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Abstract

In Abhyankar’s Purdue Lectures of 1971, the bivariate Jacobian Conjecture was settled for the case of
two plus epsilon characteristic pairs. In the published version, the epsilon part got left out. Now we take care
of the omission by preparing for a sharper result with full proof in Part III. The Jacobian Method is applied
to giving a new simple proof of Jung’s Automorphism Theorem. A detailed description of the Degreewise
Newton Polygon is given. Some thoughts on the multivariate Jacobian Conjecture are included.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Although this is the second part of our paper [Ab5], for the convenience of the reader we shall
try to make it readable by itself. Especially in this introduction, let us provide lots of motivation.
At any rate, the introduction will be an informal discourse, followed by a formal presentation
starting in Section 2. Actually, even Sections 2 to 6 will be written in a “readable” manner, which
will continue the project of carrying out the implied request made by the referee of the first
part (which was seconded by the editor) who suggested an “explicit reference to the author’s
Engineering Book [Ab3] to soften the otherwise intimidating austere style of the first part (ne-
cessitated by the foundational requirements of precision and generality).” Many thanks to Nick
Inglis, Ben Kravitz, and Avinash Sathaye for valuable help in the composition of this second
part.
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For a summary of this second part see (1.11). Here let us point out that in Sections 7 to 9 we
give an exhaustive treatment of the Degreewise Newton Polygon or the Full Newton Polygon
which was initially introduced in our Purdue Lectures of 1971 and discussed in the notes [Ab1]
and [Ab4] of those lectures. This is the incarnation of the original Newton Polygon more appro-
priate as we descend from power series to polynomials. It could be thought of as the convex hull
of a finite set of points in the plane (see pictures in Section 9). We propose to give an algorith-
mic rendering of it in an Operations Research set-up including a complexity analysis at a later
opportunity; here “we” means a father and son collaboration.

In Section 4 we give a transparent proof of item (1.2) of the Introduction of Part I which says
that every member of a Jacobian pair has at most two points at infinity. In Section 5 we use this to
give a very short new proof of Jung’s Automorphism Theorem. In Section 6 we settle some cases
of the Jacobian Conjecture, and give a simple proof of the equivalences asserted in item (1.3) of
the Introduction of Part I. Section 8 ends with property (XII) to be used in Part III for completing
the proof of the sharper version of the two plus epsilon characteristic pairs case of the bivariate
Jacobian Problem spoken of in Part I. Section 10 has a discussion of the multivariate Jacobian
Problem; also see (1.1) and (1.5) below.

(1.1) Bivariate Jacobian Problem. Let us begin with the 2-variable Jacobian Problem. So let
f (X,Y ) and g(X,Y ) be two polynomials in two variables X and Y with coefficients in a field k.
We define the Jacobian of f and g with respect to X and Y to be

J (f,g) = J(X,Y )(f, g) = det

(
fX fY

gX gY

)
where fX is the partial derivative of f with respect to X, and so on. Let

0

denote a generic nonzero constant, i.e., an unspecified element of k× where

k× = the set of all nonzero elements of k.

If J (f,g) = 0 then we call (f, g) a Jacobian pair. Let ch(k) denote the characteristic of k.
The Jacobian Conjecture says that if ch(k) = 0 and (f, g) is a Jacobian pair then (f, g) is an
automorphic pair, i.e., X and Y are polynomials in f and g.

Let us now make some

(1.2) Geometric comments. We can try to think of some properties which all automorphic
pairs have and then prove that Jacobian pairs also have the same properties. So we come to the
natural question as to what properties automorphic pairs have. Geometrically, instead of thinking
about polynomials f and g, we can think of a pair of plane curves C and D defined by the
solutions to f (X,Y ) = 0 and g(X,Y ) = 0, respectively.

We now ask when do these curves give curvilinear coordinates. As we shall see, such coor-
dinates play an important role in various aspects of algebraic geometry such as the connection
between linear systems and rational transformations. They also play an important role in the
Lagrangian and Hamiltonian aspects of classical mechanics which are intimately related to the
multivariable Jacobian Problem. So we consider a curvilinear coordinate system which, for illus-
trative purposes, can be drawn as follows:
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C1

C0

C−1

D−1 D0 D1

We think of these coordinates as two families of curves given by Cλ : f (X,Y ) = λ and
Dμ : g(X,Y ) = μ with λ and μ varying over k. An automorphic pair gives rise to the bunch
of pairs which are parts of a curvilinear coordinate system. Simply pick one from the horizontal
system and one from the vertical system, and call these C and D as given by the polynomials f

and g, i.e., by taking C = C0 and D = D0. Thus an automorphic pair gives a map of a system of
coordinates to another system of coordinates, say a map from the curvilinear coordinate system
to the Cartesian coordinate system. In other words, via the automorphism of the polynomial ring
k[X,Y ], we send the curves C and D to the X and Y axes. We illustrate this concept in the
following diagram:

D

C

Y

X

So we conclude that an automorphism of the polynomial ring k[X,Y ] corresponds to a biregular
map of the affine plane A2 over k. Now, at finite distance, C and D meet in exactly one point
because the X and Y axes meet in one point, and intersection multiplicity is invariant under
biregular transformations.

Let N and M be the degrees of the curves C and D, i.e., of the polynomials f and g re-
spectively. Now let us make the hypothesis that M + N > 2, i.e., one of the curves is not a line.
(Otherwise we are in the uninteresting case of a linear transformation.) Then by Bézout’s theo-
rem, C and D meet in MN points. So let us discuss points at ∞, since every plane curve has
points at ∞. Since MN > 1, but the curves meet at exactly one point at finite distance, they
must meet at ∞ in at least one point. Therefore, we conclude that any automorphic pair (with
M +N > 2) must have a common point at ∞. By making a slight jump in reasoning, we conclude
that all of their points at ∞ must be the same, because they must have MN − 1 coincidences
at ∞. Moreover, C and D should have the same points at ∞ even “counting multiplicities.” Let
us now look at the degree forms of f and g, i.e., the highest degree terms in the expansions of
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f and g. Call them F and G. The factors (roots) of the degree forms give the points at infinity.
So F and G must have the same roots because f and g have the same points at ∞. Moreover,
because of the counting multiplicities, the degree forms must be powers of each other. Actually,
F and G must be the correct powers of each other, i.e., FM = 0 GN .

We note that C should be irreducible because in some coordinate system it becomes the X-
axis. Translating this from a geometric statement into an algebraic one, this means f should be
irreducible. But we can actually do better, i.e., f should have exactly one place at ∞ because
the X-axis has only one point at ∞, and it is analytically irreducible at that point (which is the
definition of having one place at ∞).

To calculate the number of points at infinity of any plane curve C : f (X,Y ) = 0, we pro-
ceed as follows. We first homogenize, transforming f (X,Y ) into the homogeneous polynomial
φ(X,Y,Z) obtained by putting φ(X,Y,Z) = ZNf (X/Z,Y/Z). Then putting Z = 0 will give us
the number of points at ∞. (Or another way to do this is simply look at the number of factors of
the degree form.) Each point at ∞ has a certain number of places. Let us look at two examples:

The alpha curve (on the left), given by Y 2 − X2 − X3 = 0, has 2 places (= 2 branches) at the
origin, i.e., it factors as a power series into two (nonunit) factors. The cusp (on the right), given
by Y 2 − X3 = 0, has 1 place (= 1 branch) at the origin, i.e., it does not factor as a power series.

We note that the number of places at ∞ is far more useful information than the number of
points at ∞. This is because the number of places at ∞ is invariant under automorphisms, but
the number of points is not. Indeed, by an automorphism, we can always transform a curve C

into a curve C which has only one point at ∞. This phenomenon is very hard to understand
geometrically but very easy algebraically. The automorphism which will do this (at least when f

does depend on Y ) is X �→ X and Y �→ Y +Xr for r � 0. By this we can convert the polynomial
f (X,Y ) into a polynomial with exactly one point at ∞.

Thus going back to our original purpose, in Section 5 we shall prove that the (Bivariate)
Jacobian Conjecture is equivalent to showing that if (f, g) is a Jacobian pair then f has only one
point at ∞, and also equivalent to showing that if (f, g) is a Jacobian pair then f has only one
place at ∞. As a first step towards this, in Section 4 we shall show that if (f, g) is a Jacobian
pair then f has at most two points at ∞; for pictures see (9.2). In Section 5 the two point method
will be applied to give a simple new proof of Jung’s Automorphism Theorem.

At any rate, since in some coordinate system C becomes the X-axis, we conclude that, assum-
ing (f, g) to be an automorphic pair, C must be an irreducible rational curve which is nonsingular
at finite distance. We have already discussed irreducibility. Rationality simply means that the
genus of the curve is 0. Consequently, to establish the (Bivariate) Jacobian Conjecture, we should
try to show that if (f, g) is a Jacobian pair then C : f (X,Y ) = 0 is an irreducible rational curve
which is nonsingular at finite distance and which meets D : g(X,Y ) = 0 exactly at one point at
finite distance, and there the two curves meet each other transversally.
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We proceed to prove that, assuming (f, g) to be a Jacobian pair with M + N > 2, we have
FM = 0 GN . First we note that, denoting determinants by | |, we have∣∣∣∣fX fY

gX gY

∣∣∣∣ =
∣∣∣∣ FX FY

GX GY

∣∣∣∣ + terms of degree < M + N − 2

and hence ∣∣∣∣ FX FY

GX GY

∣∣∣∣ = 0.

By an age-old criterion for dependence of functions, which will be discussed in (1.9) and
(1.10), the above equation implies that F and G are algebraically dependent. This criterion, in
fact, is the reason that Jacobians were first introduced. The desired relation FM = 0 GN can be
deduced from the algebraic dependence of F and G. However, we prefer to give a more direct
proof of the said relation.

Continuing with our direct proof, we take the matrix(
FX FY

GX GY

)
whose determinant is 0, and multiply the first column by X and the second column by Y . Then
adding the columns of the new matrix we get the sums XFX + YFY and XGX + YGY which,
by Euler’s theorem on homogeneous functions, are equal to NF and MG respectively. Thus we
have a new determinant ∣∣∣∣ NF FY

MG GY

∣∣∣∣
which equals zero. By dehomogenizing and equating the resulting determinant to zero we get the
one variable equation

NF GY − MGFY = 0

where F(Y ) = F(1, Y ) and G(Y) = G(1, Y ). So we have removed a variable. Multiplying the

above equation by −FM−1

GN+1 and invoking the quotient rule in the sense of ordinary calculus we get

(
FM

GN

)
Y

= 0

and hence

FM = 0 GN.

Now homogenizing, i.e., substituting Y/X for Y and then multiplying both sides by XMN , we
get the desired relation FM = 0 GN . Thus we have proved the:
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(1.3) Jacobian Lemma. If f,g is a Jacobian pair in k[X,Y ] with ch(k) = 0, and if M +N > 2
where (N,M) are the degrees of (f, g), then for the homogeneous polynomials (F,G) which are
the degree forms of (f, g) we have FM = 0 GN .

In the above proof we did not use the fact that F,G are the degree forms of the Jacobian
pair f,g, but only the facts that they are homogeneous polynomials of degrees N,M and their
Jacobian is zero. In other words, we have proved the:

(1.4) Eulerian Lemma. If F = F(X,Y ) and G = G(X,Y ) are nonzero homogeneous poly-
nomials of degrees N and M over a field k of characteristic zero such that J(X,Y )(F,G) = 0,
then FM = 0 GN .

As we shall see in Section 6, this Eulerian Method can be used to settle the Jacobian Con-
jecture when M and N are coprime, and to show that the Jacobian Conjecture is equivalent to
saying that the degree pair (N,M) of any Jacobian pair (f, g) is principal, i.e., either M divides
N , or N divides M . The proof of the coprime case will also include a proof when GCD(N,M) =
a prime number or 4.

(1.5) Trivariate Jacobian problem. Now suppose we have a Jacobian triple, i.e. polynomials,
f,g,h in X,Y,Z with coefficients in k satisfying the Jacobian Condition J(X,Y,Z)(f, g,h) = 0 .
Then, again assuming ch(k) = 0 and extending the Jacobian Problem to 3 variables, we would
like to show that (f, g,h) is an automorphic triple, i.e., k[X,Y,Z] = k[f,g,h]. In particular we
want show that the surface given by f (X,Y,Z) = 0 is irreducible, nonsingular at finite distance
and, in a generalized sense of genus, has genus 0. There is no clear method of generalizing
the genus to surfaces, but we would like the genus to be 0 in every sense that we can think of
generalizing it. In this case, we run into many problems. For example, we do not know much
about how to tell what the singularities of a surface look like, how many there are, or how to
calculate the genus in terms of these singularities. As can be imagined, there are even more
problems in higher dimensions.

(1.6) Multivariate Jacobian Problem. Generalizing to more variables, let f1(X1, . . . ,Xn),

. . . , fn(X1, . . . ,Xn) be rational functions in X1, . . . ,Xn with coefficients in a field k, where n is
any positive integer. Their Jacobian

J (f1, . . . , fn)

J (X1, . . . ,Xn)
= det

(
∂fi

∂Xj

)
is the determinant of the n × n Jacobian matrix

∂(f1, . . . , fn)

∂(X1, . . . ,Xn)
=

(
∂fi

∂Xj

)
whose (i, j)th entry is the (formal) partial derivative

(fi)Xj
= ∂fi

∂X
∈ k(X1, . . . ,Xn).
j
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As alternative notations for the Jacobian of f1, . . . , fn relative to X1, . . . ,Xn, we may write

J (f1, . . . , fn) = J(X1,...,Xn)(f1, . . . , fn) = J (f1, . . . , fn)

J (X1, . . . ,Xn)
.

By a Jacobian n-tuple (over k) we mean f1, . . . ,fn in k[X1, . . . ,Xn] such that J (f1, . . . , fn) = 0 .
By an automorphic n-tuple (over k) we mean f1, . . . , fn in k[X1, . . . ,Xn] such that k[f1, . . . ,

fn] = k[X1, . . . ,Xn].
The Jacobian Conjecture predicts that if ch(k) = 0 then every Jacobian n-tuple is an automor-

phic n-tuple; we call this JCn.

(1.7) Automorphic tuple. The converse of the Jacobian Conjecture says that every automor-
phic n-tuple is a Jacobian n-tuple, and this is what motivates the Jacobian Conjecture in the first
place. To prove the said converse, we recall the (formal) Jacobian chain rule which generalizes
the (formal) derivative chain rule and which says that given any n-variable rational functions
fi(X1, . . . ,Xn) ∈ k(X1, . . . ,Xn) and gi(Y1, . . . , Yn) ∈ k(Y1, . . . , Yn) for 1 � i � n, we have

(1) J(X1,...,Xn)(g1, . . . , gn) = J(f1,...,fn)(g1, . . . , gn)J(X1,...,Xn)(f1, . . . , fn)

where by definition we have J(X1,...,Xn)(g1, . . . , gn) = J(X1,...,Xn)(h1, . . . , hn) with hi(X1, . . . ,

Xn) = gi(f1(X1, . . . ,Xn), . . . , fn(X1, . . . ,Xn)), and where by definition J(f1,...,fn)(g1, . . . ,

gn) = j (f1(X1, . . . ,Xn), . . . , fn(X1, . . . ,Xn)) with j (Y1, . . . , Yn) = J(Y1,...,Yn)(g1, . . . , gn). The
said converse follows by noting that if f1, . . . , fn is an automorphic n-tuple, then we can find
gi(Y1, . . . , Yn) ∈ k[Y1, . . . , Yn] for 1 � i � n such that hi(X1, . . . ,Xn) = Xi for 1 � i � n, and
now the LHS of the above chain rule equals 1, and both the factors of the RHS are polynomials
in X1, . . . ,Xn with coefficients in k and therefore, by invoking the fact that the degree of the
product of any two polynomials equals the sum of their degrees, we see that each one of the said
two factors must be reduced to a nonzero element of k.

(1.8) Chain rule. To put the above converse in proper perspective, let L/k be a separably gen-
erated field extension whose transcendence degree is a positive integer n, and let X1, . . . ,Xn be
a separating transcendence basis of L/k. In other words, let us assume that L/k has a transcen-
dence basis X1, . . . ,Xn such that L/k(X1, . . . ,Xn) is separable algebraic. Now for 1 � i � n,
the derivation ∂/∂Xi of k(X1, . . . ,Xn) can be uniquely extended to a derivation of L/k, and
denoting this extension again by ∂/∂Xi , we get a basis ∂/∂X1, . . . , ∂/∂Xn of Derk(L,L) as
a vector space over L; see L1§12(N1) and L6§6(E14)–(E20) of [Ab6]. Now the definitions of
the Jacobian and Jacobian matrix given in (1.6) carries over, and (1.7)(1) is reincarnated as the
(generalized) Jacobian chain rule

(2) J(X1,...,Xn)(g1, . . . , gn) = J(f1,...,fn)(g1, . . . , gn)J(X1,...,Xn)(f1, . . . , fn)

where f1, . . . , fn is any other separating transcendence basis of L/k, and g1, . . . , gn are any
elements of L. This follows from the (generalized) derivative chain rule which says that for
1 � i � n and any z ∈ L we have

(3)
∂z

∂Xi

=
∑ ∂z

∂fj

∂fj

∂Xi

.

1�j�n
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Now (3) is obvious for z ∈ k(f1, . . . , fn) and it is true for all z ∈ L because both sides of (3) are
k-derivations of L which is separable algebraic over k(f1, . . . , fn); see L6§6(E12) of [Ab6].

(1.9) Jacobian Criterion. Having generalized the chain rules, let us put the said con-
verse in proper perspective by proving the Jacobian Criterion which says that in the situation
of (1.6), any given elements y1, . . . , yn in L form a separating transcendence basis of L/k iff
J(X1,...,Xn)(y1, . . . , yn) �= 0. Namely, if y1, . . . , yn is a separating transcendence basis of L/k

then by taking fi = yi and gi = Xi for 1 � i � n in (2) we see that the LHS of (2) equals 1
and hence both the factors of the RHS of (2) must be nonzero. Before turning to the proof of
the “reverse implication,” note that clearly there exists a nonzero irreducible (n + 1)-variable
polynomial φ(X1, . . . ,Xn,Y ) over k which is unique up to a nonzero multiplier in k and which
is such that φ(X1, . . . ,Xn, y1) = 0; also we can find 0 �= ψ(X1, . . . ,Xn) ∈ k[X1, . . . ,Xn] such
that φ(X1, . . . ,Xn,Y )/ψ(X1, . . . ,Xn) is the minimal polynomial of y1 over k(X1, . . . ,Xn); see
the proof of L5§5(Q32)(T142.2) of [Ab6]. Since y1 is separable algebraic over k(X1, . . . ,Xn),
we must have φY (X1, . . . ,Xn, y1) �= 0. The equation φ(X1, . . . ,Xn, y1) = 0 gives the equation
φX1(X1, . . . ,Xn, y1) + φY (X1, . . . ,Xn, y1)(y1)X1 = 0, and hence

(y1)X1 = −φX1(X1, . . . ,Xn, y1)/φY (X1, . . . ,Xn, y1).

