significance for any mathematical economics
whatever; provided that economic theory does work with the extensive
quantities commonly used; the reverse is also true: unless the marginal
system equation relies on empirical data, then these variables are not
extensive and cannot mathematically be applied in the traditional manner!
But what other alternative will remain in this case?
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2.1. Production Function and Marginal System Equation

To obtain an idea of the precise mathematical structure of an economic
equation of state, one may revert to a recognized tool of neo-classical
economics: that of the so-called CES production function (with CES for
constant elasticity of substitution). A CES function is homogeneous of
degree one and is established originally in the three variables C, Q, and L.

According to the GEF (9) we choose capital as the dependent variable.
In the first part of the paper it is argued that there are scientifically eminent
reasons to expand the ‘‘classical’’ set of variables by at least two further
quantities: the domain of economic activity (V) and the labor force (N).
Even if one may treat these quantities as constants, they will yet, despite
this, appear as parameters in the respective production function. For
that reason, we get an “‘extended’’ CES function (ECES) written in a
structurally conventional version

._1 -—ad l ‘UU _ﬂ’n _(Tl/d
C—(ZQ LL=2oV kN), (17)

which is a GEF of the system.
Any ECES function is homogeneous of degree one and homothetic. &,
I, v, n, and o are parameters relevant to the observed production system.
Obviously, their units imply the correct dimension for each term of (17).
In connection with the homogeneous Euler-Reech equation the ECES
(17) permits the straightforward calculation of the technological potential
of the production system:

_n[1 (_Q.)"’_l. <_L.)_“_ v, (Z)_"-ﬁ]_wm (18)
oLy k [k N k \N k \N k

Using the economic equations of state, the three related variables Q/N,
L/N, and V/N in (18) can easily be replaced by intensive quantities only.
Hence, the marginal system equation under ECES conditions,

._9C
K=5N

w= (_n)llu . (kl/(rr+l) _ fg/(uﬂ) + 11/(u+1) . §Zl(a-+l) + vl/(0+l) .pa'/(a+l))(a+l)/0’
(19

Results as the immediate inference from the set of standard variables
chosen.

Although there are quite a few possibilities to make use of linear-homo-
geneous functions for the description of real economic systems, the ECES
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function has one undeniable advantage. It leads to a simple algebraic
connection between the marginal coefficients like £, £, , or u and their
respective statistical characteristics L/Q, C/L, or C/N, well known from
national accounting:

_1. (£)0+l, N _2‘ (—C_>o'+l.
fe=z\o) ¢ AT \W)
_£.<£)‘”'. __2.<£)"“
a=p\z) > Py -

In case our (economic) world should work along ECES lines, this attractive
property would enable economists to exploit the advantages of the new
theory without letting traditional statistical data bases become obsolete.

The reader might ask himself, however, why the analysis presented
here puts such a great weight upon the intensive variables. There are
some answers as to the axiomatic foundation and substantiation of this
analysis. But there also exists another reason which grants privileges
to the intensive parameters. With their aid it is possible to establish a
theoretically counsistent definition of equilibrium, in accordance with Sam-
uelson’s demand on the mathematical structure of the homomorphic map-
ping formalism, as proposed in (1). This concept refers methodologically
to Gibbsian thermostatics, thereby overcoming for our purposes the affin-
ity of contemporary economics with classical mechanics, deplored by
Georgescu-Roegen or Samuelson.

2.2. Equilibrium States in Economics

Let 2, and 2, be two economic systems in close contact, each defined
by their respective GEFs, and forming a rotal system 3, to be isolated from
its environment. Consequently, free interaction is exclusively realized by
the reciprocal exchange between the respective variables of 3, and 3,
by definition. The basic idea of introducing standard variables that such
quantities be alike in meaning and definition for every single one of them
holds for all sections of the respective science, and this is true for econom-
ics, too. Therefore, the reader is justified to regard simultaneously a pro-
duction system %, and the interacting consumption system 3., as parts of
an entity X. In that case, V| (resp. V,) and L, (resp. L,) are related to
their corresponding domains and labor inputs of both the supply and the
demand sectors.