Therefore ⎧⎪⎪⎨⎪⎪⎩
(y1)X1 �= 0

⇒ φX1(X1, . . . ,Xn, y1) �= 0

⇒ X1 is separable algebraic over k(y1,X2, . . . ,Xn)

⇒ y1,X2, . . . ,Xn is a separating transcendence basis of L/k.

Thus

(•)

{
(y1)X1 �= 0

⇒ y1,X2, . . . ,Xn is a separating transcendence basis of L/k.

Now by induction on n we shall prove the “reverse implication”

(••)

{
J(X1,...,Xn)(y1, . . . , yn) �= 0

⇒ y1, . . . , yn is a separating transcendence basis of L/k.

For n = 1 we are reduced to (•). So let n > 1 and assume for n − 1. We are suppos-
ing J(X1,...,Xn)(y1, . . . , yn) �= 0, and hence upon expanding the LHS by its first row we must
have (y1)Xj

�= 0 for some j ∈ {1, . . . , n}. Relabeling X1, . . . ,Xn suitably we may assume that
(y1)X1 �= 0. Now y1,X2, . . . ,Xn is a separating transcendence basis of L/k by (•), and hence
by (1.6) we get

J(y1,X2,...,Xn)(y1, . . . , yn) = J(X1,...,Xn)(y1, . . . , yn)J(y1,X2,...,Xn)(X1, . . . ,Xn).

By what we have proved above we see that the second factor of the above RHS is nonzero, and
by assumption so is the first factor. Therefore the LHS must be nonzero, i.e.,

J(y1,X2,...,Xn)(y1, . . . , yn) �= 0.
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Now X2, . . . ,Xn is a separating transcendence basis of L/k(y1), the first row of the Jacobian
matrix ∂(y1,...,yn)

∂(y1,X2,...,Xn)
is (1,0, . . . ,0) and its minor obtained by deleting the first row and the

first column coincides with the Jacobian matrix ∂(y2,...,yn)
∂(X2,...,Xn)

. Consequently the above displayed
inequality implies the inequality

J(X2,...,Xn)(y2, . . . , yn) �= 0.

Therefore the induction hypothesis tells that y2, . . . , yn is a separating transcendence basis of
L/k(y1). It follows that y1, . . . , yn is a separating transcendence basis of L/k.

(1.10) Functional dependence. Now (••) has the following simpler proof in case of
ch(k) = 0, when it suffices to show that: (•••) if the elements y1, . . . , yn are algebraically depen-
dent over k then J(X1,...,Xn)(y1, . . . , yn) = 0. Namely, let Φ(Y1, . . . , Yn) be a nonzero polynomial
over k such that Φ(y1, . . . , yn) = 0. Choose Φ to be of smallest (total) degree and let that degree
be e. Upon taking the Xj partial derivative of both sides of the equation Φ(y1, . . . , yn) = 0 we
obtain the n homogeneous linear equations

∑
1�i�n(yi)Xj

ΦYi
(y1, . . . , yn) = 0 which have the

nontrivial solution ΦY1(y1, . . . , yn), . . . ,ΦYn(y1, . . . , yn), and hence by Cramer’s Rule the Jaco-
bian J(X1,...,Xn)(y1, . . . , yn), which is clearly the determinant of their coefficients, must equal to
zero. To show that the said solution is nontrivial, pick i ∈ 1, . . . , n so that the exponent of Yi is
positive in a monomial of degree e whose coefficient in Φ is nonzero. Now ch(k) = 0 tells us
that ΦYi

is a nonzero polynomial of degree less than e and hence ΦYi
(y1, . . . , yn) �= 0.

The implication (•••) continues to be true if the assumption ch(k) = 0 is replaced by the
weaker assumption that the field k is perfect. To see this let ch(k) = p �= 0. If Φ does not be-
long to k[Yp

1 , . . . , Y
p
n ] then the above argument works. Otherwise, assuming k to be perfect, we

can write Φ = Ψ p where Ψ (Y1, . . . , Yn) is a nonzero polynomial over k of degree e/p with
Φ(y1, . . . , yn) = 0 which contradicts the minimality of e.

The above characteristic zero proof of (•••) is inspired by the standard proof of the age-old
calculus version of the Jacobian Criterion where algebraic dependence is replaced by “functional
dependence” and it is asserted that n functions y1, . . . , yn of n variables X1, . . . ,Xn are depen-
dent iff their Jacobian J(X1,...,Xn)(y1, . . . , yn) is identically zero. For instance see the books of
Edwards [Edw], Gibson [Gib], Goursat [Gou], Kaplan [Kap], or Phillips [Phi]. This indeed was
the birth certificate of Jacobians which, as discussed in these books, were immediately used,
by Stokes (1819–1903) and others, for changing variables in multiple integrals. At any rate, all
this belongs to the nineteenth century (1800–1900), which indeed was the finest century for the
development of our beloved science of mathematics.

(1.11) Notation and summary. Note that N ⊂ Z ⊂ Q ⊂ R are the sets of all nonnegative
integers, integers, rationals, and reals, respectively, whereas N+ = Z+ ⊂ Q+ ⊂ R+ are the sets
of all positive elements in them. Moreover Sn = S × · · · × S (n times) is the set of all n-tuples
with entries in a set S.

Section 2 introduces isobaric polynomials. Section 3 generalizes Eulerian Lemma (1.4) and
applies it. Sections 4 to 6 are described in (1.2) to (1.4). Section 8 proves the similarity of the
Newton Polygons of a Jacobian pair, and Section 6 shows the Jacobian Conjecture to be equiva-
lent to their being triangles.
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2. Isobaric polynomials

Let us now generalize the Jacobian Lemma (1.3) from homogeneous to weighted homoge-
neous polynomials, or as they used to be called, to isobaric polynomials. To explain what these
are, consider the polynomials

Y 5 + X2Y 3 + X4Y

and

Y 5 + XY 3 + X2Y.

The first is homogeneous because all its terms are of the same (total) degree, namely 5. The
second is not because its terms have different degrees, namely 5, 4, 3. But by regarding X to be
twice as important, or twice as heavy, as Y , the second becomes ISOBARIC of weight 5, or as
we may say, weighted homogeneous of weight 5 relative to the weight system (2,1). Clearly the
isobaricness is unchanged for proportional weight systems. For instance, the second polynomial
is isobaric of weight 15 for the weight system (6,3).

Thus, without loss of generality, we may restrict our attention to weight systems (w1,w2)

where w1 and w2 are coprime integers with w1 > 0. In this case by putting w = −w2/w1 we see
that w1 and w2 are uniquely determined as the denominator and the negative numerator of the
rational number w when it is written out as a fraction in reduced form. Now, without ambiguity,
we may speak of w-homogeneous polynomials and their w-degrees. It is convenient to define
these notions also for meromorphic polynomials, i.e., members of the ring k[X,X−1, Y,Y−1]
where X,Y are indeterminates over a field k; we may think of these as polynomials in which we
allow the exponents to be positive as well as negative integers. Namely, for any

θ = θ(X,Y ) =
∑

(i,j)∈Z2

θijX
iY i ∈ k

[
X,X−1, Y,Y−1] with θij ∈ k

we define the support of θ by putting

Supp(θ) = {
(i, j) ∈ Z2: θi,j �= 0

}
.

Noting that Supp(θ) is a finite subset of Z2 (and: Supp(θ) = ∅ ⇔ θ = 0), we define the w-degree
of θ by putting

degw θ = max
{
iw1 + jw2: (i, j) ∈ Supp(θ)

}
and we define the w-degree form of θ by putting

θ+
w = θ+

w (X,Y ) =
∑

{(i,j)∈Supp(θ): iw1+jw2=degw θ}
θijX

iY j

with the understanding that

if θ = 0 then degw θ = −∞ and θ+
w = 0.

We say that θ is w-homogeneous to mean that θ+
w = θ .
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We define the w-version of θ (i.e., the jacked up version of θ ) by putting

θ0
w = θ0

w(X,Y ) = θ
(
Xw1, Yw2

) ∈ k
[
X,X−1, Y,Y−1]

and we note that

degw θ = deg
(
θ0
w

)
and

(
θ+
w

)0
w

= degree form of θ0
w

and

θ is w-homogeneous ⇔ θ0
w is homogeneous

where the usual notions of degree, degree form, and homogeneity are extended from k[X,Y ] to
k[X,X−1, Y,Y−1] in an obvious manner. Pictures in (9.4).

By a w-automorphic pair we mean a pair of w-homogeneous elements (x, y) in k[X,Y ] such
that (x, y) is an automorphic pair, i.e., such that k[x, y] = k[X,Y ].

Given any f in k[X,Y ], we say that f has one or two points at infinity in the w-weighted
sense if there is a w-automorphic pair (x, y) such that f +

w = 0 xi or 0 xiyj with i, j in N+
respectively. If one of the above holds then we say that f has at most two points at infinity in the
w-weighted sense. Pictures in (9.2).

Given any f,g in k[X,Y ] with f �= 0, we say that f is w-similar to g to mean that g �= 0 and(
f +

w

)degw g = 0
(
g+

w

)degw f
.

Given any f,g in k[X,Y ] with f �= 0 �= g, we define the w-lag of (f, g) by putting

lagw(f,g) =
{

degw(fg) − degw(XY) − degw J (f,g) if J (f,g) �= 0,

∞ if J (f,g) = 0.

In the above definitions, the reference to w may be dropped when w = −1. For motivation of
these definitions see the various lemmas proved in Sections 3 and 4.

As an example of isobaricness for more than two variables, let us look at the Sylvester Resul-
tant of the two univariate polynomials a0Y

n +a1Y
n−1 +· · ·+an and b0Y

m +b1Y
m−1 +· · ·+bm.

Then the said resultant, as a polynomial in a0, a1, . . . , an, b0, b1, . . . , bm, by assigning weight i

to ai for 0 � i � n, and j to bj for 0 � j � m, becomes isobaric of weight mn. This indeed is the
genesis of Bézout’s theorem. Namely, in case of plane curves, we let ai and bj be polynomials
in X of degrees at most i and j respectively, and more generally, in case of hypersurfaces in the
space of dimension r , we let ai and bj be polynomials in X1, . . . ,Xr−1 of degrees at most i and
j respectively. See Observations (O3) to (O5) of Section §1 of Lecture 4 of [Ab6].

In greater detail, the hyperspatial Bézout says that, considering the PRIMALS (= hypersur-
faces) C and D given by the equations a0Y

n+a1Y
n−1 +· · ·+an = 0 and b0Y

m+b1Y
m−1 +· · ·+

bm = 0, and assuming them to be devoid of common components, i.e., assuming that the poly-
nomials do not have nonconstant common factors, the primals C and D meet in a finite number
of irreducible SECUNDUMS (= varieties of dimension r − 2) P1, . . . ,Ph of degrees d1, . . . , dh,
and letting ei be the intersection multiplicity of C and D at Pi , we have d1e1 +· · ·+ dheh = mn.
For r = 3, the space Bézout says that, assuming them to be devoid of common components,
the surfaces C and D meet in a finite number of irreducible space curves P1, . . . ,Ph of de-
grees d1, . . . , dh, and letting ei be the intersection multiplicity of C and D at Pi , we have
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d1e1 + · · · + dheh = mn. For r = 2, the plane Bézout says that, assuming them to be devoid
of common components, the curves C and D meet in a finite number of points P1, . . . ,Ph of
degrees d1, . . . , dh, and letting ei be the intersection multiplicity of C and D at Pi , we have
d1e1 + · · · + dheh = mn; note that in this case of plane curves (i.e., for r = 2) if the ground
field k is algebraically closed then d1 = · · · = dh = 1; otherwise, a point in the plane is (or cor-
responds to) a maximal ideal P in k[X,Y ] and its degree is the field degree [k[X,Y ]/P : k].
See [Ab0]. Also see Semple and Roth [SeR]; note that their primals are the same as our primals,
but their secunda are our secundums of degree one, and we may call these linear secundums. At
any rate, this charming book of Semple and Roth is highly recommended as a “readable” book
on algebraic geometry.

As an easy result about isobaricness for several variables, let us prove the

Generalized Euler Theorem (2.1). Let F be a nonzero meromorphic polynomial in a finite
number of indeterminates X1, . . . ,Xr over the field k, i.e., let F be a nonzero member of
K[X1,X

−1
1 , . . . ,Xr,X

−1
r ]. Assume that F is isobaric of weight N when we assign weight

Wi ∈ Z to Xi for 1 � i � r . In other words assume that F = ∑
(j1,...,jr )∈Ω Fj1...jr X

j1
1 . . .X

jr
r

with 0 �= Fj1...jr ∈ K where Ω is a nonempty finite subset of Zr such that for all (j1, . . . , jr ) ∈ Ω

we have j1W1 + · · · + jrWr = N . Then we have
∑

1�i�r WiXiFXi
= NF .

Proof. By linearity it suffices to prove this when F is a monomial X
j1
1 . . .X

jr
r . But then∑

1�i�r WiXiFXi
= ∑

1�i�r WijiF = NF . �
3. Isobaric Jacobians

Let

w = −w2/w1 where w1 and w2 are coprime integers with w1 > 0

[for coprime cf. Remark–Definition (4.8) of Section 4] and let

{
F,G be nonzero w-homogeneous members of k[X,X−1, Y,Y−1]

where k is a field of characteristic 0.

We shall now prove some Lemmas about J (F,G), except that Lemma (3.2) will be more
general. We start off by proving the following generalization of (1.4).

Generalized Eulerian Lemma (3.1). We have

J (F,G) = 0 ⇔ F is w-similar to G.

Proof. Consider the Jacobian matrix (
FX FY

G G

)

X Y
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and multiply the first column by w1X and the second column by w2Y . Then adding the columns
of the new matrix we get the sums w1XFX + w2YFY and w1XGX + w2YGY which, by (2.1),
are equal to NF and MG where N and M are the w-degrees of F and G respectively. This gives

w1XJ(F,G) =
∣∣∣∣ NF FY

MG GY

∣∣∣∣ = NFGY − MGFY .

Multiplying all sides by −FM−1

GN+1 , by the quotient rule for derivatives, we get

−w1XJ(F,G)

(
FM−1

GN+1

)
=

(
FM

GN

)
Y

and hence (because w1 �= 0):

J (F,G) = 0 ⇔
(

FM

GN

)
Y

= 0.

Consequently it suffices to show that

(
FM

GN

)
Y

= 0 ⇔ FM = 0 GN.

Now (
FM

GN

)
Y

= 0 ⇒ FM = C(X)GN with C(X) ∈ k(X)×.

Writing C(X) in reduced form we have C(X) = B(X)/A(X) where A(X),B(X) in k[X] are
such that either A(0) �= 0 or B(0) �= 0. Thus

(
FM

GN

)
Y

= 0 ⇒ A(X)FM = B(X)GN with either A(0) �= 0 or B(0) �= 0.

“Comparing terms” of weight MN [cf. Remark (3.6) below] we see that

(
FM

GN

)
Y

= 0 ⇒ A(0)FM = B(0)GN with either A(0) �= 0 or B(0) �= 0.

Since FM �= 0 �= GN , we must have A(0) �= 0 �= B(0) and hence, upon taking 0 = B(0)/A(0),

by the above implication we get (FM

GN )Y = 0 ⇒ FM = 0 GN . The reverse implication (FM

GN )Y =
0 ⇐ FM = 0 GN is obvious. �
Lemma (3.2). Given any A,B in k(X,Y ) we have the following.
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(3.2.1) If A = A1 . . .An and B = B1 . . .Bm where n,m are positive integers and A1, . . . ,An,

B1, . . . ,Bm elements in k(X,Y ) then

J (A,B) =
∑

1�i�n,1�j�m

(A/Ai)(B/Bj )J (Ai,Bj )

where by temporary convention

A/Ai = A1 . . .Ai−1Ai+1 . . .An and B/Bj = B1 . . .Bj−1Bj+1 . . .Bm.

(3.2.2) For any Γ = Γ (X,Y ) and Δ = Δ(X,Y ) in k[X,Y ] we have

J
(
Γ (A,B),Δ(A,B)

) = J (A,B)J(A,B)

(
Γ (A,B),Δ(A,B)

)
where the unsubscripted (= the first two) Jacobians are relative to (X,Y ) while the last Jacobian
is obtained by substituting (A,B) for (X,Y ) in J (Γ,Δ) ∈ k[X,Y ].

(3.2.3) For any Θ(X,Y ) ∈ k[X,Y ] we have J (A,Θ(A,B)) = ΘY (A,B)J (A,B) where
ΘY (A,B) is obtained by substituting (A,B) for (X,Y ) in the Y -partial of Θ(X,Y ). For
any α,β in k and p,q, r in Z we have J (A,αAr + βApBq) = qβApBq−1J (A,B) and
J (αBr + βApBq,B) = pβAp−1BqJ (A,B).

(3.2.4) For any γ (X), δ(X) in k[X] we have J (γ (A), δ(A)) = 0.

(3.2.5) Assume that A = CpÂ and B = CqB̂ where p,q in N with p + q � 2 and Â, B̂,C in
k[X,Y ]. Then J (A,B) = Cp+q−1Ĉ for some Ĉ ∈ k[X,Y ].

(3.2.6) If A and B are nonzero w-homogeneous members of k[X,X−1, Y,Y−1] with J (A,B) �=
0 then J (A,B) is a w-homogeneous member of k[X,X−1, Y,Y−1] and for it we have

degw J (A,B) = degw(AB) − degw(XY).

[Note that degw(AB) = degw(A) + degw(B)].

(3.2.7) Assume that A and B are nonzero members of k[X,Y ] such that AB is w-homogeneous.
Then A and B are w-homogeneous.

(3.2.8) Assume that A and B are nonzero w-homogeneous members of k[X,Y ] such that
degw A �= 0 and A is w-similar to B . Then we have A = 0 Cp and B = 0 Cq for some nonzero
w-homogeneous member C of k[X,Y ] and some p,q in N with p > 0.

(3.2.9) Assume that A and B are nonzero w-homogeneous members of k[X,Y ] such that
degw A �= 0 � (w1 + w2)degw A and J (A,B) = 0 Au with u ∈ N+. Then B/Au−1 ∈ k[X,Y ].

Proof of (3.2.1). Use the product rule for derivatives. �
Proof of (3.2.2) to (3.2.4). (3.2.2) is a chain rule. The first equation of (3.2.3) follows from
(3.2.2) by taking Γ (X,Y ) = X and Δ(X,Y ) = Θ(X,Y ). The second equation of (3.2.3) is a



1168 S.S. Abhyankar / Journal of Algebra 319 (2008) 1154–1248
special case of the first. The third equation of (3.2.3) follows from the second by noting that
J (B,A) = −J (A,B). (3.2.4) follows from (3.2.2) by taking Γ (X,Y ) = γ (X) and Δ(X,Y ) =
δ(X). �
Proof of (3.2.5). Taking (A1,A2) = (Cp, Â) and (B1,B2) = (Cq, B̂) with n = m = 2 in (3.2.1)
we get

J (A,B) = Cp+qJ (Â, B̂) + CpB̂J
(
Â,Cq

) + CqÂJ
(
Cp, B̂

) + ÂB̂J
(
Cp,Cq

)
.

The last term is zero by (3.2.4). For the middle two terms, by (3.2.3) we have J (Â,Cq) =
qCq−1J (Â,C) and J (Cp, B̂) = pCp−1J (C, B̂). �
Proof of (3.2.6). This is obvious. �
Proof of (3.2.7). Let N ′ = min{iw1 + jw2: (i, j) ∈ Supp(A)} and let N = degw A. Let M ′ =
min{iw1 + jw2: (i, j) ∈ Supp(B)} and let M = degw B . Let Aij ,Bij ,Cij be the coefficients of
XiY j in A,B,AB respectively. Let

A′ =
∑

(i,j)∈Supp(A): iw1+jw2=N ′
AijX

iY j

and

B ′ =
∑

(i,j)∈Supp(B): iw1+jw2=M ′
BijX

iY j .

Finally let

(AB)′ =
∑

(i,j)∈Supp(AB): iw1+jw2=N ′+M ′
CijX

iY j .

Clearly (AB)′ = A′B ′ = a nonzero w-homogeneous member of k[X,Y ] of w-degree M ′ + N ′.
Also clearly AB is a nonzero member of k[X,Y ] of w-degree M + N . Since AB is w-
homogeneous, we must have M ′ + N ′ = M + N and hence N ′ = N and M ′ = M , i.e., A and B

are w-homogeneous. �
Proof of (3.2.8). Let degw A = N and degw B = M . Since A and B are polynomials, we
must have MN � 0 and A|M| = 0 B |N |. It follows that if M = 0 then B ∈ k× and it suffices
to take C = A with (p, q) = (1,0). Now assume that M �= 0. Then by the UFD property of
k[X,Y ] we can write A = 0 C

p1
1 . . .C

pn
n and B = 0 C

q1
1 . . .C

qn
n where n,p1, . . . , pn, q1, . . . , qn

are positive integers and C1, . . . ,Cn are pairwise coprime nonzero (nonconstant) irreducible
members of k[X,Y ]. By the UFD property we must also have |M|pi = |N |qi for 1 � i � n.
Let GCD(|M|, |N |) = d and let p = |N |/d and q = |M|/d . Then for 1 � i � n, upon letting
GCD(pi, qi) = di we get pi/di = p and qi/di = q . Therefore upon letting C = C

d1
1 . . .C

dn
n

we get A = 0 Cp and B = 0 Cq with p,q in N+. By (3.2.7) we see that C1, . . . ,Cn are w-
homogeneous and hence so is C. �
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Proof of (3.2.9). If u = 1 then we have nothing to show. So assume that u > 1. Then taking
F = Au−1 and G = B , by (3.2.3) we have J (F,G) = 0 F 2 and we are reduced to showing that
G/F ∈ k[X,Y ]. Moreover, upon letting degw F = N and degw G = M , by (3.2.6) and by our
assumption we get

(1) M = N + w1 + w2 and N �= 0 � (M − N)/N.

As in the second display in the proof of (3.1) we have

w1XJ(F,G) =
∣∣∣∣ NF FY

MG GY

∣∣∣∣ = NFGY − MGFY

and hence we get

(2) NFGY − MGFY = 0 XF 2.

Given any nonconstant irreducible factor C of F in k[X,Y ] we can write

(3) F = CpF̂ and G = CqĜ with p ∈ N+ and q ∈ N

where F̂ and Ĝ are members of k[X,Y ] which are nondivisible by C. By taking partial deriva-
tives, the above equations tell us that

(4) FY = pCp−1CY F̂ + CpF̂Y and GY = qCq−1CY Ĝ + CqĜY .

If C /∈ k[X] then CY is a nonzero polynomial of Y -degree smaller than the Y -degree of the
irreducible polynomial C and hence CY is nondivisible by C. Thus

(5) if C /∈ k[X] then CY is nondivisible by C.

We shall show that q � p and this will complete the proof. �
(I) If C /∈ k[X] and qN − pM �= 0 then, comparing the highest powers of C which divide the

two sides of (2), by (3) to (5) we get p + q − 1 = 2p and hence q = p + 1 > p.
If qN − pM = 0 then by (1) we get q/p = M/N � 1 and hence q � p. Therefore by (I)
we see that:

(II) If C /∈ k[X] then q � p.
Because of symmetry in X,Y , by (II) we see that:

(III) If C /∈ k[Y ] and w2 �= 0 then q � p.
By (3.2.7) we know that C is w-homogeneous. Consequently, if C ∈ k[X] and w2 = 0 then
C = 0 X and (N,M) = (p, q) and hence by (1) we get (q − p)/p � 0 and hence q � p.
Therefore in view of (III) we conclude that:

(IV) If C ∈ k[X] then q � p.

Lemma (3.3). Assume that F and G belong to k[X,Y ] and J (F,G) = 0 F . Let N = degw F

with D = degY F and M = degw G with E = degY G. Then we have the following.
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(3.3.1) Assume that M �= 0 and G = 0 xy where (x, y) is a w-automorphic pair. Then F =
0 xiyj with i �= j in N.

(3.3.2) For any H ∈ k[X,Y ] \ k we have G/H 2 /∈ k[X,Y ].

(3.3.3) We have degX G � 1 and E � 1.

(3.3.4) We have degw(G) = degw(XY), i.e., M = w1 + w2.

(3.3.5) Assume that EN − DM �= 0. Then E = 1.

[Note (3.3.5*). Concerning the above condition we observe that EN −DM = 0 iff the highest
Y -degree term in F is w-similar to the highest Y -degree term in G. This is so because clearly
the said terms are X(N−w2D)/w1YD and X(M−w2E)/w1YE respectively].

(3.3.6) Assume that E = 1. Then G = 0 X(Y + γX−w) with γ ∈ k such that 1 − w ∈ N in case
γ �= 0 [cf. Remark (3.13) below].

(3.3.7) Assume that w < 0 and E > 2. Then G = 0 Y(X + γ YE−1) with 0 �= γ ∈ k and we have
−1
w

= E − 1.

(3.3.8) Assume that w < 0 and E = 2. Then G = 0 (αX + Y)(βX + Y) with α �= β in k and we
have w = −1.

Proof of (3.3.1). Now there is a unique

C = C(X,Y ) =
∑

CijX
iY j ∈ k[X,Y ] with Cij ∈ k

such that Supp(C) �= ∅ and C(x, y) = F . Clearly J (C,XY) = rC with r ∈ k×. Also J (C,XY) =∑
(i − j)CijX

iY j . Therefore for all (i, j) in Supp(C) we have i − j = r and hence XiY j =
Xr(XY)j . So for all (i, j) �= (i′, j ′) in Supp(C) we have j �= j ′; since degw(Cij x

iyj ) =
r degw(x) + j degw(xy) with degw(xy) = degw(G) �= 0 and similarly for (i′, j ′), we conclude
that degw(Cij x

iyj ) �= degw(Ci′j ′xi′yj ′
). Since F and Cijx

iyj are w-homogeneous, the equation

F = C(x, y) =
∑

(i,j)∈Supp(C)

Cij x
iyj

tells us that Supp(C) consists of a unique element (i, j). It follows that F = 0 xiyj with i �= j

in N. �
Proof of (3.3.2). Take an irreducible factor C of H in k[X,Y ] \ k, and let Cp and Cq be the
highest powers of C which divide F and G in k[X,Y ] respectively. If q � 2 then by (3.2.5) we
get F/Cp+1 ∈ k[X,Y ] which is a contradiction. Therefore q � 1 and hence G/H 2 /∈ k[X,Y ].

Proof of (3.3.3). If G ∈ k[Y ] then GX = 0 and hence J (F,G) = FXGY which, by compar-
ing X-degrees, contradicts the equation J (F,G) = 0 F . Therefore G /∈ k[Y ], i.e., degX G � 1.
Similarly degY G � 1, i.e., E � 1. �
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Now (3.3.4) follows from (3.2.6). In proving (3.3.5) to (3.3.8) we can use the following com-
mon

Notation. We clearly have

G =
∑

j∈S(G)

GjX
v(j)Y j with 0 �= Gj ∈ k

where

E ∈ S(G) ⊂ {0,1, . . . ,E} and v(j) ∈ N with v(j)w1 + jw2 = M.

Proof of (3.3.5). We also have

F =
∑

j∈S(F )

FjX
u(j)Y j with 0 �= Fj ∈ k

where

D ∈ S(F ) ⊂ {0,1, . . . ,D} and u(j) ∈ N with u(j)w1 + jw2 = N.

If E > 1 then equating the coefficients of Xu(D)+v(E)−1YD+E−1 on both sides of the equation
J (F,G) = 0 F we see that (u(D)E − v(E)D)FDGE = 0 and substituting u(D) = (N/w1) −
D(w2/w1) and v(E) = (M/w1)−E(w2/w1) in this and then dividing out by FDGE/w1 we get
EN − DM = 0 which is a contradiction. Therefore E = 1 by (3.3.3). �
Proof of (3.3.6) and (3.3.7). By (3.3.4) and the above Notation, we see that for some ε, δ in k

we have (i) G = εXY + δX1−w with 1−w ∈ N in case δ �= 0 or (ii) G = εXY + δYE with δ �= 0,
according as we are in (3.3.6) or (3.3.7). By (3.3.2) we get ε �= 0. The rest is clear. �
Proof of (3.3.8). By (3.3.2), (3.3.4) and the above Notation, we see that w = −1 and G =
δ(αX + Y)(βX + Y) with 0 �= δ ∈ k and α �= β in an algebraic closure k of k. By (3.3.1) we
get F = ε(αX + Y)i(βX + Y)j with 0 �= ε ∈ k and i �= j in N. It follows that [cf. Remark (3.7)
below] α and β must belong to k. �
Lemma (3.4). Assume that F and G belong to k[X,Y ] and J (F,G) = 0 F . Also assume that
we have either (i) w < 0 or (ii) w � 0 �= w1 + w2 �= 0 �= EN − DM where N = degw F with
D = degY F and M = degw G with E = degY G. Then G = 0 xy and F = 0 xiyj with i �= j in
N where (x, y) is the w-automorphic pair described below; see pictures in (9.2).

(1) If w = −1 �= −E then x = αX + Y and y = βX + Y with α �= β in k.
(2) If w = −1 = −E then x = X and y = βX + Y with β ∈ k.
(3) If w < −1 then x = X and y = γX−w + Y with γ ∈ k such that −w ∈ N+ in case γ �= 0.
(4) If 0 > w > −1 then x = Y and y = X + γ Y−1/w with γ ∈ k and −1/w ∈ N+ in case γ �= 0.
(5) If w � 0 �= w1 + w2 �= 0 �= EN − DM then x = X and y = Y + γX−w with γ ∈ k such that

w = 0 in case γ �= 0.
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Proof. Follows from (3.3). �
Lemma (3.5). Assume that F and G belong to k[X,Y ] and J (F,G) = 0 . Also assume that we
have either (i) w < 0 or (ii) w � 0 �= w1 + w2 �= 0 �= EN − DM where N = degw F with D =
degY F and M = degw G with E = degY G. Then for the w-automorphic pair (x, y) described
in the following (mutually exclusive) cases (1) to (5) we have (F,G) = (0 x, 0 y) or (0 y, 0 x).

(1) If w = −1 �= −(D + E) then x = αX + Y and y = βX + Y with α �= β in k.
(2) If w = −1 = −(D + E) then x = X and y = βX + Y with β ∈ k.
(3) If w < −1 then x = X and y = γX−w + Y with γ ∈ k such that −w ∈ N+ in case γ �= 0.
(4) If 0 > w > −1 then x = Y and y = X + γ Y−1/w with γ ∈ k and −1/w ∈ N+ in case γ �= 0.
(5) If w � 0 �= w1 + w2 �= 0 �= EN − DM then x = X and y = Y + γX−w with γ ∈ k such that

w = 0 in case γ �= 0.

Proof. By (3.2.3) we have J (F,FG) = FJ(F,G) and hence J (F,FG) = 0 F . Now apply
(3.4) with G replaced by FG. �
Remark (3.6). The “Comparing terms” in the proof of (3.1) is literally correct only when M � 0
and N � 0. If M < 0 and N < 0 then compare the terms of weight −MN in A(X)G−N =
B(X)F−M to get A(0)G−N = B(0)F−M and then revert back to A(0)FM = B(0)GN . In the
remaining two cases do similar things to avoid raising F and G to negative powers because the
ring k[X,X−1, Y,Y−1] is not a field. For instance, if M � 0 and N < 0 then compare the terms
of weight zero in A(X)FMG−N = B(X) to get A(0)FMG−N = B(0) and from this deduce that
A(0)FM = B(0)GN .

Here is an alternative proof of the part of (3.1) which says that if J (F,G) = 0 then F is

w-similar to G. Assuming J (F,G) = 0, as in the present proof we see that (FM

GN ) ∈ k(X)×. If

w2 �= 0 then by symmetry in X,Y we get (FM

GN ) ∈ k(Y )× and hence (FM

GN ) ∈ k(X)× ∩ k(Y )× =
k×. If w2 = 0 then clearly F = XNF̃ and G = XMG̃ with F̃ and G̃ in k(Y )×; this gives (FM

GN ) =
( F̃M

G̃N ) with ( F̃M

G̃N )Y = 0, and hence (FM

GN ) ∈ k×.

Remark (3.7). Referring to the proof of (3.3.8), let P = P(Y ) = F(1, Y )/ε and Q = Q(Y) =
G(1, Y )/δ. Then P,Q are monic polynomials in Y with coefficients in k. Let R = P/Qi or
P/Qj according as i < j or j < i. Then R is also a monic polynomial in Y with coefficients
in k. In k[Y ] the “monic GCD” of Q and R in k[Y ] is β +Y or α+Y . But the said GCD coincides
with its version in k[Y ]. Therefore one and hence both of the elements α,β belong to k.

Remark (3.8). Some of the calculations of this Section 3 seem to say that in some sense
J (F,G) = FG

XY
.

Remark (3.9). The proof of (3.3.1) appears to say that the expansion of J (F,XY) is like a
twisted Euler Theorem.

Remark (3.10). The proofs of (3.2.7) and (3.2.8) establish the truth of the corresponding asser-
tions for any number of variables stated below. As notation for the new assertions let A and B

be nonzero members of k[X1, . . . ,Xr ], where r is any positive integer and k is any field, and let
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us give any weight Wi ∈ Z to Xi for 1 � i � r . Then in the terminology of (2.1) we have the
following.

(1) If AB is isobaric then so are A and B .
(2) If A and B are isobaric of weights N and M respectively, and if AM = 0 BN with N �= 0

then there exists a nonzero isobaric member C of k[X1, . . . ,Xr ] such that A = 0 Cp and B =
0 Cq for some p,q in N with p > 0.

Remark–Definition (3.11). The proof (3.2.8) suggests the following sharper description of
the quantities C,p,q introduced in (3.2.8) and (3.10)(2). Given any nonzero A in a Unique
Factorization Domain R, we can write A = C∗Cp1

1 . . .C
pn
n where C∗ is a unit in R, n is

a nonnegative integer, p1, . . . , pn are positive integers, and C1, . . . ,Cn are pairwise coprime
irreducible nonzero nonunits in R. Upon letting p = GCD(p1, . . . , pn) = the nonnegative gen-
erator of the ideal in Z generated by p1, . . . , pn, we define the radical-number of A by putting
radnum(A) = p, and we define the radical-set of A by putting radset(A) = the set of all members
of R of the form ĈC

p1/p

1 . . .C
pn/p
n where Ĉ varies over the set U(R) of all units in R. Clearly

(1) for every C in radset(A) we have A = C′Cp for some C′ in U(R), and
(2) we have p ∈ N with: p ∈ N+ ⇔ A /∈ U(R).

The proof of (3.2.8) yields the following result.
(3) For any nonzero A,B in a UFD R and any M,N in Z with A /∈ U(R) and N �= 0, upon

letting radnum(A) = p and radnum(B) = q , we have that:

B /∈ U(R) and AM = B ′BN for some B ′ ∈ U(R)

⇔ M �= 0 and AM = B ′BN for some B ′ ∈ U(R)

⇔ MN > 0 and A|M| = B∗B |N | for some B∗ ∈ U(R)

⇔ Mp = Nq and radset(A) = radset(B).

Finally note that U(k[X1, . . . ,Xr ]) = k×.

Remark (3.12). Here is an application of the above sharper version (3.11) of (3.2.8). Given any
A ∈ k[X,Y ]\k, take any C ∈ radset(A) and note that then A = 0 Cp with radnum(A) = p ∈ N+.
Assuming A+

w /∈ k, take any C ∈ radset(A+
w) and note that then A+

w = 0 Cp with radnum(A+
w) =

p ∈ N+. Take any C̃ ∈ radset(C+
w ) and note that then C+

w = 0 C̃e with radnum(C+
w ) = e ∈ N+.

By (3.11) we get the following.
(1) C̃ ∈ radset(A+

w) and pe = p.
(2) radnum(A) = radnum(A+

w) ⇔ e = 1 ⇔ C+
w ∈ radset(A+

w).
(3) If there exists B ∈ k[X,Y ] \ k such that AM = 0 BN for some M,N in Z with N �= 0 and

GCD(p, q) = 1 where we have put radnum(B+
w ) = q , then we have B+

w /∈ k and radnum(A) =
radnum(A+

w).

Remark (3.13). Concerning the condition on 1 − w considered in (3.3.6) we note that 1 − w =
(w1 + w2)/w1 and hence: (i) 1 − w = 0 ⇔ w = 1 ⇔ w1 + w2 = 0, (ii) 1 − w = 1 ⇔ w = 0, and
(iii) 1 − w ∈ N \ {0,1} ⇔ w < 0 with −w ∈ N+.

Remark–Problem (3.14). The following examples (1) and (2) show the necessity of conditions
(i) and (ii) of (3.4).
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(1) Take F = X2Y(Y + 1)3 and G = XY(Y + 1) with (w1,w2) = (1,0). Then J (F,G) = F

but F is not a monomial in a w-automorphic pair.
(2) Take F = X(XY 3 + 1)2 and G = XY(XY 3 + 1) with (w1,w2) = (3,−1). Then again

J (F,G) = F but F is not a monomial in a w-automorphic pair.
It would be interesting to further investigate what happens to (3.4) without conditions (i)

and (ii).

4. Two points at infinity

Let

w = −w2/w1 where w1 and w2 are coprime integers with w1 > 0

and let {
f and g be nonzero members of k[X,Y ]

where k is a field of characteristic 0.

We shall now prove a string of lemmas culminating in Main Lemma (4.7) which says that if
w < 0 (or w satisfies some other conditions) and J (f,g) = 0 then f as well as g has at most
two points at infinity in the w-weighted sense. Here is a

Brief strategy. If lagw(f,g) > 0 then by the following generalized version (4.1) of (1.3) we
know that f is w-similar to g, i.e., (

f +
w

)M = 0
(
g+

w

)N

for some positive integers M,N . Upon letting

g2 = f M − 0 gN

we get lagw(f,g1) > lagw(f,g2) with g1 = g. Iterating this procedure we find a finite sequence
g1, g2, . . . , ge in k[f,g] such that

lagw(f,g1) > lagw(f,g2) > · · · > lagw(f,ge) = 0

and such that f is w-similar to J (f,gi) for 1 � i � e. If lagw(f,g) = 0 then we take e = 1.
Later on we shall exhibit a noniterative procedure by showing that ge may be taken to be an

“approximate root” which provides a good motivation for introducing the very versatile concept
of such roots.