Assuming the sum N, + N, to be constant for £, the variables N, and
N, refer to the specified labor force of the production system X, and the
number of consumers of the interacting system 3,, respectively. In this
context it should be emphasized that additional constraints are required,
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because N, contains partial ‘‘particle numbers,’ e.g., the number N¢ of
the employed persons in the production system 2,, which will normally
also appear as variables in the consumption system Z,. This is not the
place to discuss the corresponding mathematical complications connected
with these constraints.

Now, there is a fundamental assumption, according to which this pro-
cess I is initiated and terminated by an inherent trend towards equilibrium
in 2. Equilibrium, however, is a phenomenon which may be manipulated
by the observer’s length and time standards concerning the real processes
running down in the system. They have to be compared with the variation
of time and length scales occurring spontaneously in II, due either to
purely internal changes or to interactions between the natural course of
events and the environment.

Accordingly the characteristic times of these inherent scales, which
prove to be necessary for the adjustment of the respective equilibrium
state, are strongly influenced by the details of the natural exchange behav-
ior between X, and 3, . Obviously there is a narrow relationship between
these so-called relaxation times and the well-known time measures intro-
duced by A. Marshall, in order to relate the impact of different demand
conditions to the corresponding new equilibrium level of the prices. In
his textbook Samuelson has concisely illustrated some typical adjustment
processes by means of a few qualitatively varying ‘‘Marshall time inter-
vals™ [15, p. 24].

For reasons of simplicity it is assumed that, during the interaction
between %, and 2,, the standard variables L, and V,, as well as L, and
V,, remain constant. Without additional exterior influence both partial
systems will tend towards a definite mutual state of equilibrium, whereas
the following constraints are valid for the aggregate system X:

=3 U3,
dC=dC, +dC,=0, dN =dN, + dN,=0 (20)
dV=dVl+dV250, szdLl+dL2§0.
Assuming a constant total capital stock for both the supply and demand
subsystems, Gibbs’ fundamental equations for %, and X, are resolved with

respect to the output differentials dQ, and d@,. Then the sum of both
differentials may be written as

dQ = dQ, + dQ,

_ 1 1 Ey I-’-z)
(-1 ac, - (Br- B2 g, 21
<§Ql fgz) ¢ (fg, £ M @



784 LAUSTER, HOHER, AND STRAUB

In accordance with the principle of equilibrium in thermodynamics it
is evident that we define economic equilibrium by the maximum of Q with
regard to the exchange quantities C, and N,:

6Cy |y~ NI,

99 Lo 821 L, 22)

These conditions of equilibrium have two consequences:

1. Normally, the aggregate system 2 does not fulfill the constraint
dQ = 0, in contrast to the differentials dC and dN.

2. As can easily be recognized from (21), the equilibrium state is
distinguished bv the corresponding values of the respective intensive vari-
ables:

'SQI = §Q2 = §:Q (23)
Ky = ey =M

But the following implication also holds:

&L, # &L,
dL,=dL2=dv,=dv250:>{L‘ b (24)

P\ #p,.

With respect to the chosen constraints, the results in (24) indicate an
inequality in the interest rates (and also in the marginal coefficient £,).
This case corresponds to the so-called osmotic pressure equilibrium in
physics which dominates the flora.

For the economic case Samuelson has worked out the causes of the
difference between the interest rates of the supply and demand sectors.
It is significant that this difference will only vanish if the domains V, (resp.
V,) may freely be exchanged between X, (resp. X,). Obviously, this case
can only lead to equal values of p, and p,; they are supposed to attain
equilibrium much faster than the variables in (23).

For an exercise the reader may use the equation of state (19) derived
from the ECES production function for the two separate systems, each
one furnished with a different set of parameters. The connection between
these two equations yields the qualifying relation for equilibrium, joining
£, and £, at a constant value of ¢, and vice versa.
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2.3. From the Domain of Economic Activity to the Space of Events

Special attention should be turned to the variable V. It fixes the domain
of the production resp. consumption system under investigation, espe-
cially its open or closed boundaries with the domains of surrounding
economic systems.

Obviously V must not be interpreted in a geometric way. This variable
defines the volume of a multi-dimensional abstract space, by means of
which the notions of closed and open systems may be determined for the
explanation of interaction between systems. Consequently, it is often
useful to substitute the geometrical measure of extension V by a term to
be denoted as the specified domain V of the scientific discipline regarded.

For thermodynamics Falk has proved that such a *‘physical,” i.e.,
non-geometrical, domain can be introduced. This measure refers to an
extension which is not fixed with wall-like boundaries. But, in principle
its unit may be chosen arbitrarily; i.e., it does not correspond to the
common unit of volume expressed by a length scale convention [6, p. 368f],
together with an integer dimension: Fractals, therefore, are admissible in
principle. For this reason, Gibbs—Falkian thermodynamics is independent
of some grave theoretical problems associated with a mechanically
founded, but yet questionable, priority of perceptions in geometrical terms
over concepts to be strictly based on ideas of matter. Clearly, this a fortiori
holds for theoretical economics, because economic processes recorded
by means of real space coordinates used in physics are irrelevant, in
general. To understand this comparatively awkward theoretical concept
better, one should remember that the definitions of a system and the
corresponding GEF are equivalent.

By way of construction the GEF neither contains a time variable nor
a position vector. It consists instead exclusively of extensive variables
which span the so-called phase space. Therein the relevant economic
processes can be described completely by sequences of state; in this
context a state x, is defined to be an actual real-valued realization (C,,
Qo> Ly, Vg, ..., Ny) of a given set of standard variables.

Nevertheless, the natural sciences, briefly what we call T,, are making
use of a second device for the tracing of a process. The extensive variables
are regarded as functions in a ‘‘space of events,”” spanned by time and
the three geometrical space coordinates. Mathematically, the connection
of the phase space and the space of events is a relation; on the other
hand, the inverse relation is a many-to-one mapping. This means that in
each point of the space—time continuum all extensive variables possess
unique values. But the reverse is not true: not each one of the possible
states in the phase space can be mapped into a unique point of space-time.
In strict analogy to T,, an economic space of events may be generated,
for which the following relations hold:
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RelationI: (C, Q, L, V,N)—= (tec, M1 M25 --» M)
withI: (Co, Q(],L()y v()a No)’_)(tecgvnlos 20 -0 "7:0)-

Function T ™" (fee, My, M2 s M) — (C,Q,L,V,N)

mnto

With ™Y (fec o, Migs 205 -+ Ms0) > (Co, Qg Lo, Vy, Noll

‘into

(25)

This calls fer some remarks: the economic time parameter t,. may,
but does not have to, coincide with the common linear Newton time ¢
of physics.

With respect to spatial coordinates, the more abstract definition of
the non-geometrical measure of extension mentioned above offers great
advantages for mathematical economics. Assuming that each coordinate
of the economic space of events n; (j = 1, ..., 5) has to be independent
of the other ones in reality, or per definition, and is, moreover, subject
to certain transformation rules and scaling laws, then the set of these
coordinates may be selected freely.

Remembering the direct connection between the domain of economic
activity V and the rate of interest p, and specific evaluation of economic
processes depends on the researcher’s free choice of the coordinates
7;. In other words, the construction of the space of events implies the
preference of some parameters to many others. Therefore, the alleged
property of p to be value-oriented, results in a natural way from the theory
presented here. Additionally, it is in accordance with the main results of
von Bohm-Bawerk’s famous fundamental analysis of phenomena concern-
ing the rate of interest [1, p. 444f].