At any rate the w-similarity of f to J (f,ge) together with the zeroness of lagw(f,ge) leads
to certain differential equations, and by solving them we get the desired result.

In greater detail, we have replaced the unstable condition that the Jacobian of f and g is a
nonzero constant by the more stable condition that f is w-similar to the Jacobian of f and g.
Now the conditions that f is w-similar to J (f,ge) and lagw(f,ge) = 0, tell us that in some
sense J (f +

w , (ge)
+
w) = 0 (f +

w )q/p for some q ∈ N and p ∈ N+. Here the fractional power can
be straightened out by finding w-homogeneous polynomials F̃ and G̃ such that f +

w = 0 F̃ p
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and J (F̃ p, G̃) = 0 F̃ u. By subjecting the last equation to some clever manipulative trickery we
show that either the differential equation J (F̃ , G̃) = 0 F̃ is satisfied or the differential equation
J (F̃ , G̃) = 0 is satisfied. Finally by solving these differential equations we prove that F̃ , and
hence f , has at most two points at infinity in the w-weighted sense.

Let us start off by proving the said generalization of (1.3).

Generalized Jacobian Lemma (4.1).

lagw(f,g) � 0

and

J
(
f +

w ,g+
w

) =
{

J (f,g)+w �= 0 if lagw(f,g) = 0,

0 if lagw(f,g) > 0

and

lagw(f,g) > 0 ⇔ J
(
f +

w ,g+
w

) = 0 ⇔ f is w-similar to g.

Proof. Clearly

f = f +
w + terms of w-degree < degw f

and

g = g+
w + terms of w-degree < degw g

and hence

J (f,g) = J
(
f +

w ,g+
w

) + terms of w-degree < degw(fg) − degw(XY).

Consequently, by taking F = f +
w and G = g+

w , we are done by (3.1) and (3.2.6). �
Lemma (4.2). Assume that degw f �= 0 and let N = |degw f |. Also assume that lagw(f,g) > 0
and f is w-similar to J (f,g). Then there exists M ∈ N and κ ∈ k× such that upon letting
g = f M − κgN we have that 0 �= g ∈ k[X,Y ] with lagw(f,g) > lagw(f, g) and f is w-similar
to J (f, g).

Proof. By (4.1) we see that f is w-similar to g, i.e.,(
f +

w

)degw g = κ ′(g+
w

)degw f with κ ′ ∈ k×.

Let

(κ,M) = (κ ′,degw g) or (1/κ ′,−degw g)
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according as degw f � 0 or < 0. Then κ ∈ k× with M ∈ N and upon letting g = f M − κgN we
have 0 �= g ∈ k[X,Y ] with

degw(f g) < degw(fg) + degw

(
gN−1).

By (3.2.3) we see that

J (f, g) = κNgN−1J (f,g).

By the above two displays we get lagw(f,g) > lagw(f, g). Since f is w-similar to g as well as
to J (f,g), by the last display we conclude that f is w-similar to J (f, g). �
Lemma (4.3). Assume that degw f �= 0 and let N = |degw f |. Also assume that f is w-similar
to J (f,g). Then there exists a finite sequence g1, . . . , ge of nonzero elements in k[X,Y ] with
g1 = g and lagw(f,ge) = 0 such that for 2 � i � e we have lagw(f,gi) < lagw(f,gi−1) and
gi = f Mi − κig

N
i−1 for some Mi ∈ N and κi ∈ k×, and such that f is w-similar to J (f,gi) for

1 � i � e.

Proof. Since f is w-similar to J (f,g), we must have J (f,g) �= 0, and hence lagw(f,g) ∈ N.
Therefore, in view of (4.2), we are done by induction on lagw(f,g). �
Lemma (4.4). Assume that degw f �= 0. Also assume that lagw(f,g) = 0 and f is w-similar to
J (f,g). Then there exists a nonzero w-homogeneous F̃ in k[X,Y ] and p,q in N with p > 0
such that we have f +

w = 0 F̃ p with J (f,g)+w = 0 F̃ q and hence upon letting G = g+
w we have

J (F̃ p,G) = 0 F̃ q .

Proof. Upon letting F = f +
w and G = g+

w with H = J (f,g)+w , by (4.1) we see that F,G,H are
nonzero homogeneous members of k[X,Y ] such that J (F,G) = H and F is w-similar to H . By
(3.2.8) we can find a nonzero w-homogeneous F̃ in k[X,Y ] such that F = 0 F̃ p and H = 0 F̃ q

for some p,q in N with p > 0. It follows that J (F̃ p,G) = 0 F̃ q . �
Lemma (4.5). Let F̃ and G be nonzero w-homogeneous members of k[X,Y ] such that degw F̃ �=
0 � (w1 + w2)degw F̃ and J (F̃ p,G) = 0 F̃ q for some p,q in N with p > 0. Then there exists
a nonzero w-homogeneous G̃ ∈ k[X,Y ] with G = G̃F̃ v for some v ∈ N such that we have either
J (F̃ , G̃) = 0 F̃ or J (F̃ , G̃) = 0 . In greater detail:

(1) if q = p − 1 then v = 0 with J (F̃ , G̃) = 0 , whereas
(2) if q �= p − 1 then q � p and v = q − p with J (F̃ , G̃) = 0 F̃ .

Proof. Let u = q − (p−1). By (3.2.3) we have J (F̃ p,G) = pF̃p−1J (F̃ ,G) and hence we must
have

J (F̃ ,G) = 0 F̃ u with u ∈ N.

If u = 0 then we are in case (1). If u ∈ N+ then by (3.2.3) we have J (F̃ ,G) = uF̃ u−1J (F̃ ,

G/F̃ u−1) and hence by (3.2.9) we are in case (2). �
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Lemma (4.6). Assume that f is w-similar to J (f,g), and also assume that either (i) w < 0, or
(ii) w � 0 �= N with EN − DM �= 0 < (w1 + w2)N , where N = degw f with D = degY f +

w and
where M = degw g with E = degY g+

w . Then f as well as g has at most two points at infinity
in the w-weighted sense. More precisely f +

w = 0 xiyj and g+
w = 0 xi∗yj∗

where i, j, i∗, j∗ in
N with i − j �= 0 �= i + j �= 0 �= i∗ + j∗ and where (x, y) is the w-automorphic pair described
below; see pictures in (9.2).

(1) If w = −1 then x = αX + α∗Y and y = βX + β∗Y where α,α∗, β,β∗ in k are such that
αβ∗ − α∗β �= 0.

(2) If w < −1 then x = X and y = γX−w + Y with γ ∈ k such that −w ∈ N+ in case γ �= 0.
(3) If 0 > w > −1 then x = Y and y = X + γ Y−1/w with γ ∈ k and −1/w ∈ N+ in case γ �= 0.
(4) If w � 0 �= N with EN − DM �= 0 < (w1 + w2)N then x = X and y = Y + γX−w with

γ ∈ k such that w = 0 in case γ �= 0.

Moreover we have N �= 0 and we have (I) and (II) stated below.

(I) lagw(f,g) �= 0 ⇔ f is w-similar to g.
(II) lagw(f,g) = 0 ⇒ (i∗, j∗) = (1 + ci,1 + cj) for some c ∈ Q.

Proof. Since J (f,g) �= 0, in case of (i) we have N �= 0 < (w1 + w2)N , and hence we always
have N �= 0 < (w1 + w2)N . Therefore, in the situation when lagw(f,g) = 0, our assertions
follow from (3.4), (3.5), (4.4) and (4.5). Likewise, in the situation when lagw(f,g) �= 0, our
assertions follow from (3.4), (3.5), (4.1), (4.3), (4.4) and (4.5). �
Main Lemma (4.7). Let us assume that J (f,g) = 0 , and let us also assume that we have either
(i) w < 0, or (ii) w � 0 �= N with EN − DM �= 0 < (w1 + w2)N , or (iii) w � 0 �= M with
EN − DM �= 0 < (w1 + w2)M , where N = degw f with D = degY f +

w and where M = degw g

with E = degY g+
w . Then f as well as g has at most two points at infinity in the w-weighted

sense. More precisely f +
w = 0 xiyj and g+

w = 0 xi∗yj∗
where i, j, i∗, j∗ in N with i − j �= 0 �=

i + j �= 0 �= i∗ + j∗ �= 0 �= i∗ − j∗ and where (x, y) is the w-automorphic pair described below.

(1) If w = −1 then x = αX + α∗Y and y = βX + β∗Y where α,α∗, β,β∗ in k are such that
αβ∗ − α∗β �= 0.

(2) If w < −1 then x = X and y = γX−w + Y with γ ∈ k such that −w ∈ N+ in case γ �= 0.
(3) If 0 > w > −1 then x = Y and y = X + γ Y−1/w with γ ∈ k and −1/w ∈ N+ in case γ �= 0.
(4) If w � 0 �= N with EN − DM �= 0 < (w1 + w2)N then x = X and y = Y + γX−w with

γ ∈ k such that w = 0 in case γ �= 0.
(5) If w � 0 �= M with EN − DM �= 0 < (w1 + w2)M then x = X and y = Y + γX−w with

γ ∈ k such that w = 0 in case γ �= 0.

Moreover we have GCD(N,M) �= 0 and we have (I) and (II) stated below.

(I) lagw(f,g) �= 0 ⇔ f is w-similar to g.
(II) lagw(f,g) = 0 ⇒ either (i∗, j∗) = (1 + ci,1 + cj) for some c ∈ Q or (i, j) = (1 + ci∗,

1 + cj∗) for some c ∈ Q.

Proof. By symmetry in f,g, this follows from (4.6). �
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Remark–Definition (4.8). We shall now give some VARIATIONS of the above lemmas. In par-
ticular the following Lemma (4.9) is a Variation of Lemma (4.5) as well as an illustration of
Remark (3.8). Then the next Lemma (4.10) is a consequence of Lemmas (4.1), (4.3), (4.4), and
(4.9). The Proof of (4.6) can be simplified by retaining the first sentence “Since J (f,g) �= 0 . . . ”
and replacing the remaining two sentences by the sentence “So we are done by (3.4) and (4.10).”
Thus all the references to (3.5) may be dropped.

As a matter of definition we say that f is a w-monomial to mean that Supp(f +
w ) contains

exactly one member. Integers p1,p2, . . . are coprime means their GCD is 1.
Recall that for any member H of k[X,Y ] we have H+ = H+

−1 = the ordinary degree form of
H and degH = deg−1 H = the ordinary (total) degree of H .

Note that:

(1) If w � −1 then for any nonzero w-homogeneous members F and G of k[X,Y ], upon letting
N = degw F with D = degY F and M = degw G with E = degY G, we clearly have F+ =
0 X(N−w2D)/w1YD and G+ = 0 X(M−w2E)/w1YE .
In view of (1), by (3.3) and (4.1) we get the following supplement to (3.4):

(2) Assume that −1 �= w �= 1 and let F and G be any nonzero w-homogeneous members of
k[X,Y ] such that J (F,G) = 0 F and degG = 2. Assume that F is not a w-monomial.
Then w = 0 and there exists γ ∈ k× such that G = 0 X(Y + γ ) and F = 0 Xi(Y + γ )j

where i �= j in N with j �= 0.

Lemma (4.9). Let F̃ and G be nonzero w-homogeneous members of k[X,Y ] such that degw F̃ �=
0 � (w1 +w2)degw F̃ and J (F̃ p,G) = 0 F̃ q for some p,q in N with p > 0. Then q � p−1 and
there exists a nonzero w-homogeneous G̃ ∈ k[X,Y ] with G = G̃F̃ q−p such that J (F̃ , G̃) = 0 F̃ .

Proof. Let u = q − (p−1). By (3.2.3) J (F̃ p,G) = pF̃p−1J (F̃ ,G) and hence J (F̃ ,G) = 0 F̃ u

with u ∈ N. If u = 0 then clearly G̃ = GF̃ ∈ k[X,Y ] and by (3.2.3) we get J (F̃ , G̃) = 0 F̃ .
If u ∈ N+ then by (3.2.9) we have G̃ = G/F̃ u−1 ∈ k[X,Y ] and by (3.2.3) we get J (F̃ ,G) =
uF̃ u−1J (F̃ ,G/F̃ u−1) and hence J (F̃ , G̃) = 0 F̃ . �
Lemma (4.10). Assume that f is w-similar to J (f,g). Also assume that degw f �= 0 � (w1 +
w2)degw f . Then we have the following.

(1) There exist nonzero w-homogeneous members F̃ , G̃ of k[X,Y ] such that J (F̃ , G̃) = 0 F̃

with f +
w = 0 F̃ p for some p ∈ N+.

(2) If lagw(f,g) = 0 then there exist nonzero w-homogeneous members F̃ , G̃ of k[X,Y ] such
that J (F̃ , G̃) = 0 F̃ with f +

w = 0 F̃ p for some p ∈ N+ and g+
w = G̃F̃ v for some integer

v � −1.
(3) lagw(f,g) �= 0 ⇔ f is w-similar to g.

Proof. Follows from (4.1), (4.3), (4.4), and (4.9). �
Lemma (4.11). Let w = −w2/w1 where w1 and w2 are coprime integers with w1 > 0. Let F

and G be nonzero w-homogeneous members of k[X,Y ] and let degw F = N and degw G = M .
Assume that F is w-similar to G and N �= 0 with G /∈ k. Let Ĝ ∈ k[X,Y ] be w-homogeneous.
Assume that radnum(F+

w ) and radnum(G+
w) are coprime integers with degw F �= 0. Then we

have the following.
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(1) If J (F, Ĝ) �= 0 < lagw(F, Ĝ) then there exists w-homogeneous G ∈ k[X,Y ] such that
J (F,G) = J (F, Ĝ) and lagw(F,G) < lagw(F, Ĝ).

(2) If J (F, Ĝ) �= 0 then there exists w-homogeneous G ∈ k[X,Y ] such that J (F,G) = J (F, Ĝ)

and lagw(F,G) = 0.
(3) If J (F, Ĝ) = 0 F then there exists w-homogeneous G ∈ k[X,Y ] such that J (F,G) = 0 F

and degw G = w1 + w2.

Proof. To prove (1), take C ∈ radset(F ) and C ∈ radset(F+
w ). Since F is w-similar to G, we

get FM = 0 GN ; since N �= 0 and G /∈ k, by (3.11) we see that M �= 0. Now clearly (F+
w )M =

0 (G+
w)N ; since degw F �= 0 �= M , again by (3.11) we see that F+

w = 0 Cp and G+
w = 0 Cq

with radnum(F+
w ) = p ∈ N+ and radnum(G+

w) = q ∈ N+. By taking B = G in (3.12) we see
that C+

w = 0 C. Since lagw(F, Ĝ) > 0 (if Ĝ+
w ∈ k then trivially and if Ĝ+

w /∈ k then) by (4.1)
and (3.11) we get Ĝ+

w = 0 Cq with q ∈ N and hence Ĝ+
w = κ(C+

w )q with κ ∈ k×. Upon letting
G = Ĝ − κCq , by (3.2.3) we get G ∈ k[X,Y ] with J (F,G) = J (F, Ĝ). It follows that G is
w-homogeneous with degw(FG) < degw(FĜ) and hence we get lagw(F,G) < lagw(F, Ĝ).

(2) follows from (1) by induction on lagw(F, Ĝ). (3) follows from (2). �
Lemma (4.12). Let F = f +

w and G = g+
w with degw F = N and degw G = M . Assume that

N �= 0 and radnum(F ) = 1. Then we have the following.

(1) If J (f,g) �= 0 < lagw(f,g) then there exists g ∈ k[X,Y ] for which we have J (f, g) =
J (f,g) and lagw(f, g) < lagw(f,g).

(2) If J (f,g) �= 0 then there exists g ∈ k[X,Y ] such that J (f, g) = J (f,g) and lagw(f, g) = 0.
(3) If J (f,g) = 0 and w = −1 then N = 1.
(4) If J (f,g) = 0 and w < 0 then F is a nonconstant irreducible member of k[X,Y ].

Proof. To prove (1) note that, since J (f,g) �= 0 < lagw(f,g), by (4.1) we have FM = 0 GN .
Since radnum(F ) = 1, we get F ∈ radset(F ). Therefore, obviously if G ∈ k and by (3.11) if
G /∈ k, we see that G = κFq with κ ∈ k× and q ∈ N. Upon letting g = g − κf q , by (3.2.3) we
get g ∈ k[X,Y ] with J (f, g) = J (f,g). Clearly degw(f g) < degw(fg), and hence lagw(f,g) <

lagw(f,g). This proves (1). (2) follows from (1) by induction on lagw(f,g). (3) follows from (2).
(4) follows from (2) and (3.5). �
Note. By using (4.12)(2) and the full force of (3.5) we get the following sharper form (4.13)
of (4.12). Actually this is not so significant because, in (4.16)(5) and (4.16)(6) below, we shall
prove much sharper versions of (3.5).

Lemma (4.13). Assume that degw f �= 0 and J (f,g) = 0 . Let F = f +
w and assume that

radnum(F ) = 1. Then there exists g ∈ k[X,Y ] with J (f, g) = J (f,g) and lagw(f, g) = 0. More-
over, upon letting G = g+

w for any such g, and assuming (i) or (ii) of (3.5), the conclusions of
(3.5) hold.

Remark–Definition (4.14). We shall now introduce the concepts of the antecedent and the con-
sequent. As we shall later see, these correspond to the slopes of the previous newton line and the
next newton line respectively. With any w ∈ Q ∪ {±∞} we associate the unique pair (w1,w2) of
coprime integers with w1 � 0 such that: if w ∈ Q then w = −w2/w1 with w1 > 0, whereas if
w = −∞ or ∞ then (w1,w2) = (0,1) or (0,−1) respectively. For pictures see (9.4) to (9.6).
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So for a moment let j† be the largest value of j with (i, j) varying over Supp(f +
w ), let i† be

the unique value of i with (i, j†) ∈ Supp(f +
w ), and let S† be the set of all (i, j) in Supp(f ) with

j > j†. We define the degreewise antecedent w†(f ) of w relative to f by putting

w†(f ) = max
(i,j)∈S†

i† − i

j† − j

with the understanding that if S† = ∅ then w†(f ) = −∞. Note that

w†(f ) ∈ Q ∪ {−∞}.

The coprime integer pair associated with w†(f ) is denoted by (w
†
1(f ),w

†
2(f )).

Next for a moment let j‡ be the smallest value of j with (i, j) varying over Supp(f +
w ), let i‡

be the unique value of i with (i, j‡) ∈ Supp(f +
w ), and let S‡ be the set of all (i, j) in Supp(f )

with j < j‡. We define the degreewise consequent w‡(f ) of w relative to f by putting

w‡(f ) = min
(i,j)∈S‡

i‡ − i

j‡ − j

with the understanding that if S‡ = ∅ then w‡(f ) = ∞. Note that

w‡(f ) ∈ Q ∪ {∞}.