Adopting the notion of ‘‘volume’’ in physics, there are the following
connections between the volume element and the spatial coordinates:

dv:=[]dn,. (26)
j=1

In addition to (26) the coordinates x; will form the set of components for
the position vector:

Tee = FM 12 M5 oens My wees M) 27

Now, this introduction of r. allows to realize the kinematic idea of motion
in economics; the velocity may then be defined as variation of position
along with that of time, taking place in the space of events:

o dr
kin + dt.’
lec

(28)
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Despite this, the reader may remember a crucial argument voiced by
Reichenbach in 1960, “‘It was not inherent in the nature of reality that
space should be described by coordinates; it was a subjective assignment
whose empirical implications had to be examined.”’ [20, p. 5]

Consequently, motion had immediately to be introduced into the originai
phase space representation; it is included, however, without using space
and time coordinates. For this reason, Falk suggested substituting the
kinematic concept by a dynamic one, realized for physical items by Gibbs-
Falkian thermodynamics.

Assigning a vector-valued velocity v, to the dynamical processes in
economics, the conjugate extensive standard variable P, is generated by
a Legendre transformation. Thus, the equation of capital forms (13) is
extended by the additional term v, - dP,., expressed as a scalar product.
Consequently, the velocity v, resuits from the Gibbs fundamental equa-
tion as

_ac
oP.,

(29)

VCC
Q.L.V.N

Remarkably, the partial derivative in (29) considers the influence of all
the variables involved in the respective process within the phase space.
In analogy to T, the variable P, is denoted as economic momentum.

If the two ideas of velocity in the economic phase space and in the
economic space of events are to be compatible, one has to postulate the
identity of v,. and v,,,. This leads to the condition

¢ d’ec oC
Ve =V D =" ,
kin = Tec 7t 0P, OLVN

(30)

a form in which it will not be necessary to regard the vector r.. as a
geometrical measure of distance.

2.4. On Traditional Approaches to Dynamics

Things have reached a point, where the question of dynamics in eco-
nomics arises to be discussed in principle. Despite the great effort to
develop a genuine mathematical theory of such dynamics, the dogmatic
education as well as daily practice are dominated by an understanding of
this notion, founded on the concept of equilibrium states and joined by
non-equilibrium processes. It is noteworthy that such an idea is obviously
motivated by the paradigmata of classical physics. Therefore, the so-called
comparative statics [19, p. 58f], characterized by appropriate variation
methods [19], is much appreciated by mathematical economists. For this
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reason A. Marshall’s popular time concept mentioned above is confusing,
rather than offering a way to explain different adjustments to the equilib-
rium states. But also theories, sometimes denoted as guantitative Ver-
laufsanalyse, whose early precursor is von Thiinen, miss the core of
the question ‘“How then can dynamics be quantitatively described in
mathematical economics, provided that it can be mapped at all by non-
equilibrium prccesses?”’

This point demonstrates the whole problematic nature of any purely
mathematical approach to dynamics. Even in modern thermodynamics
there is no general agreement on the connotation of the term non-equilib-
rium. As a rule, moving systems are described by separating artificially
the mode of motion from the pertaining fluid element, whose physical
properties are cdetermined with reference to Gibbs’ thermostatics and its
special equilibrium concept, denoted as the principle of local thermo-
dynamic equilibrium [24, pp. 68, 145]. In other words: By this *‘principle”
any serious discussion about the crucial meaning of motion related to non-
equilibrium flows in space and time is prevented from the very beginning.