The coprime integer pair associated with w‡(f ) is denoted by (w
‡
1(f ),w

‡
2(f )).

The proofs of the following assertions (1) to (6) are straightforward; details in (7.4.14)(3).
Assertions (7) and (8) follow from the fact that if f ∈ Ydk[X,Y ] and g ∈ Y ek[X,Y ] where d, e

in N are such that d + e > 0 then J (f,g) ∈ Yd+e−1k[X,Y ]. In view of (4.12)(3), assertion (9)
follows from assertion (8). The definitions of (4.14) and assertions (1) to (6) continue to hold for
all f ∈ k[X,X−1, Y,Y−1]× with any commutative ring k. In assertions (7) to (9) and in (4.15)
to (4.20) we revert to f ∈ k[X,Y ]× with characteristic zero field k.

(1) w†(f ) ∈ Q ⇔ w†(f ) �= −∞ ⇔ there is some (i, j) ∈ Supp(f ) such that j > j∗ for every
(i∗, j∗) ∈ Supp(f +

w ) ⇒ f is not a w†(f )-monomial and upon letting w = w†(f ) we have
Supp(f +

w ) ∩ Supp(f +
w ) = {(i†, j†)} where (i†, j†) ∈ Supp(f +

w ) maximizes j† and for every

(i, j) ∈ Supp(f +
w ) \ {(i†, j†)} we have w = i†−i

j†−j
.

(2) w‡(f ) ∈ Q ⇔ w‡(f ) �= ∞ ⇔ there is some (i, j) ∈ Supp(f ) such that j < j∗ for every
(i∗, j∗) ∈ Supp(f +

w ) ⇒ f is not a w‡(f )-monomial and upon letting w = w‡(f ) we have
Supp(f +

w ) ∩ Supp(f +
w ) = {(i‡, j‡)} where (i‡, j‡) ∈ Supp(f +

w ) minimizes j‡ and for every

(i, j) ∈ Supp(f +
w ) \ {(i‡, j‡)} we have w = i‡−i

j‡−j
.

(3) w†(f ) ∈ Q ⇒ w > w†(f ) and for all ŵ ∈ Q with w > ŵ > w†(f ) we have that f is a
ŵ-monomial with Supp(f +

ŵ ) = {(i†, j†)} where (i†, j†) is as in (1).
(4) w‡(f ) ∈ Q ⇒ w < w‡(f ) and for all ŵ ∈ Q with w < ŵ < w‡(f ) we have that f is a

ŵ-monomial with Supp(f +
ŵ ) = {(i‡, j‡)} where (i‡, j‡) is as in (2).

(5) w†(f ) ∈ Q and f is not a w-monomial ⇒ w†(f )‡(f ) = w.
(6) w‡(f ) ∈ Q and f is not a w-monomial ⇒ w‡(f )†(f ) = w.
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(7) If J (f,g) /∈ Yk[X,Y ] with j‡ − i‡ � 1 � j∗‡ − i∗‡ where (i‡, j‡) ∈ Supp(f +
w ) minimizes

j‡ and (i∗‡, j∗‡) ∈ Supp(g+
w) minimizes j∗‡, then either 1 > w‡(f ) ∈ Q or 1 > w‡(g) ∈ Q.

(8) If J (f,g) /∈ Yk[X,Y ] with j‡ − i‡ � 2 where (i‡, j‡) ∈ Supp(f +
w ) minimizes j‡, then 1 >

w‡(f ) ∈ Q.
(9) If J (f,g) = 0 and w = −1 with j‡ − i‡ � 1 and i‡ + j‡ � 2 where (i‡, j‡) ∈ Supp(f +

w )

minimizes j‡, then 1 > w‡(f ) ∈ Q.

Remark–Definition (4.15). For any elements α,β, γ,α∗, β∗, γ ∗ in k with αβ∗ − α∗β �= 0, it is
clear that {

H = H(X,Y ) = ∑
Ĥij (αX + βY + γ )i(α∗X + β∗Y + γ ∗)j

�→ Ĥ = Ĥ (X,Y ) = ∑
ĤijX

iY j

(where Ĥij ∈ k and the two summations are over a finite subset of N2) gives an automorphism of
k[X,Y ]. We call it a k-linear automorphism. Moreover we call{

H = H(X,Y ) = ∑
H̃ij (αX + βY)i(α∗X + β∗Y)j

�→ H̃ = H̃ (X,Y ) = ∑
H̃ijX

iY j

a homogeneous k-linear automorphism of k[X,Y ].
Concerning the above two automorphisms we observe the following fact (1). Then we proceed

to observe some related facts (2) to (6).

(1) The set of k-linear automorphisms of k[X,Y ] is a group, and the set of all homogeneous
k-linear automorphisms of k[X,Y ] is a subgroup of this group. For all H = H(X,Y ) ∈
k[X,Y ] \ k we have H̃ (X,Y ) = Ĥ (X + γ,Y + γ ∗), and if H /∈ k then we have deg(Ĥ ) =
deg(H̃ ) = deg(H) and Ĥ+ = (Ĥ+)+ = H̃+ = H̃+.

(2) Note that the condition αβ∗ − α∗β �= 0 is equivalent to the condition saying that J (αX +
βY + γ,α∗X + β∗Y + γ ∗) = 0 .

(3) Also note that if J (f,g) �= 0 then clearly deg(f ) � 1 and deg(g) � 1.
(4) Finally note that if J (f,g) = 0 and either deg(f ) � 1 or deg(g) � 1, say if deg(f ) = 1,

then writing f = αX + βY + γ with α,β, γ in k and choosing suitable α∗, β∗γ ∗ in k with
αβ∗ − α∗β �= 0, we get f̂ = X and g = 0 Y + θ(X) with θ(X) ∈ k[X], and hence (f, g) is
an automorphic pair. Thus we have (5) and (6):

(5) If J (f,g) = 0 then deg(f ) � 1 and deg(g) � 1.
(6) If J (f,g) = 0 and either deg(f ) � 1 or deg(g) � 1 then (f, g) is an automorphic pair.

Important Remark (4.16). To sharpen the above case (6) of the Jacobian Conjecture, we now
prove important fact (1) stated below and from it deduce important facts (2) to (7) stated below;
out of this, (5) and (6) are sharpenings of (3.5) (no conditions on the weight!!), while (7) is a
sharpening of (4.14)(9).

So for a moment assume that J (f,g) = 0 and f = Yf with f ∈ k[X,Y ]×. Now g =
g(X,Y ) ∈ k[X,Y ] \ k, and subtracting g(0,0) from g(X,Y ) we may assume that g(0,0) = 0.
Then, as in the paragraph preceding (1) of (4.14), we see that f /∈ Yk[X,Y ] and g /∈
Yk[X,Y ]. Hence, taking w1 = 1 and w2 � 0, i.e., w2 to be a very negative integer, say
w2 < −max{deg(f ),deg(g)}, we get f +

w = 0 XiY and g+
w = 0 Xi∗ with i ∈ N and i∗ ∈ N+.

Now f is not w-similar to g and hence by (4.1) see that degw(fg) = degw(XY) and therefore
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we must have i∗ = 1 = i + 1, i.e., we get (i) stated below, and from it we easily deduce (ii) stated
below. Moreover, from (i) and (ii) we deduce (iii) and (iv) stated below.

(i) f +
w = 0 Y and g+

w = 0 X.

(ii) f = 0 Y + Y 2f̂ and g = 0 X + Y ĝ with f̂ and ĝ in k[X,Y ].
(iii) If w†(f ) = −∞ then f = 0 Y . If w†(f ) �= −∞ then 0 � w†(f ) ∈ Q.
(iv) If w†(g) = −∞ then g = 0 X. If w†(g) �= −∞ then −1 � w†(g) ∈ Q. If w†(g) < 0 then

g = 0 X + P(Y ) with P(Y ) ∈ k[Y ].

In the rest of the proof we shall use properties (i) to (iv) tacitly.
We shall divide the remaining argument into two cases, the FIRST case having two subcases

and the SECOND having four subcases. For the SECOND case let w′ = −1 = −w′
2/w

′
1 with

(w′
1,w

′
2) = (1,1).

Firstly suppose that either w†(f ) = −∞ = w†(g) or w†(f ) = −∞ �= w†(g) < 0. Then
clearly f = 0 Y and g = 0 X + P(Y ) with P(Y ) ∈ k[Y ].

Secondly suppose that⎧⎪⎪⎨⎪⎪⎩
either w†(f ) = −∞ �= w†(g) � 0 and let w = w†(g),

or w†(f ) �= −∞ = w†(g) and let w = w†(f ),

or w†(f ) �= −∞ �= w†(g) > w†(f ) and let w = w†(g),

or w†(f ) �= −∞ �= w†(g) � w†(f ) and let w = w†(f ).

Then in all the four subcases (0,1) ∈ Supp(f +
w ) and hence degw f < 0 with N > 0 where N =

degw′ f +
w ; likewise (1,0) ∈ Supp(g+

w) and hence degw g > 0 with M > 0 where M = degw′ g+
w .

Now degw′(f +
w g+

w) > 2 = degw′(XY) and hence by (4.1) we see that f +
w is (w′)-similar to g+

w ,
i.e., ((

f +
w

)+
w′

)M = 0
((

g+
w

)+
w′

)N

and therefore, because N and M are positive integers, we get(
degw

(
f +

w

)+
w′

)(
degw

(
g+

w

)+
w′

)
� 0.

But clearly

degw f = degw

(
f +

w

)+
w′ and degw g = degw

(
g+

w

)+
w′

and hence

(degw f )(degw g) � 0.

This is a contradiction because degw f < 0 and degw g > 0.
Thus we have proved the following fact (1) and it clearly implies the following facts (2) to (4).

Now we shall prove the following fact (5), and by symmetry it will also establish the following
fact (6). So for a moment assume that J (f,g) = 0 and f is w-homogeneous. We shall show
that then either deg(f ) = 1 or f = 0 X + P(Y ) with P(Y ) ∈ k[Y ] or f = 0 Y + Q(X) with
Q(X) ∈ k[X]; by (2) this will imply that (f, g) is an automorphic pair.
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Upon replacing f and g by f − f (0,0) and g − g(0,0) respectively, without loss of gen-
erality we may assume that f (0,0) = 0 and g(0,0) = 0. We can uniquely write g = ∑

gλ

where gλ ∈ k[X,Y ]× is w-homogeneous of w-degree λ and the summation is over a nonempty
finite set of integers λ. Clearly J (f,g) = ∑

J (f,gλ) and hence by (3.2.6) and (4.1) we get
J (f,gl) = 0 where l is the unique integer with degw(f )+ l = w1 +w2. It follows that for every
(i, j) ∈ Supp(fgl) we must have: (•) iw1 + jw2 = w1 + w2. If fgl ∈ (Xk[X,Y ]) ∪ (Yk[X,Y ])
then we are done by (2) and (3). So assume that fgl /∈ (Xk[X,Y ]) ∪ (Yk[X,Y ]). Then, since
(0,0) /∈ Supp(fgl), we can find (n,0), (0,m) in Supp(fgl) with n,m in N+. By (•) we get
(n − 1)w1 = w2 and (m − 1)w2 = w1. Consequently, since w1 �= 0, we get m − 1 �= 0 �= w2;
hence, because GCD(w1,w2) = 1, we must have w1 = w2 = 1. Therefore deg(f ) = 1 and
deg(gl) = 1.

Finally to prove the following fact (7), for a moment assume that J (f,g) = 0 with w = −1
and deg(f ) � 2 with f (0,0) = 0 and i‡ < j‡ where (i‡, j‡) ∈ Supp(f +

w ) minimizes j‡. We
want to show that for w = w‡(f ) we have degw f > 0 < w1 + w2 and −1 < w < i‡/j‡.

First note that by (4.14)(4) we get −1 < w and by (4.14)(4) and (4.14)(9) we get −1 < w < 1;
consequently by (3.13) we get 0 < w1 + w2. Next note that by (2) we have f /∈ Yk[X,Y ] and
hence, because f (0,0) = 0, we can find (n,0) ∈ Supp(f ) with n ∈ N+. Now by the definition of
w‡(f ) we get (i‡ −n)/j‡ � w ∈ Q and hence w < i‡/j‡ and therefore (i‡ − j‡w)w1 > 0. Since
(i‡, j‡) ∈ Supp(f +

w ) ⊂ Supp(f ), we get degw f � i‡w1 + j‡w2 = (i‡ − j†w)w1. Therefore
degw f > 0.

(1) If J (f,g) = 0 and f = Yf with f ∈ k[X,Y ]× then we have f = 0 Y and g = 0 X +P(Y )

with P(Y ) ∈ k[Y ], and hence in particular (f, g) is an automorphic pair. For pictures see
(9.4).

(2) If J (f,g) = 0 and for some automorphic pair (x, y) we have f = yf with f ∈ k[X,Y ]×
then f = 0 y and g = 0 x + P(y) with P(Y ) ∈ k[Y ], and hence in particular (f, g) is an
automorphic pair.

(3) If J (f,g) = 0 and for some automorphic pair (x, y) we have g = xg with g ∈ k[X,Y ]×
then g = 0 x and f = 0 y + Q(x) with Q(X) ∈ k[X], and hence in particular (f, g) is an
automorphic pair.

(4) If J (f,g) = 0 and for some automorphic pair (x, y) we have fg ∈ yk[X,Y ] then (f, g) is
an automorphic pair.

(5) If J (f,g) = 0 and f is w-homogeneous then either deg(f ) = 1 or f = 0 X + P(Y ) with
P(Y ) ∈ k[Y ] or f = 0 Y + Q(X) with Q(X) ∈ k[X], and hence in particular (f, g) is an
automorphic pair by (2).

(6) If J (f,g) = 0 and g is w-homogeneous then either deg(g) = 1 or g = 0 X + P(Y ) with
P(Y ) ∈ k[Y ] or g = 0 Y + Q(X) with Q(X) ∈ k[X], and hence in particular (f, g) is an
automorphic pair by (3).

(7) If J (f,g) = 0 with w = −1 and if we have deg(f ) � 2 with f (0,0) = 0 and i‡ < j‡ where
(i‡, j‡) ∈ Supp(f +

w ) minimizes j‡, then for w = w‡(f ) we have degw f > 0 < w1 + w2

and −1 < w < i‡/j‡.

Important Lemma (4.17). Assume that J (f,g) = 0 and deg(f ) � 2 with deg(g) � 2. Let
(i‡, j‡) ∈ Supp(f +

w ) minimize j‡. Then we have the following.
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(1) Upon letting degw f = N and degw g = M we have min(N,M) � max(w1,w2) and hence
N > 0 and M > 0. Moreover f is w-similar to g, i.e., (f +

w )M = κ(g+
w)N for some κ ∈ k×.

For pictures see (9.5) to (9.7).
(2) We have w < w‡(f ) = w‡(g) and we have: w‡(f ) ∈ Q iff j‡ �= 0. Moreover, if w ∈ Q with

w < w � w‡(f ) then f is w-similar to g and, upon letting degw f = N with degw g = M ,
we also have that: M,N are in N+ with M/N = M/N and for all M̂, N̂ in N+ with M̂/N̂ =
M/N we obtain (f +

w )M̂ = κ̂(g+
w)N̂ with (f +

w )M̂ = κ̂(g+
w)N̂ for some κ̂ ∈ k×. For pictures see

(9.5) to (9.7).
(3) If w = −1 with f (0,0) = 0 and i‡ < j‡, then −1 < w‡(f ) = w‡(g) < 1 and upon letting

w = w‡(f ) we have that f is w-similar, as well as w-similar, to g, and degw f > 0 <

w1 + w2 with w < i‡/j‡.

Proof. If w1 = w2 then w = −1 and hence degw(f ) = deg(f ) � 2 and degw(g) = deg(g) � 2
with degw(XY) = deg(XY) = 2, and therefore we get degw(fg) > degw(XY) with N > 0 and
M > 0. Since deg(f ) � 2 with deg(g) � 2, by (4.16)(1) we see that fg /∈ Yk[X,Y ] and hence if
w1 > w2 then degw(f ) � w1 with degw(g) � w1 and hence degw(fg) > degw(XY) with N > 0
and M > 0. Since deg(f ) � 2 with deg(g) � 2, by (4.16)(1) we see that fg /∈ Xk[X,Y ] and
hence if w1 < w2 then degw(f ) � w2 with degw(g) � w2 and hence degw(fg) > degw(XY)

with N > 0 and M > 0. Now (1) follows from (4.1).
In view of (3.11), (4.14)(2), (4.14)(4), and (4.16)(1), (2) follows from (1); details in (8.4.18).

For pictures see (9.5).
In view of (4.16)(7), (3) follows from (1) and (2). �

Lemma (4.18). Assume that J (f,g) = 0 with w = −1 and assume that deg(f ) � 2 with
deg(g) � 2. Then we can find a k-linear automorphism H �→ Ĥ of k[X,Y ] such that f =
f̂ − f̂ (0,0) and g = ĝ are w-monomials for which we have f (0,0) = 0 and −1 < w‡(f ) < 1
with −1 < w‡(g) < 1, and such that for w = w‡(f ) we have degw f > 0 < w1 + w2 and
(f +

w)+ = f + with (g+
w)+ = g+ and: if w = 0 then f +

w is not of the form 0 Xi(Y + γ )j for
any i ∈ N, γ ∈ k×, and j ∈ N+.

[Note that we automatically have deg(f ) = deg(f ) with deg(g) = deg(g), and radnum(f +) =
radnum(f +) with radnum(g+) = radnum(g+). Likewise we have J (f ,g) = 0 J (f,g) = 0 ,
and by (4.17)(3) we see that f is w-similar, as well as w-similar, to g].

Proof. By (4.7)(i)(1) we get a homogeneous k-linear automorphism H �→ H̃ of k[X,Y ] such
that f̃ +

w = 0 XiY j and g̃+
w = 0 Xi∗Y j∗

where i, j, i∗, j∗ in N with i − j �= 0 �= i∗ − j∗
are such that deg(f̃ ) = deg(f ) = i + j � 2 and deg(g̃) = deg(g) = i∗ + j∗ � 2. Clearly
J (f̃ , g̃) = 0 J (f,g) = 0 and hence by (4.1) we see that f̃ is w-similar to g̃. Consequently,
permuting (X,Y ) if necessary, we can arrange matters so that: (•) (i, j) = (pi′,pj ′) and
(i∗, j∗) = (qi′, qj ′) where p,q in N+ and i′ < j ′ in N are such that GCD(i′, j ′) = 1.

If there is no λ ∈ k× such that the terms of X-degree i in f̃ are of the form 0 Xi(Y +λ)j then
let the k-linear automorphism H �→ Ĥ be the same as the automorphism H �→ H̃ ; otherwise
let H �→ Ĥ be the k-linear automorphism of k[X,Y ] given by Ĥ (X,Y ) = H̃ (X,Y − λ). Then
in both the cases, upon letting f = f̂ − f̂ (0,0) and g = ĝ, we see that f +

w = 0 XiY j and
g+

w = 0 Xi∗Y j∗
with (•), but now the terms of X-degree i in f are not of the form 0 Xi(Y +γ )j

for any γ ∈ k×. Also clearly f (0,0) = 0,
Now in view of (4.8)(1) we are done by (4.17)(3). �
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Lemma (4.19). Assume that J (f,g) = 0 . Also assume that radnum(f +) and radnum(g+) are
coprime integers. Then either deg(f ) � 1 or deg(g) � 1 and hence, by (4.15)(6), (f, g) is an
automorphic pair.