This argument may be amplified by resorting to the equilibrium problem
presented above for the case of economics. It is ill-posed, as the reader
will not find any indication of a way by which the dominating trend towards
equilibrium states might be realized. ‘*While this problem is unsolved
today, some steps have been made towards solving it [23, p. 452]. Max-
well suggested that with increasing time the internal distribution function
of the local gas properties should approach a corresponding one which is
appropriate to kinetic equilibrium, characterized by the celebrated Max-
well-Boltzmann velocity distribution function. For highly sophisticated
molecular models he proved that kinetic equilibrium in a gas with a spa-
tially homogeneous initial distribution function is coupled with the expo-
nential disappearance of the dissipative influences due to friction and
diffusion. The rste, however, whereby the equilibrium state approaches
its limit, remains theoretically unknown [23, p. 459]. For practical applica-
tions the theory of relaxation processes is extremely complicated [24, p.
262f]; therefore the corresponding relaxation times will have to be found
experimentally.

There is only one important exception: Near any equilibrium state the
assumption of definite variations around this state is allowed without
prescribing such space- and time-dependent constraints as mentioned.

This special case demonstrates that the results of appropriate variation
methods are independent of any chosen process realization. Furthermore,
they can be labeled by eventually very different relaxation times classify-
ing any transition behavior near equilibrium. At present many applications
in economics are investigated by means of such variation methods using
the Lagrangian as the basic information; see, e.g., [19].
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In pure mathematical economics these methods are combined with con-
cepts concerning some dynamical models and their modifications. The
study of approaches to this subject has experienced a period of rapid
growth in recent years. This has resulted in the publication of numerous
books and papers.

The basic model of conventional economic dynamics deals with the
trajectories of motion of an economy in the phase space, sometimes also
called the product space. 1t is clear that, generally, there are many techno-
logically feasible paths of motion starting from a given state of the econ-
omy, propelled by certain forces. Therefore, the preceding states do not
uniquely determine the possible future states. For this reason, the transi-
tion from one state x, to the next state x,., is given by a point-set mapping,
being subject to some mathematically and economically specified require-
ments. For instance, the substantial convexity requirement follows from
the well-known ‘‘law of diminishing returns’’ which has been analyzed
by Samuelson [14] and a legion of others. In order to determine a unique
set of admissible trajectories starting from a given point, the theory needs
appropriate optimality criteria.

The solutions of the respective problems constitute an optimal state,
or, in the dynamic case, an optimal trajectory. Characterization theorems
set up the necessary conditions, or even the necessary and sufficient
conditions, for extrema.

The stationarity of a trajectory is defined by the relation x,,, = ax,,
where a depends on some positive functional for all time parameters (.
Clearly, this convention, as a purely mathematical formalism, has nothing
to do with the thermodynamical notion of a steady state, which is the
most relevant item of non-equilibrium states in physics.

One realizes that the mathematical models of economic equilibrium are
less known than those of economic dynamics. Predominantly, the analysis
is specialized for equilibrium states and equilibrium trajectories that are
associated with an economy consisting of different sectors and the interac-
tions between them. In this context a special economic situation deserves
to attract attention: consider two subsystems playing the double roles of
consumers and producers; the former strive to maximize their ‘‘profits”’
or ‘‘incomes’’ and the latter intend to maximize their utility function.

The concept of optimal trajectories evolved gradually. However, most
of all this theoretical work on economic dynamics is mainly effected by
means of two different methodological tools:

(1) The mathematical apparatus of superlinear and sublinear func-
tionals, used by Makarov, for instance [11].

{2) The mathematical apparatus of convex—concave positive homo-
geneous functions developed by Rockafellar [13].
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Concrete applications of the theory of economic dynamics sketched here
are practically never available. The reader will find many proved theorems
and lemmata, mainly on extremal trajectories, almost exclusively designed
by use of von Neumann’'s well-known economic model, introduced in
1937, and imprcved substantially by GALE in 1956 [7]. This model is
chiefly constructed with regard to the mapping rule requested and men-
tioned above. Bv the way, the renowned Leontief model is a special case
of the von Neumann version.

2.5. On an Alternative Way to Dynamics in Economics

No doubt, there is a striking difference between the actual mathematical
theories of economic dynamics and the new approach presented here.
It manifests the dogmatic embodiment of traditional economic views in
classical mechanics. This means that kinematic considerations and strate-
gies of optimization are dominant, compared with concepts, for which
motion and structural elements of the economic system regarded are the
original propertizs.