Proof. Suppose if possible that deg(f ) � 2 and deg(g) � 2. Then upon taking w = −1, in view
of (4.18) (after replacing f,g by f ,g) we may assume that for w = w‡(f ) we have

−1 < w < 1 with degw f > 0 < w1 + w2

and (
f +

w

)+ = f + with
(
g+

w

)+ = g+

and {
if w = 0 then f +

w is not of the form 0 Xi(Y + γ )j

for some i ∈ N, γ ∈ k×, and j ∈ N+.

Note that still we have J (f,g) = 0 . Also the integers radnum(f +) and radnum(g+) have not
changed and hence they are still coprime. Moreover f is w-similar, as well as w-similar, to g.

Taking the above w for w in (4.10) we find nonzero w-homogeneous members F, Ĝ of
k[X,Y ] such that J (F, Ĝ) = 0 F and f +

w = 0 Fp for some p ∈ N+. Let G = g+
w . Then F,G are

nonzero w-homogeneous members of k[X,Y ] with G /∈ k and degw F �= 0 �= degw F such that
F is w-similar to G and radnum(F+) and radnum(G+) are coprime integers. Consequently by
(4.11)(3) we can find a nonzero w-homogeneous member G of k[X,Y ] such that J (F,G) = 0 F

and degw G = w1 + w2. By (4.14)(2) we know that F is not a w-monomial. Therefore by taking
(w,G) for (w,G) in (4.8)(2) we get a contradiction. �
Important Note (4.20). The three important facts (4.16)(4), (4.16)(5), and (4.17)(2) correspond
to Lemmas (3.1)(4), (3.1)(5), and (3.2)(2) of the 1971 Lecture Notes of my Purdue Lectures
which were reproduced in [Ab4] with the same numbers. Special thanks are due to Sathaye for
patiently reexplaining their mystery to me. The lesson learnt is that how things simplify by first
proving (4.16.1) and then using it as much as possible.

5. One point at infinity

Let f = f (X,Y ) ∈ k[X,Y ] with field k. Recall that f has one point at infinity means
f + = 0 (αX + βY)N with (α,β) ∈ k2 \ {(0,0)} and N ∈ N+. If moreover f is analyti-
cally irreducible at its unique point at infinity then we say that f has one place at infinity;
in case α �= 0, upon letting F(X,Y,Z) be the unique homogeneous polynomial of degree N

with F(X,Y,1) = f (X,Y ), the analytic irreducibility says that F(X,1,Z) is irreducible in
the power series ring k[[X,Z]]; similarly for β �= 0. After recording the following well-known
criterion (5.1), whose proof can be found in [Ab3,Ab6], we shall prove the following equiva-
lences (5.5). Before that we shall supplement (4.7) by (5.2) to (5.4).

To introduce some useful terminology, by a k-special X-type automorphism of k[X,Y ] we
mean a k-automorphism of the form (X,Y ) �→ (X − γ Y e,Y ) with γ ∈ k and e ∈ N; if γ �= 0
then instead of X-type we may say (X, e)-type. Similarly, by a k-special Y -type automorphism
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of k[X,Y ] we mean a k-automorphism of the form (X,Y ) �→ (X,Y − γXe) with γ ∈ k and
e ∈ N; again if γ �= 0 then instead of Y -type we may say (Y, e)-type. By a k-elementary X-type
automorphism of k[X,Y ] we mean a k-automorphism of the form (X,Y ) �→ (X − P(Y ),Y )

with P(Y ) ∈ k[Y ], and by a k-elementary Y -type automorphism of k[X,Y ] we mean a k-
automorphism of the form (X,Y ) �→ (X,Y − P(X)) with P(X) ∈ k[X]. As a combination, by
a k-special automorphism we mean a k-special X-type or Y -type automorphism, and similarly
by a k-elementary automorphism we mean a k-elementary X-type or Y -type automorphism. By
a tame automorphism of k[X,Y ] we mean a composition of k-linear and k-special Y -type auto-
morphisms; clearly in this we may replace k-special Y -type by k-special X-type or k-elementary
Y -type or k-elementary X-type.

By the k-flip automorphism of k[X,Y ] we mean the k-linear automorphism given by
(X,Y ) �→ (Y,X).

In 1942 Jung (see pp. 250, 407, 412 of [Ab2]) showed that if k is of characteristic 0 then
every k-automorphism of k[X,Y ] is tame, and in 1953 van der Kulk (Nieuw Archief, vol. (3)1,
pp. 33–41) removed the characteristic condition. In (5.6) we shall give a new simple proof of
Jung’s Theorem using (5.4) and indicate how a modification might also prove Kulk’s Theorem.
Recall that integer M divides integer N means NZ ⊂ MZ. Let us say M properly divides N to
mean that NZ ⊂ tMZ for some integer t � 2. In a similar manner let us say M very properly
divides N to mean that NZ ⊂ tMZ for some integer t � 3. As more notation, f is Y -submonic,
or submonic in Y , means f = 0 YN + ∑

j<N aijX
iY j with aij ∈ k and degY f = N ; assuming

this, if f /∈ k[Y ] then clearly there exists a unique negative rational number w̆(f ) such that
(0,N) ∈ Supp(f +

w̆
) and f is not a w̆(f )-monomial; card Supp(f +

w̆
) > 1; we call w̆(f ) the initial

degree weight of f ; if f ∈ k[Y ] then we put w̆(f ) = 0. If (f, g) is a Jacobian pair in k[X,Y ] with
ch(k) = 0, and either f or g is of the form 0 Y+ an element of k, then (f, g) is an automorphic
pair by (4.15)(6); we call such (f, g) an obvious automorphic pair.

Lemma (5.1). f ∈ A = k[X,Y ] has one place at infinity iff f is a nonzero nonunit irreducible
member of A for which there is exactly one valuation ring V of the quotient field of A = A/f A

such that V contains (the image of ) k but does not contain A, and this unique V is residually
rational over k, i.e., the residue field of V coincides with (the image of ) k.

Lemma (5.2). Let (f, g) be a Jacobian pair in k[X,Y ] where k is a field of characteristic 0.
Then we have the following.

(1) If deg(f ) � 2 with deg(g) � 2 and f has one point at infinity, then there is a homogeneous
k-linear automorphism τ : k[X,Y ] → k[X,Y ] together with a k-special automorphism
σ : k[X,Y ] → k[X,Y ] such that deg(στf ) < deg(f ) with deg(στg) < deg(g).

(2) If f is Y -submonic with w̆(f ) � −1 and f has one point at infinity in the w̆(f )-weighted
sense, then there is a k-special (Y, e)-type automorphism σ : k[X,Y ] → k[X,Y ] with e =
−w̆(f ) ∈ N+ such that σf is Y -submonic and

{
(degY (σf ),degY (σg))

= (degY (f ),degY (g))

with w̆(σf ) > w̆(f ) and degX(σf ) < degX(f ).
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(3) If f is Y -submonic with w̆(f ) � −1 and f has one point at infinity in the w̆(f )-weighted
sense, then there is a k-elementary Y -type automorphism σ : k[X,Y ] → k[X,Y ] such that
σf is Y -submonic with {

(degY (σf ),degY (σg))

= (degY (f ),degY (g))

and either (i) w̆(σf ) > −1, or (ii) w̆(σf ) � −1 but σf does not have one point at infinity
in the w̆(σf )-weighted sense.

(4) If f is Y -submonic with w̆(f ) > −1 and f has one point at infinity in the w̆(f )-weighted
sense, then either (f, g) is an obvious automorphic pair (which is certainly so when
w̆(f ) = 0), or for the k-flip automorphism σ : k[X,Y ] → k[X,Y ] we have that σf is Y -
submonic with

degY (f )

degY (σf )
= degY (g)

degY (σg)
= −1/w̆(f ) = −w̆(σf ) ∈ N+ \ {1}

where f,g,σf,σg are all Y -submonic of positive Y -degrees and hence{
GCD(degY (σf ),degY (σg))

properly divides GCD(degY (f ),degY (g)).

(5) If f is Y -submonic and f does not have one point at infinity in the w̆(f )-weighted sense,
then w̆(f ) �= 0 and{

GCD(radnum((f )+
w̆(f )

), radnum((g)+
w̆(f )

))

very properly divides GCD(degY (f ),degY (g)).

(6) If f is Y -submonic and the polynomial f does not have one point at infinity in the
w̆(f )-weighted sense, then w̆(f ) � −1 and there is a k-automorphism σ : k[X,Y ] →
k[X,Y ], which is k-linear or k-special (X, e)-type with e = −1/w̆(f ) ∈ N+ according
as w̆(f ) = −1 or w̆(f ) > −1, such that{

((σf )+
w̆(f )

, (σg)+
w̆(f )

) = (0 (Xi′Y j ′
)p, 0 (Xi′Y j ′

)q)

where i′, j ′,p, q are positive integers with i′ �= j ′ and GCD(i′, j ′) = 1

and such that either (i) σf is Y -submonic and we have pj ′ < degY (σf ) < degY (f ) and
w̆(σf ) < w̆(f ) with{

(radnum((f )+
w̆(f )

), radnum((g)+
w̆(f )

))

= (radnum((σf )+
w̆(σf )

), radnum((σg)+
w̆(σf )

))

or (ii) σf is not Y -submonic and we have pj ′ = degY (σf ) < degY (f ) with{
(radnum((f )+

w̆(f )
), radnum((g)+

w̆(f )
))

= (radnum((σf )+), radnum((σg)+))
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and {
(pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2: v � pj ′}

with (qi′, qj ′) ∈ Supp(σg) ⊂ {(u, v) ∈ N2: v � qj ′}.
(7) If f is Y -submonic and the polynomial f does not have one point at infinity in the w̆(f )-

weighted sense, then there is a k-automorphism σ : k[X,Y ] → k[X,Y ], which consists of a
k-linear automorphism followed by a k-elementary X-type automorphism, such that{

(radnum((f )+
w̆(f )

), radnum((g)+
w̆(f )

))

= (radnum((σf )+), radnum((σg)+))

and {
((σf )+

w̆(f )
, (σg)+

w̆(f )
) = (0 (Xi′Y j ′

)p, 0 (Xi′Y j ′
)q)

where i′, j ′,p, q are positive integers with i′ �= j ′ and GCD(i′, j ′) = 1

with {
(pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2: v � pj ′}

with (qi′, qj ′) ∈ Supp(σg) ⊂ {(u, v) ∈ N2: v � qj ′}.
(8) If f is Y -submonic and the polynomial f does not have one point at infinity in the w̆(f )-

weighted sense, then there is a tame automorphism σ : k[X,Y ] → k[X,Y ] such that{
(radnum((f )+

w̆(f )
), radnum((g)+

w̆(f )
))

= (radnum((σf )+), radnum((σg)+))

and {
((σf )+

w̆(f )
, (σg)+

w̆(f )
) = (0 (Xi′Y j ′

)p, 0 (Xi′Y j ′
)q)

where i′, j ′,p, q are positive integers with i′ �= j ′ and GCD(i′, j ′) = 1

with {
(pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2: u � pi′ and v � pj ′}

with (qi′, qj ′) ∈ Supp(σg) ⊂ {(u, v) ∈ N2: u � qi′ and v � qj ′}.
(9) If (f, g) is not an automorphic pair and f is Y -submonic, then there is a tame automor-

phism σ : k[X,Y ] → k[X,Y ] such that{
GCD(radnum((σf )+), radnum((σg)+))

very properly divides GCD(degY (f ),degY (g))

and ⎧⎨⎩
for some positive integers i′, j ′,p, q with i′ �= j ′ and GCD(i′, j ′) = 1

we have (pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2: u � pi′ and v � pj ′}
′ ′ 2 ′ ′
with (qi , qj ) ∈ Supp(σg) ⊂ {(u, v) ∈ N : u � qi and v � qj }.
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(10) If (f, g) is not an automorphic pair, then there is a tame automorphism σ : k[X,Y ] →
k[X,Y ] such that {

GCD(radnum((σf )+), radnum((σg)+))

very properly divides GCD(deg(f ),deg(g))

and ⎧⎨⎩
for some positive integers i′, j ′,p, q with i′ �= j ′ and GCD(i′, j ′) = 1

we have (pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2 : u � pi′ and v � pj ′}
with (qi′, qj ′) ∈ Supp(σg) ⊂ {(u, v) ∈ N2: u � qi′ and v � qj ′}.

(11) If GCD(deg(f ),deg(g)) = 1, or a prime number, or 4, then either (f, g) is an automorphic
pair, or there is a tame automorphism σ : k[X,Y ] → k[X,Y ] such that radnum((σf )+)

and radnum((σg)+) are coprime integers.

Proof. To prove (1) assume that deg(f ) � 2 with deg(g) � 2 and f has one point at infinity.
Let w̃ = −1. By (4.17)(1) fg has one point at infinity, and hence we can find a homogeneous k-
linear automorphism τ : k[X,Y ] → k[X,Y ] such that (τf )+w̃ = 0 YN and (τg)+w̃ = 0 YM where
deg(τf ) = deg(f ) = N � 2 and deg(τg) = deg(g) = M � 2. Upon letting w = w̃‡(τf ), by
(4.17)(3) we see that −1 < w = w̃‡(τg) < 0 and τf is w-similar to τg, and by (4.14)(2) we
know that τf is not a w-monomial and neither is τg; therefore by (4.7)(3) we get

(τf )+w = 0 Ypi′(X + γ Y e
)pj ′

and (τg)+w = 0 Yqi′(X + γ Y e
)qj ′

where i′ �= j ′ �= 0 �= p �= 0 �= q in N with GCD(i′, j ′) = 1 and γ ∈ k× and e = −1/w ∈
N+ \ {1}. Taking σ : k[X,Y ] → k[X,Y ] to be the k-special automorphism given by (X,Y ) �→
(X − γ Y e,Y ), we get (στf )+w = 0 Ypi′Xpj ′

and (στg)+w = 0 Yqi′Xqj ′
. Now by (5.3) below we

see that deg(στf ) < deg(f ) with deg(στg) < deg(g).
To prove (2) assume that f is Y -submonic with w̆(f ) � −1 and f has one point at infinity

in the w̆(f )-weighted sense. Then by (4.7)(i)(1) and (4.7)(i)(2) we get f +
w̆(f )

= 0 (Y + γXe)i

where γ ∈ k× and e = −w̆(f ) ∈ N+ with i = degY f ∈ N+, and it suffices to take σ : k[X,Y ] →
k[X,Y ] to be the k-special (Y, e)-type automorphism given by (X,Y ) �→ (X,Y − γXe).

(3) follows from (2) by decreasing induction on the X-degree of f .
In proving (4) to (7), the following observations (1•) to (3•) may be used tacitly.
(1•) If f is Y -submonic with w̆(f ) = 0 then by (4.16) we see that f has one point at infinity

in the w̆(f )-weighted sense, and (f, g) is an obvious automorphic pair.
(2•) If f is Y -submonic with w̆(f ) �= 0 then by parts (1) to (3) of (4.7)(i) we see that

f +
w̆(f )

= 0 xiyj and g+
w̆(f )

= 0 xi∗yj∗

where i, j, i∗, j∗ are in N with i − j �= 0 �= i + j �= 0 �= i∗ + j∗ �= 0 �= i∗ − j∗ and (x, y) is the
w̆(f )-automorphic pair described below.

(1*) If w̆(f ) = −1 then x = αX +α∗Y and y = βX +β∗Y where α,α∗, β,β∗ in k× are such
that αβ∗ − α∗β �= 0.

(2*) If w̆(f ) < −1 then x = X and y = Y + γXe with γ ∈ k× and e = −w̆(f ) ∈ N+ \ {1}.
[Since f is Y -submonic, we see that if w̆(f ) < −1 then f has one point at infinity in the w̆(f )-
weighted sense.]
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(3*) If w̆(f ) > −1 then x = Y and Y = X + γ Y e with γ ∈ k× and e = −1/w̆(f ) ∈ N+ \ {1}.
[In (2*) and (3*) we have γ �= 0 because f is not a w̆(f )-monomial.]

(3•) In (2•), clearly f is w̆(f )-similar to g iff ij∗ − ji∗ = 0, and by (4.1) we see that
f is not w̆(f )-similar to g iff J (xiyj , xi∗yj∗

) = 0 . By a straightforward calculation we get
J (xiyj , xi∗yj∗

) = 0 (ij∗ − ji∗)xi+i∗−1yj+j∗−1, where we note that (x, y) being an automor-
phic pair, Jacobians relative to (X,Y ) and (x, y) differ by a nonzero constant. Hence if f is not
w̆(f )-similar to g then (i, j, i∗, j∗) = (1,0,0,1) or (0,1,1,0).

To prove (4) assume that f is Y -submonic with w̆(f ) > −1 and f has one point at infinity
in the w̆(f )-weighted sense. If w̆(f ) = 0 then (f, g) is an obvious automorphic pair by (1•). So
now assume that w̆(f ) �= 0 and let σ : k[X,Y ] → k[X,Y ] be the k-flip automorphism. Then by
(3*) we see that i = 0 with j = (degY f )/e ∈ N+, and σf is Y -submonic with degY (σf ) = j

and −1/w̆(f ) = −w̆(σf ) = e ∈ N+ \ {1}. If i∗ = 0 then clearly g and σg are Y -submonic with
degY (g)/e = degY (σg) = j∗ ∈ N+ and −1/w̆(f ) = −w̆(σf ) = e, and so we are done. If i∗ �= 0
then f is not w̆-similar to g and hence by (3•) we get (j, i∗, j∗) = (1,1,0) showing that (f, g)

is an obvious automorphic pair, and so again we are done.
(5) follows from (1•) to (3•).
To prove (6) assume that f is Y -submonic and the polynomial f does not have one point

at infinity in the w̆(f )-weighted sense. By (2*) we must have w̆(f ) � −1. In view of (3•) we
see that i, j, i∗, j∗ are positive integers with ij∗ = ji∗. In case of (1*) let σ be the k-linear
automorphism k[X,Y ] → k[X,Y ] given by (x, y) �→ (X,Y ), and in case of (3*) let σ be the
k-special (X, e)-type automorphism k[X,Y ] → k[X,Y ] given by (X,Y ) �→ (X − γ Y e,Y ) with
e = −1/w̆(f ) ∈ N+. Then w̆(σf ) < w̆(f ) and degY (σf ) < degY (f ) with degY (σg) < degY (g)

and {
((σf )+

w̆(f )
, (σg)+

w̆(f )
) = (0 (Xi′Y j ′

)p, 0 (Xi′Y j ′
)q)

where i′, j ′,p, q are positive integers with i′ �= j ′ and GCD(i′, j ′) = 1.