There is still another point to be mentioned: The traditional mathemati-
cal theories of economic dynamics hold in principle for the case where
the ‘‘time parameters’’ { takes on values in an arbitrarily ordered set.
The use of { arises from the fact that the phase space has to be normally
submitted to parametrization in order to control the sequence of economic
states by facilities needed for data acquisition and storage in national
accounting.

Such a property of { coincides only by accident with the notion of time
used commonly in science and technology. The differences are significant:
Usually, the physical time coordinate t relates to its values in a continu-
ously ordered se-; t unambiguously differs from the notion of space coordi-
nates, and, especially, it is intimately attached to some physical properties
in a definite manner. It is assumed that these three items are also true in
economics. Consequently, the space of events is spanned by the coordi-
nates t.. and r,. corresponding to (25) and (27).

Clearly, any non-equilibrium process, as the common manifestation of
dynamics, presupposes the comprehension of motion. In view of a phase
space representation, the capital form of motion v, - dP,. is defined to be
the relevant term in the respective Gibbs fundamental equation, by which
motion is immediately expressed. According to Eq. (29) the velocity of
the non-equilibrium process is, above all, dependent on all the relevant
variables of the economic phase space. As opposed to this, rmotion as a
kinematic phenomenon in the space of events needs appropriate time and
space coordinates as process parameters.

The study of ecc nomic conservation laws is still in its infancy relative to its counter-
parts in physics and engineering. Yet this is an area where there is great interest,
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and rapid progress is being made. In economics, the conservative law has its roots
in the most celebrated article of Frank Ramsey (1928). But it was Paul A. Samuelson
(1970) who first explicitly introduced the concept of conservation law to theoretical
economics. [20, p. 135]

In the last two decades the application of the Noether theorem has been
instrumental for the discovery of some ‘‘hidden’’ invariances in economic
quantities. An excellent review of the Noether theorem for continuous
and discrete models is presented by Sato [20, pp. 33f, 76f, 136f]. He and
other authors also offer some informative applications regarding funda-
mental scientific problems in economics {20, pp. 41f, 86f].

By way of Noether’s theorem one is able to establish direct connections
between the parameters !, (resp. the “‘position’’ vector r..) and some
possible properties of conservation for the corresponding extensive stan-
dard variables, if certain conditions prevail. One might think of the rela-
tions between capital C and economic time ¢, as well as of the new
quantity P,. and the ‘‘position’’ vector r...

Now, according to Eq. (30), both modes of description can be combined
by extending the Pfaffian (13) to a complete partial differential equation
in space—time coordinates, such that the capital rate equation

DC = (o,DQ — {; DL — pDV + uDN + v, - DP,, (€1))
results, which requires the convention DN = 0 for the labor force N
according to Eq. (5).

For simplicity the abbreviation D is introduced for the substantial or
material derivative, as defined in continuum mechanics; the convention

D:= + Vo (32)

combines in one operator both the infinitesimal time variations and the
local displacements caused by motion.

Equation (31) forms the starting point of a set of differential equations
for the description of an economic continuum in the coordinates r.. and
t.. , along with the equations of state pertaining to the problem in question.

This set contains balance equations of the general local form

pDx; + je=b., i=12,..,n, (33)

9
or,, "F

where p denotes a *‘density” and j, and b, are the flux tensor and the
source property, respectively. Both quantmes refer to the related vari-
able x;, according to (6), and including the additional related variables
xp:=P./Nand p:= (VIN)' .
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It should be noted that the tensorial flux Jx, 1s only vanishing for closed
systems. The same is true for the source term b, in the special case that
X, := N - x;is conserved. One might think of quantmes like capital C or
economic momentum P and their relation to the economic time ¢ . or
the position vector r,., if certain conditions prevail.

Assuming complete knowledge of the pertaining constitutive equations
for the fluxes and source terms, the set of balance equations can be
solved for the given initial and boundary conditions. There are additional
constraints for j, and b, resu]tmg from the balance equations substituted
in (31) and subpect to certain *‘zero sum’ > principles.

By this tool a possibility will be opened to describe, e.g., connections
between the rate of interest p and the ‘‘nature’’ of productive capital or
other variables, not to forget the dynamical behavior of economic systems,
which are open towards their environment.

Finally, it should be emphasized that some economists consider discrete
models to be more realistic and more suitable for empirical applications
than continuous ones. In this case, the latter serve as instructive approxi-
mations, allowing rational discussion on non-stationary and stationary
economic processes and interactions with their environments. Depending
on the given boundary conditions, future scenarios as to real and virtual
potentialities of many economic systems may be systematically investi-
gated in view of their behavior in space and time.

CONCLUSION

Some theory of rational economics is constituted by key terms that can
be mathematically represented by extensive variables according to the
Euler theorem for homogeneous functions. Then a linear-homogeneous
Gibbs-Euler function will emerge after all the non-extensive variables
have been transformed into extensive ones by Legendre transformations.
From the GEF characterizing an economic system, the existence of func-
tional relationships between the marginal intensive variables—so-called
equations of state—follows automatically. To the authors’ knowledge,
there is no precedent within the realm of traditional theory.

Taking, e.g., the CES production function that is well known to econo-
mists, it is easy to derive the related algebraic expression for the marginal
quantities. For such results an extension of this type of production function
is theoretically inevitable. The so-called ECES function additionally con-
tains two new extensive variables: the labor force N and the domain of
economic activity V, both taking into account that any economic theory
should deal with ‘‘people’” in an ‘‘economic society’’ with open bound-
aries. All the conjugate marginal quantities, chiefly resulting from a mere
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mathematical formalism, are exemplified by the equilibrium conditions
for the interaction between producers’ and consumers’ subsystems.

Finally, the results of the homomorphic mapping 7., are extended
towards economic processes being run dynamically. Such a way can be
opened by transitions from the phase space to the economic space of
events. Its coordinates define the domain V, according to the researcher’s
requirements. Incorporating the idea of **'motion’’ in economics, the coor-
dinates allow us to substantiate quantitatively the non-equilibrium behav-
ior in space and time.

Concluding, a capital rate equation for the description of economic
dynamics is proposed as a starting point for further research.

ACKNOWLEDGMENTS

We are indebted to Mrs. Gisela Rast for her indispensable assistance and to Dipl-Ing.
oec.Ute Hanisch for her advice and help. We acknowledge the generous cooperation and
support we received from Professor Bill Ames, School of Mathematics, Georgia Insitute of
Technology, Atlanta, GA. Klaus Gross, Huntsville, AL, deserves our thanks and recognition
for his friendly encouragement.

REFERENCES

1. E. voN BoHM-BAWERK, ‘‘Geschichte und Kritik der Kapitalzins-Theorien,’” vierte,
unveranderte Auflage: Geleitwort von F. Wieser, unverdnderter Nachdruck, Hain,
Meisenheim/Glan, 1961.

2. H. CALLEN, ‘“‘Thermodynamics * An Introduction,”” Wiley, New York, 1960.

3. H. T. Davis, “‘The Theory of Econometrics,”” pp. 171/176, Principia, Bloomington,
IL, 1941.

4. R. DORFMAN, A. P. SAMUELSON, AND R. SoLow, *‘Linear Programming and Economic
Analysis,”” McGraw-Hill, New York, 1958.

5. G. FaLk, ‘‘Theoretische Physik II * Allgemeine Dynamik, Thermodynamik," Heidel-
berger Taschenbiicher, Band 27, pp. 46, 54f, Springer-Verlag, Berlin, 1968.