Considering antecedents let w = max(w̆(f )†(σf ), w̆(f )†(σg)). If w �= −∞ then taking
(σf,σg) for (f, g) in (4.7) we see that σf and σg are Y -submonic and w̆(σf ) = w = w̆(σg)

with pj ′ < degY (σf ) < degY (f ) and{
(radnum((f )+

w̆(f )
), radnum((g)+

w̆(f )
))

= (radnum((σf )+
w̆(σf )

), radnum((σg)+
w̆(σf )

))

and hence we are done. If w = −∞ then clearly σf is not Y -submonic and we have pj ′ =
degY (σf ) < degY (f ) with{

(radnum((f )+
w̆(f )

), radnum((g)+
w̆(f )

))

= (radnum((σf )+), radnum((σg)+))

and {
(pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2: v � pj ′}

with (qi′, qj ′) ∈ Supp(σg) ⊂ {(u, v) ∈ N2: v � qj ′}
and hence again we are done.
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(7) follows from (6) by decreasing induction on the Y -degree of f .
To prove (8) assume that f is Y -submonic and the polynomial f does not have one point

at infinity in the w̆(f )-weighted sense. Then by (7) we see that there is a k-automorphism
σ ′ : k[X,Y ] → k[X,Y ], which consists of a k-linear automorphism followed by a k-elementary
X-type automorphism, and which has the properties stated in (7) with σ replaced by σ ′. Let
σ ′′ : k[X,Y ] → k[X,Y ] be the k-flip automorphism. Let f ∗ = σ ′′σ ′f and g∗ = σ ′′σ ′g. Ap-
plying (7) with (f ∗, g∗) replacing (f, g) we find a k-automorphism σ ∗ : k[X,Y ] → k[X,Y ],
which consists of a k-linear automorphism followed by a k-elementary X-type automorphism,
and which has the properties stated in (7) with (f ∗, g∗, σ ∗) replacing (f, g,σ ). Now it suffices
to take σ = σ ∗σ ′′σ ′.

To prove (9) assume that (f, g) is not an automorphic pair and f is Y -submonic. Briefly
speaking: by repeatedly applying (3) and (4) we can arrange f to have two points at infinity in a
suitable weighted sense, and then by (5) we get a very proper reduction in the GCD of radnums in
a weighted sense which, by applying (6) and (8), gets converted into the GCD of ordinary (i.e.,
weight −1) radnums. Here the application of (3) and (4) may be compared with the game of
MONOPOLY in which each time you pass GO you collect a dividend, which cannot be repeated
indefinitely lest it may break the bank. In our case (4) plays the role of GO. In greater detail we
may proceed thus.

By induction on GCD(degY f,degY g) we define a sequence (f1, g1), . . . , (fn, gn) of Jacobian
pairs in k[X,Y ] where fi is Y -submonic for 1 � i � n ∈ N+ together with a k-automorphism
σi : k[X,Y ] → k[X,Y ] for 1 � i � n − 1 such that: (f1, g1) = (f, g); for 1 � i � n − 1 we have
fi+1 = σifi and gi+1 = σigi ; for 1 � i � n−1 with i odd we have that σi is k-elementary Y -type
and GCD(degY fi+1,degY gi+1) equals GCD(degY fi,degY gi); for 1 � i � n−1 with i even we
have that σi is k-flip and GCD(degY fi+1,degY gi+1) properly divides GCD(degY fi,degY gi);
and fn does not have one point at infinity in the w̆(fn)-weighted sense. If f does not have one
point at infinity in the w̆(f )-weighted sense then we are done by taking n = 1 and (f1, g1) =
(f, g).

If f has one point at infinity in the w̆(f )-weighted sense and w̆(f ) � −1 then, taking
(f1, g1) = (f, g), by (3) we find a k-elementary Y -type automorphism σ1 : k[X,Y ] → k[X,Y ]
such that, upon letting f2 = σ1f1 and g2 = σ1g1, we have that f2 is Y -submonic with{

(degY (f2),degY (g2))

= (degY (f1),degY (g1))

and either (i) w̆(f2) > −1, or (ii) w̆(f2) � −1 but f2 does not have one point at infinity in the
w̆(f2)-weighted sense; if f2 does not have one point at infinity in the w̆(f2)-weighted sense then
we are done by taking n = 2; if f2 has one point at infinity in the w̆(f2)-weighted sense then,
taking σ2 : k[X,Y ] → k[X,Y ] to be the k-flip with f3 = σ2f2 and g3 = σ2g2, by (4) we see that
f3 is Y -submonic with w̆(f3) < −1 and{

GCD(degY (f3),degY (g3))

properly divides GCD(degY (f2),degY (g2))

and so now the induction takes over.
If f has one point at infinity in the w̆(f )-weighted sense and w̆(f ) > −1 then, taking

σ1 : k[X,Y ] → k[X,Y ] to be the identity map with (f2, g2) = (f1, g1) = (f, g), and taking
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σ2 : k[X,Y ] → k[X,Y ] to be the k-flip with f3 = σ2f2 and g3 = σ2g2, by (4) we see that f3
is Y -submonic with w̆(f3) < −1 and{

GCD(degY (f3),degY (g3))

properly divides GCD(degY (f2),degY (g2))

and so again the induction takes over.
This completes the definition of the sequence (f1, g1), . . . , (fn, gn). Since fn does not have

one point at infinity in the w̆(fn)-weighted sense, by (5) we see that w̆(fn) �= 0 and{
GCD(radnum((fn)

+
w̆(fn)

), radnum((gn)
+
w̆(fn)

))

very properly divides GCD(degY (fn),degY (gn)).

By (8) there is a tame automorphism σn : k[X,Y ] → k[X,Y ] such that upon letting fn+1 = σnfn

and gn+1 = σngn we see that{
(radnum((fn)

+
w̆(fn)

), radnum((gn)
+
w̆(fn)

))

= (radnum(f +
n+1), radnum(g+

n+1))

and ⎧⎨⎩
for some positive integers i′, j ′,p, q with i′ �= j ′ and GCD(i′, j ′) = 1

we have (pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2: u � pi′ and v � pj ′}
with (qi′, qj ′) ∈ Supp(σg) ⊂ {(u, v) ∈ N2: u � qi′ and v � qj ′}.

The proof of (9) is completed by taking σ = σnσn−1 . . . σ1.
To prove (10) assume that (f, g) is not an automorphic pair. Now the degrees as well radnums

are unchanged by a homogeneous k-linear transformation, and hence without loss of generality,
by making such a transformation we may assume that f and g are Y -regular. Then f and g

are Y -submonic and their (total) degrees coincide with their Y -degrees. Therefore (10) follows
from (9).

(11) follows from (10). �
Lemma (5.3). Given γ ∈ k× and integer e � 2, let w = −w2/w1 where (w1,w2) = (e,1) or
(1, e) and consider the k automorphism σ : k[X,Y ] → k[X,Y ] given by (X,Y ) �→ (X−γ Y e,Y )

or (X,Y − γXe) respectively. Then for every f ∈ k[X,Y ] we have deg(f ) � degw(f ) and
deg(σf ) � degw(f ). Moreover, if respectively f +

w = 0 Y i(X + γ Y e)j or 0 Xi(Y + γXe)j ,
with i ∈ N and j ∈ N+, then we have deg(σf ) < deg(f ) = degw(f ).

Proof. By symmetry it suffices to consider the case of (w1,w2) = (e,1). For (j, i) ∈ N2 we
clearly have

deg
(
XjY i

) = j + i � ej + i = degw

(
XjY i

) = ej + i = deg
(
σ
(
XjY i

))
.

Since by definition degw(f ) = max{degw(XjY i): (j, i) ∈ Supp(f )} and clearly the degree of
a sum is less equal the degree of each summand of maximal degree, we get deg(f ) � degw(f )

and deg(σf ) � degw(f ). It only remains to note that if f +
w = 0 Y i(X + γ Y e)j with i ∈ N and

j ∈ N+, then we have deg(f +
w ) = degw(f +

w ) > deg(σf +
w ) with degw(f −f +

w ) < degw(f +
w ). �
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Lemma (5.4). Let (f, g) be a Jacobian pair in k[X,Y ] where k is a field of characteristic 0.
Assume that f has one point at infinity. Then there is a homogeneous k-linear automorphism
τ : k[X,Y ] → k[X,Y ] and a k-special automorphism σ : k[X,Y ] → k[X,Y ] such that:

(1) If deg(f ) � 2 and deg(g) � 2 then we have deg(στf ) < deg(f ) as well as deg(στg) <

deg(g).
(2) If deg(f ) + deg(g) � 3 then deg(στf ) + deg(στg) < deg(f ) + deg(g).
(3) If deg(f ) + deg(g) < 3 then deg(στf ) + deg(στg) = deg(f ) + deg(g).

Proof. (1) follows by (5.2)(1), and (3) follows by taking σ = τ = identity. Thus, disregarding
the condition for f to have one point at infinity, we only have to deal with the two cases deg(f ) =
1 < deg(g) or deg(g) = 1 < deg(f ), and by symmetry we may suppose we are in the first case.
Then by a homogeneous k-linear automorphism τ we can arrange matters so that τf = Y + α

with α ∈ k. Now we must have τg = 0 (X + γ Y e) + θ(Y ) where γ ∈ k× with integer e � 2 and
θ(Y ) ∈ k[Y ] of degree smaller than e. It suffices to take σ : k[X,Y ] → k[X,Y ] to be the k-special
automorphism given by (X,Y ) �→ (X − γ Y e,Y ). �
Lemma (5.5). The following three implications on pairs (f, g) in k[X,Y ], where k is a field of
characteristic 0, are equivalent.

(i) (f, g) is a Jacobian pair ⇒ (f, g) is an automorphic pair.
(ii) (f, g) is a Jacobian pair ⇒ f has one place at infinity.

(iii) (f, g) is a Jacobian pair ⇒ f has one point at infinity.

Proof. (i) ⇒ (ii) follows from the “obvious” implication (f, g) automorphic pair ⇒ f has
one place at infinity, for which see [Ab2] or [Ab3]. (ii) ⇒ (iii) follows from (5.1). To prove
(iii) ⇒ (i), assume (iii) and let there be given any Jacobian pair (f, g). If deg(f ) � 1 or
deg(g) � 1 then (f, g) is an automorphic pair by (4.15)(6). If deg(f ) � 2 and deg(g) � 2 then
by (iii) f has one point at infinity, and hence in view of (5.4) we are done by induction on
deg(f ) + deg(g). �
Remark (5.6). Given any k-automorphism λ : k[X,Y ] → k[X,Y ] where k is a field of char-
acteristic 0, let f = λ(X) and g = λ(Y ). Then (f, g) is an automorphic pair and hence (f, g)

is a Jacobian pair and, as in the proof of (5.5), f has one point at infinity. If deg(f ) � 1 and
deg(g) � 1 then clearly λ is a k-linear automorphism. Therefore, in view of (5.4), by induction
on deg(f ) + deg(g) we see that λ is a tame automorphism. This is the new simple proof of
Jung’s Theorem we spoke of in the preamble to this section. Elsewhere we shall handle the task
of modifying this to include Kulk’s Theorem.

Remark (5.7). Thanks to Nick Inglis for help with the following observations about a Jacobian
pair (f, g) in k[X,Y ] over a field k of characteristic zero.

(1) If w = −1 and f is not a w-monomial then f is Y -submonic or X-submonic.
(2) If w ∈ Q with w < −1 and f is not a w-monomial then f is X-submonic.
(3) If w ∈ Q with 0 > w > −1 and f is not a w-monomial then f is Y -submonic.
(4) There is at most one negative w ∈ Q such that f is not a w-monomial.
(5) If f is Y -submonic and w̆(f ) � −1 then w̆(f )‡(f ) � 0.
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Namely, (4.7) yields (1) to (3). Also (1) to (3) and (4.14) yield (4). Moreover, (3) and (4.14)
yield (5). Applying (5) to the w = −∞ case of the proof of (5.2)(6) we see that the last displayed
claim of that proof which now reads{

(pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2: v � pj ′}
with (qi′, qj ′) ∈ Supp(σg) ⊂ {(u, v) ∈ N2: v � qj ′}

can be replaced by the stronger claim{
(pi′,pj ′) ∈ Supp(σf ) ⊂ {(u, v) ∈ N2: u � pi′ and v � pj ′}

with (qi′, qj ′) ∈ Supp(σg) ⊂ {(u, v) ∈ N2 : u � qi′ and v � qj ′}.
This proves the stronger version of (5.2)(6) with the same replacement of its last displayed
claim. Now disregarding (5.2)(7), we immediately deduce (5.2)(8) from the said stronger version
(5.2)(6) by making decreasing induction on the Y -degree of f . The previous proof of (5.2)(8)
exhibits another use of the k-flip automorphism.

6. Coprime degrees and principal degree pairs

In (6.1) we shall prove the Jacobian Conjecture if the degrees of a Jacobian pair are coprime;
the proof will also include the case when the GCD of the degrees is either a prime number or 4.
In (6.2) we supplement (5.5) by showing that the Jacobian Conjecture is equivalent to saying that
the degrees of a Jacobian pair always form a principal pair where we recall that a pair of integers
(N,M) is a principal pair means either N divides M , or M divides N .

In (6.2) we also show that the Jacobian Conjecture is equivalent to saying that for any Jacobian
pair (f, g) the Newton polygon of f is a triangle, i.e., either deg(f ) = 1 or there exist positive
integers ν,μ such that (0, ν), (μ,0) belong to Supp(f ) and for every (i, j) in Supp(f ) we have
iν + jμ � νμ.

Moreover, in (6.2) we show that the Jacobian Conjecture is equivalent to saying that for any
Jacobian pair (f, g) the Newton polygon of f is not a rectangle according to the following
definition. We say that the Newton polygon of f is a rectangle if{

for some positive integers i′, j ′,p with i′ �= j ′ and GCD(i′, j ′) = 1

we have (pi′,pj ′) ∈ Supp(f ) ⊂ {(u, v) ∈ N2: u � pi′ and v � pj ′}.
We call (i′, j ′) the shape of the said rectangle. Note that the second displays in (5.2)(9) and
(5.2)(10) say that under certain conditions the Newton polygons of f and g are rectangles of
same shape. More details about Newton polygons will be given in the next section.

Lemma (6.1). Let (f, g) be a Jacobian pair in k[X,Y ] where k is a field of characteristic 0, and
let deg(f ) = N with deg(g) = M . Assume that we have GCD(N,M) = 1, or a prime number,
or 4. Then (f, g) is an automorphic pair.

Proof. Follows from (4.19) and (5.2)(11). �
Lemma (6.2). The following six implications on pairs (f, g) in k[X,Y ], where k is a field of
characteristic 0, are equivalent.



S.S. Abhyankar / Journal of Algebra 319 (2008) 1154–1248 1195
(i) (f, g) is a Jacobian pair ⇒ (f, g) is an automorphic pair.
(ii) (f, g) is a Jacobian pair ⇒ f has one place at infinity.

(iii) (f, g) is a Jacobian pair ⇒ f has one point at infinity.
(iv) (f, g) is a Jacobian pair ⇒ (deg(f ),deg(g)) is a principal pair.
(v) (f, g) is a Jacobian pair ⇒ the Newton polygon of f is a triangle.

(vi) (f, g) is a Jacobian pair ⇒ the Newton polygon of f is not a rectangle.

Proof. In (5.5) we have shown that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
The implication (i) ⇒ (iv) follows from the implication (f, g) is an automorphic pair ⇒

(deg(f ),deg(g)) is a principal pair proved in [Ab2]. To prove the implication (iv) ⇒ (i), assume
(iv) and suppose that (f, g) is a Jacobian pair. To show that (f, g) is an automorphic pair, in
view of (4.15)(5), without loss of generality, we may suppose that deg(g) = M = eN where
e,N are in N+ with e � 2 and deg(f ) = N . By (3.11) and (4.1) we can find κ ∈ k× such that
deg(g − κf e) < M . Clearly (f, g − κf e) is a Jacobian pair and hence we are done by induction
on N + M .

The implication (i) ⇒ (v) follows from the implication (f, g) is an automorphic pair ⇒ the
Newton polygon of f is a triangle proved in [Ab2]. Moreover, the implication (v) ⇒ (ii) follows
from (4.7).

The implication (iii) ⇒ (vi) is obvious. The implication (vi) ⇒ (iii) follows from (5.2)(10).�
Note (6.3). The reference to the Main Lemma (4.7) in the proofs of (6.2) and elsewhere may
basically be reduced to a reference to (3.3) which indeed is the king-pin of this entire paper.

7. More general weight systems

To generalize the concept of weight systems we proceed thus.

Definition (7.1). Let θ = θ(X,Y ) ∈ k[X,X−1, Y,Y−1] where k is a field.

For any ω = (ω1,ω2) ∈ Z2 we define the ω-degree degω θ , the ω-degree form θ+
ω , the ω-

homogeneity, and the ω-version θ0
ω of θ exactly as in Section 2 with (ω1,ω2) replacing (w1,w2).

For instance

degω θ = max
{
iω1 + jω2: (i, j) ∈ Supp(θ)

}
with the understanding that if θ = 0 then degω θ = −∞. Likewise, with (ω1,ω2) replacing
(w1,w2), we also define the concepts of a ω-automorphic pair, having one or two (respectively
at most two) points at infinity in the ω-weighted sense, the ω-similarity of f ∈ k[X,Y ]× with
g ∈ k[X,Y ], and the ω-lag lagω(f,g) of (f, g) in k[X,Y ]× exactly as in Section 2, and we define
the concept of a ω-monomial exactly as in (4.8). Pictures in (9.4) to (9.6).

Just as w = 0 corresponds to (w1,w2) = (1,0), letting w = −∞ or ∞ respectively cor-
responds to (w1,w2) = (0,1) or (0,−1). Now all of the above concepts from w-degree to
w-monomial have obvious definitions for w ∈ {±∞}. For instance deg−∞ θ = degY θ and
deg∞ θ = −ordY θ , where we recall that ord is defined by putting

ordY θ = min
{
j : (i, j) ∈ Supp(θ)

}
and ordX θ = min

{
i: (i, j) ∈ Supp(θ)

}
.
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For any ω = (ω1,ω2) ∈ Z2 and e ∈ Z, as usual we put eω = (eω1, eω2) ∈ Z2; in particular,
1ω = ω, and −1ω = −ω = (−ω1,−ω2). For any ω ∈ Z2 and e ∈ N+, we clearly have degeω θ =
e degω θ and hence θ+

eω = θ+
ω , and therefore sometimes it is more appropriate to let ω vary over

the coprime integer pairs set

Z2
c = {

ω = (ω1,ω2) ∈ Z2: GCD(ω1,ω2) = 1
}
.

The weight systems with ω1 < 0 and ω2 < 0 are not very interesting. So we consider the
zerocomplement, the x-positive, the y-positive, the x-negative, and the y-negative integer pairs
set by putting ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z2
z = Z2 \ {(0,0)},

Z2
x = {ω = (ω1,ω2) ∈ Z2: ω1 > 0},

Z2
y = {ω = (ω1,ω2) ∈ Z2: ω2 > 0},

Z2
x− = {ω = (ω1,ω2) ∈ Z2: ω1 < 0},

Z2
y− = {ω = (ω1,ω2) ∈ Z2: ω2 < 0}.