6. G. FALK, **Physik * Zahl und Realitit-Die begrifflichen und mathematischen Grundlagen
einer universellen quantitativen Naturbeschreibung: Mathematische Physik und Ther-
modynamik," pp. 197/377, Birkhiuser, Basel, 1990.

7. D. GALE, The closed linear production, in *‘Linear Inequalities and Related Systems,”’
(H. W. Kuhn and R. Tucker, Eds.), Annals of Mathematics Studies, No. 38, Princeton
Univ. Press, Princeton, New Jersey, 1959.

8. N. GEORGESCU-ROEGEN, ‘‘The Entropy Law and the Economic Process,”” Harvard
Univ. Press, Cambridge, MA, 1971.

9. J. W. GiBss, On the equilibrium of heterogeneous substances, in **The Scientific Papers.
Vol. 1. Thermodynamics,”’ Dover, New York, 1961.

10. K. HOHER, M. LAUSTER, AND D. STRAUB, ** Analytische Produktionstheorie; Mathemat-
ical Systems in Economics,”” Vol. 125 (W. Eichhorn, Ed.), Hain, Frankfurt, 1992.

It. V. L. MAKAROV AND A. M. RuBiNov, ‘‘Mathematical Theory of Economic Dynamics
and Equilibria,”” Springer-Verlag, New York, 1977. [English translation]



794
12.

13.

14.

15.

23.

24.

LAUSTER, HOHER, AND STRAUB

F. REINHARD aAND H. SOEDER, ‘‘dtv-Atlas zur Mathematik, Band I'’, dtv 3007, 2.
Auflage, dtv, Manich, 1976.

R. ROCKAFELLAR, Convex algebra and duality in dynamic models of production, in
*“Mathematical Models in Economics'’ (J. Los and M. Los, Eds.), American Elsevier,
New York, 1974,

P. A. SAMUELSON, ‘‘Foundations of Economic Analysis,” Harvard Univ. Press, Cam-
bridge, MA, 1947,

P. A. SAMUELsON, ‘‘Volkswirtschaftslehre * Eine Einfiihrung,”' Band II, pp. 188f,
dritte, neu bear>eitete Auflage, iibertragen von W. Hankel, Bund, Koln, 1964.

. P. A. SAMUELSON, Rigorous observational positivism: Klein’s envelope aggregation;

Thermodynamics and economic isomorphisms, in **The Collected Scientific Papers,””
Vol. 5, Paper 303, pp. 220/257, p. 255, Note S, MIT Press, Cambridge, MA, 1966.

. P. A. SAMUELSON, Maximum principles in analytical economics, in “‘Les Prix Nobel

en 1970, pp. 279/280, Stockholm, 1971.

. P. A. SAMUELSON, *‘Gibbs in Economics; Proceedings of the Gibbs Symposium, Yale

University, May 15-17, 1989, pp. 255/267.

. G. ScHMOLDERS, ‘‘Konjunkturen und Krisen,” rde Vol. 3 (E. Grassi, Ed.), Rowohit,

Hamburg, 1955.

. R. SaT0 AND R. V. RAMACHANDRAN (Eds.), ‘‘Conservation Laws and Symmetry:

Application to Economics and Finance,”” Kluwer Academic, Boston, 1990.

. D. STrAUB, ‘‘Thermofluiddynamics of Optimized Rocket Propulsions * Extended Lewis

Code Fundamentals,”” pp. 101/132, Birkhiuser, Boston, 1989.

. D. StrauB, On the foundation of thermofluiddynamics by Callen's symmetry principle

and realistic matter model, in “‘Turbulente Stromungen in Forschung und Praxis’’
(A. Leder, Ed.), D. Geropp zum 60. Geburtstag gewidmet, Universitat (GHS) Siegen,
Germany, 1992,

C. TruesbeLL, ‘‘Rational Thermodynamics,” 2nd ed., Springer-Verlag, New York,
1984.

L. C. Woobs, *‘The Thermodynamics of Fluid Systems,” Clarendon Press, Oxford,
1975.