Note that then Z2
c ⊂ Z2

z and Z2
x ∪ Z2

y ∪ Z2
x− ∪ Z2

y− ⊂ Z2
z .

To take care of the above mentioned cases of w = −∞ or ∞ which respectively correspond
to (0,1) or (0,−1), let us also consider the negative-infinite and the positive-infinite integer pairs
set by putting

Z2−∞ = {
ω = (ω1,ω2) ∈ Z2: ω1 = 0 < ω2

}
and

Z2∞ = {
ω = (ω1,ω2) ∈ Z2: ω1 = 0 > ω2

}
and note that as a disjoint partition of nonempty subsets we have

Z2
z = Z2

x− � Z2−∞ � Z2
x � Z2∞.

Flipping (7.2). Flipping X and Y has the effect that several items proved in Sections 3 and 4 have
a counterpart which follows by symmetry. In (7.3.u) and (7.4.v) we shall state a complementary
versions of items (3.u) and (4.v) respectively. Sometimes, such as in (3.1), the proof only uses
w1 �= 0 and by symmetry we get it also when w2 �= 0; thus (7.3.1) can say that (3.1) remains true
when w ∈ Q ∪ {±∞} or w is replaced by ω ∈ Z2

z . Similarly for (7.3.2), (7.3.3), (7.4.1) to (7.4.5),
(7.4.9), (7.4.10), and so on. On the other hand, (7.3.4), (7.4.6), (7.4.7) are only paraphrases of
(3.4), (4.6), (4.7) respectively, when we replace w ∈ Q by ω ∈ Z2

x .
The reader is advised to recheck that (3.1) to (3.3) (excluding (3.3.5) to (3.3.8)), (4.1) to (4.5),

and (4.9) to (4.10), need only the weaker assumption w1 �= 0 and not the stronger assumption
w1 > 0.

As common notation for (7.3.u) and (7.4.v) let k be a field of characteristic 0 and let w ∈
Q∪{±∞} or replace it by ω ∈ Z2

z ; in Paraphrased Lemmas (7.3.4), (7.4.6), (7.4.7), and Remark–
Definition (7.4.14), we specify the range of w or ω more explicitly. As common notation for
(7.3.u) let F,G be nonzero w-homogeneous or ω-homogeneous members of k[X,X−1, Y,Y−1].
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As common notation for (7.4.v) let f,g be nonzero members of k[X,Y ]. Note that for w ∈
Q ∪ {±∞}, the pair (w1,w2) consists of coprime integers such that if w ∈ Q then w = −w2/w1

with w1 > 0, whereas if w = −∞ or ∞ then (w1,w2) = (0,1) or (0,−1) respectively. This is
particularly significant in (7.3.2.9), (7.3.3.4), (7.4.5), (7.4.9), and (7.4.10).

Generalized Eulerian Lemma with consequences (7.3.1) and (7.3.2.6) to (7.3.2.9) and
(7.3.3.1) to (7.3.3.4). Respectively same as (3.1) and (3.2.6) to (3.2.9) and (3.3.1) to (3.3.4),
with w ∈ Q ∪ {±∞} or replaced by ω ∈ Z2

z .

Paraphrased Lemma (7.3.4). Suppose that ω ∈ Z2
x . Assume that F and G belong to k[X,Y ]

and J (F,G) = 0 F . Also assume that we have either (i) ω2 > 0 or (ii) ω2 � 0 �= ω1 + ω2 �=
0 �= EN − DM where N = degω F with D = degY F and M = degω G with E = degY G. Then
G = 0 xy and F = 0 xiyj with i �= j in N where (x, y) is the ω-automorphic pair described
below.

(1) If ω2 = ω1 = 1 �= E then x = αX + Y and y = βX + Y with α �= β in k.
(2) If ω2 = ω1 = 1 = E then x = X and y = βX + Y with β ∈ k.
(3) If ω2 > ω1 then x = X and y = γXω2/ω1 + Y with γ ∈ k such that ω2/ω1 ∈ N+ in case

γ �= 0.
(4) If 0 < ω2 < ω1 then x = Y and y = X+γ Yω1/ω2 with γ ∈ k and ω1/ω2 ∈ N+ in case γ �= 0.
(5) If ω2 � 0 �= ω1 + ω2 �= 0 �= EN − DM then x = X and y = Y + γXω2/ω1 with γ ∈ k such

that ω2 = 0 in case γ �= 0.

Generalized Jacobian Lemma with consequences (7.4.1) to (7.4.5). Respectively same as
(4.1) to (4.5), with w ∈ Q ∪ {±∞} or replaced by ω ∈ Z2

z .

Paraphrased Lemma (7.4.6). Suppose that ω ∈ Z2
x . Assume that f is ω-similar to J (f,g), and

also assume that either (i) ω2 > 0, or (ii) ω2 � 0 �= N with EN −DM �= 0 < (ω1 +ω2)N , where
N = degω f with D = degY f +

ω and where M = degω g with E = degY g+
ω . Then f as well as

g has at most two points at infinity in the ω-weighted sense. More precisely f +
ω = 0 xiyj and

g+
ω = 0 xi∗yj∗

where i, j, i∗, j∗ in N with i − j �= 0 �= i + j �= 0 �= i∗ + j∗ and where (x, y) is
the ω-automorphic pair described below.

(1) If ω2 = ω1 = 1 then x = αX + α∗Y and y = βX + β∗Y where α,α∗, β,β∗ in k are such
that αβ∗ − α∗β �= 0.

(2) If ω2 > ω1 then x = X and y = γXω2/ω1 + Y with γ ∈ k such that ω2/ω1 ∈ N+ in case
γ �= 0.

(3) If 0 < ω2 < ω1 then x = Y and y = X+γ Yω1/ω2 with γ ∈ k and ω1/ω2 ∈ N+ in case γ �= 0.
(4) If ω2 � 0 �= N with EN − DM �= 0 < (ω1 + ω2)N then x = X and y = Y + γXω2/ω1 with

γ ∈ k such that ω2 = 0 in case γ �= 0.

Moreover we have N �= 0 and we have (I) and (II) stated below.

(I) lagω(f,g) �= 0 ⇔ f is ω-similar to g.
(II) lagω(f,g) = 0 ⇒ (i∗, j∗) = (1 + ci,1 + cj) for some c ∈ Q.
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Paraphrased Main Lemma (7.4.7). Suppose that ω ∈ Z2
x . Let us assume that J (f,g) = 0 ,

and let us also assume that we have either (i) ω2 > 0, or (ii) ω2 � 0 �= N with EN − DM �=
0 < (ω1 + ω2)N , or (iii) ω2 � 0 �= M with EN − DM �= 0 < (ω1 + ω2)M , where N = degω f

with D = degY f +
ω and where M = degω g with E = degY g+

w . Then f as well as g has at most
two points at infinity in the ω-weighted sense. More precisely f +

ω = 0 xiyj and g+
ω = 0 xi∗yj∗

where i, j, i∗, j∗ in N with i − j �= 0 �= i + j �= 0 �= i∗ + j∗ �= 0 �= i∗ − j∗ and where (x, y) is
the ω-automorphic pair described below.

(1) If ω2 = ω1 = 1 then x = αX + α∗Y and y = βX + β∗Y where α,α∗, β,β∗ in k are such
that αβ∗ − α∗β �= 0.

(2) If ω2 > ω1 then x = X and y = γXω2/ω1 + Y with γ ∈ k such that ω2/ω1 ∈ N+ in case
γ �= 0.

(3) If 0 < ω2 < ω1 then x = Y and y = X+γ Yω1/ω2 with γ ∈ k and ω1/ω2 ∈ N+ in case γ �= 0.
(4) If ω2 � 0 �= N with EN − DM �= 0 < (ω1 + ω2)N then x = X and y = Y + γXω2/ω1 with

γ ∈ k such that ω2 = 0 in case γ �= 0.
(5) If ω2 � 0 �= M with EN − DM �= 0 < (ω1 + ω2)M then x = X and y = Y + γXω2/ω1 with

γ ∈ k such that ω2 = 0 in case γ �= 0.

Moreover we have GCD(N,M) �= 0 and we have (I) and (II) stated below.

(I) lagω(f,g) �= 0 ⇔ f is ω-similar to g.
(II) lagω(f,g) = 0 ⇒ either (i∗, j∗) = (1 + ci,1 + cj) for some c ∈ Q or (i, j) = (1 + ci∗,1 +

cj∗) for some c ∈ Q.

Lemmas (7.4.9) and (7.4.10). Respectively same as (4.9) and (4.10), with w ∈ Q ∪ {±∞} or
replaced by ω ∈ Z2

z .

Remark–Definition (7.4.14). Noting that items (7.4.11) to (7.4.13) are nonexistent, we proceed
to generalize the concepts of antecedent and consequent introduced in (4.14) to ω ∈ Z2

z . For
pictures see (9.4) to (9.6).

In (7.4.14) we let f belong to k[X,X−1, Y,Y−1]× with any commutative ring k; taking k to
be the prime field of characteristic two, this becomes a theory of nonempty finite subsets of Z2.

Let card denote cardinality and note that then for any w ∈ Q ∪ {±∞} or ω ∈ Z2: f is a
w-monomial or f is a ω-monomial iff card Supp(f +

w ) = 1 or card Supp(f +
ω ) = 1 respectively,

and hence in particular: f is a monomial (i.e., equivalently, f is a (0,0)-monomial) iff card
Supp(f ) = 1.

Recall that defo and info are defined by putting

defoY f = sum of the terms in f whose Y -degree equals degY f

and

defoX f = sum of the terms in f whose X-degree equals degX f

and we define info by putting

infoY f = sum of the terms in f whose Y -order equals ordY f
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and

infoX f = sum of the terms in f whose X-order equals ordXf .

We define the absolute value of any ω = (ω1,ω2) ∈ Z2
z by putting

|ω| =
⎧⎨⎩

−ω2/ω1 if ω1 �= 0,

−∞ if ω1 = 0 < ω2,

∞ if ω1 = 0 > ω2.

Note that ω �→ |ω| gives a surjection Z2
z → Q ∪ {±∞}. By restricting this to Z2

z \ Z2
x− we again

get a surjection Z2
z \ Z2

x− → Q ∪ {±∞}. Further restricting it to Z2
c \ Z2

x− we get a bijection
Z2

c \ Z2
x− → Q ∪ {±∞} whose inverse was described in the last paragraph of (7.2). Moreover{

for all ω ∈ Z2
z \ Z2

x− we have:

f +
|ω| = f +

ω .

For any ω ∈ Z2
z we also define its norm ‖ω‖ ∈ Z2

c by putting

‖ω‖ =
(

ω1

GCD(ω1,ω2)
,

ω2

GCD(ω1,ω2)

)
.

Note that

ω �→ ‖ω‖ gives a surjection Z2
z → Z2

c

and {
for all ω,ω′ in Z2

x we have:

‖ω‖ = ‖ω′‖ ⇔ eω = e′ω′ for some e, e′ in N+.

For any ω ∈ Z2
z we define the dotted ω-degree form f �

ω of f and the double dotted ω-degree
form f ��

ω of f by putting

f �
ω =

⎧⎪⎪⎨⎪⎪⎩
defoY f +

ω if ω1 > 0,

infoX f +
ω if ω1 = 0 < ω2,

defoX f +
ω if ω1 = 0 > ω2,

infoY f +
ω if ω1 < 0

and

f ��
ω =

⎧⎪⎪⎨⎪⎪⎩
infoY f +

ω if ω1 > 0,

defoX f +
ω if ω1 = 0 < ω2,

infoX f +
ω if ω1 = 0 > ω2,
+
defoY fω if ω1 < 0.
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Clearly these are monomials and hence we have unique κ� and κ�� in k× together with (i�, j�)

and (i��, j��) in Z2 such that

f �
ω = κ�Xi�Y j�

and f ��
ω = κ��Xi��

Y j��
.

We put

f ?
ω = κ� ∈ k× and f ??

ω = κ�� ∈ k×

and we call these the questioned ω-constant of f and the double questioned ω-constant of f

respectively. Likewise we put

f !
ω = ((

f !
ω

)
1,

(
f !

ω

)
2

) = (
i�, j�) ∈ Z2

and

f !!
ω = ((

f !!
ω

)
1,

(
f !!

ω

)
2

) = (
i��, j��) ∈ Z2

and we call these the banged ω-point of f and the double banged ω-point of f respectively.

Instead of dotted (respectively questioned, banged) and double dotted (respectively double
questioned, double banged) we may say top and bottom respectively. Calling f !

ω and f !!
ω the top

and bottom ω-points of f is quite picturesque, with the caution that in case of negative x-weight
the top and bottom may look upside down; just remember that from top to bottom is always
clockwise. All this applies with ω replaced by w ∈ Q ∪ {±∞} or w ∈ Qd as in (8.4.14) below.

We say that f is pseudolinear to mean that f = f +
ω for some ω ∈ Z2

z . Note that if f is a
monomial then f = f +

ω for every ω ∈ Z2
z . We say that f is skew to mean that f = f +

ω for some
ω ∈ Z2

z with ω1 �= 0. We say that f is horizontal to mean that f = f +
ω for some ω ∈ Z2

z with
ω1 = 0. We say that f is vertical to mean that f = f +

ω for some ω ∈ Z2
z with ω2 = 0. To stress

the specific ω we may say that f is ω-pseudolinear or ω-skew or ω-horizontal or ω-vertical
respectively.

We shall now state and prove Facts (1) to (3) concerning the above concepts.
In Fact (1) we characterize pseudolinearity.
In Fact (3) we prepare the algebraic groundwork for the Degreewise Newton Polygon to be

discussed in Section 9. The said Fact (3) may sound a bit convoluted because it is like trying to
put a square peg through a round hole, or rather like trying to rotate a rectangular lid as if it were
a round one. After all, as will be illustrated in Section 9, the Degreewise Newton Polygon may
very well have horizontal sides, and it is certainly not a circle.

Fact (1). Concerning the absolute values and norms of members of Z2
z we have the following.

(I) For any ω ∈ Z2
z and (i, j) �= (i′, j ′) in Supp(f +

ω ) we have

|ω|

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= i′−i

j ′−j
∈ Q if j ′ �= j,

∈ {±∞} if j ′ = j,

= −∞ if j ′ = j = degY f �= ordY f,

= ∞ if j ′ = j = ordY f �= degY f.



S.S. Abhyankar / Journal of Algebra 319 (2008) 1154–1248 1201
(II) For any ω,ω in Z2
z with ω = −ω we have:

Supp
(
f +

ω

) ∩ Supp
(
f +

ω

) �= ∅ ⇔ f +
ω = f = f +

ω ⇔ f = f +
ω

⇔ f = f +
ω ⇔ f +

ω = f +
ω .

(III) For any ω ∈ Z2
z we have f +

ω = f +
‖ω‖, and the absolute value |ω| of ω coincides with the

absolute value |(‖ω‖)| of its norm ‖ω‖. For any ω,ω in Z2
z we have

|ω| = |ω| ⇔
{

either (i) ‖ω‖ = ‖ω‖
or (ii) ‖ω‖ = ‖−ω‖

and

‖ω‖ = ‖−ω‖ ⇔
{

either (i) ω1ω1 < 0 with |ω| = |ω|
or (ii) {|ω|, |ω|} = {±∞}.

(IV) If ω,ω in Z2
z are such that Supp(f +

ω )∩Supp(f +
ω ) �= ∅ and ω1ω1 < 0 with |ω| = |ω|, then

f +
ω = f = f +

ω and hence in particular f is skew.
(V) If ω,ω in Z2

z are such that Supp(f +
ω )∩Supp(f +

ω ) �= ∅ and {|ω|, |ω|} = {±∞}, then f +
ω =

f = f +
ω and hence in particular f is horizontal.

(VI) If ω,ω in Z2
z are such that Supp(f +

ω ) ∩ Supp(f +
ω ) �= ∅ and ω1ω1 < 0 with |ω| = 0 = |ω|,

then f +
ω = f = f +

ω and hence in particular f is vertical.
(VII) f is skew iff f +

ω = f +
ω for some ω,ω in Z2

z with ω1ω1 < 0 and |ω| = |ω|.
(VIII) f is horizontal iff f +

ω = f +
ω for some ω,ω in Z2

z with {|ω|, |ω|} = {±∞}.
(IX) f is vertical iff f +

ω = f +
ω for some ω,ω in Z2

z with ω1ω1 < 0 and |ω| = 0 = |ω|.
(X) If f is nonmonomially horizontal then f is not skew (i.e., if f is horizontal but not a

monomial then f is not skew). Equivalently, if f is nonmonomially skew then f is not
horizontal.

(XI) If ω,ω in Z2
z are such that |ω| = |ω| ∈ Q then either ω1ω1 < 0 or ‖ω‖ = ‖ω‖. If ω,ω in

Z2
z are such that {|ω|, |ω|} ⊂ {±∞} then either {|ω|, |ω|} = {±∞} or ‖ω‖ = ‖ω‖. If ω,ω

in Z2
z are such that ‖ω‖ = ‖ω‖ then f +

ω = f +
ω .

(XII) If ω,ω in Z2
z are such that card(Supp(f +

ω ) ∩ Supp(f +
ω )) � 2 then we have f +

ω = f +
ω and

either |ω| = |ω| ∈ Q or {|ω|, |ω|} ⊂ {±∞}.

Fact (2). Let ω,ω in Z2
z and (i′, j ′), (i, j), (i′′, j ′′) in Z2 be such that

(I) degω

(
Xi′Y j ′) = degω

(
XiY j

) = degω

(
Xi′′Y j ′′)

and

(II) degω

(
Xi′Y j ′) �= degω

(
XiY j

) �= degω

(
Xi′′Y j ′′)

.

Assume that

(III) either j ′ < j < j ′′ or j ′ > j > j ′′ or i′ < i < i′′ or i′ > i > i′′.
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Then we have

(IV)

{
either degω(Xi′Y j ′

) < degω(XiY j ) < degω(Xi′′Y j ′′
)

or degω(Xi′Y j ′
) > degω(XiY j ) > degω(Xi′′Y j ′′

).

In proving this we shall use the obvious monotonicity of linear functions which says that

(V)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for any W,W,I, J in R we have:

(i) J > 0 and W > W ⇒ JW + I > JW + I ,

(ii) J > 0 and W < W ⇒ JW + I < JW + I ,

(iii) J < 0 and W > W ⇒ JW + I < JW + I ,

(iv) J < 0 and W < W ⇒ JW + I > JW + I ,

(v) J = 0 ⇒ JW + I = JW + I .

[Actually we shall use this only with R replaced by Q.]

Fact (3). Let ω ∈ Z2
z and (i′, j ′), (i′′, j ′′) in Supp(f +

ω ) be such that

{
if ω1 �= 0 then

j ′ = max{j : (i, j) ∈ Supp(f +
ω )} and j ′′ = min{j : (i, j) ∈ Supp(f +

ω )}

whereas {
if ω1 = 0 then

i′ = min{i: (i, j) ∈ Supp(f +
ω )} and i′′ = max{i: (i, j) ∈ Supp(f +

ω )}

and note that then

f !
ω =

{ {(i′, j ′)} if either ω1 > 0 or ω1 = 0 < ω2,

{(i′′, j ′′)} if either ω1 < 0 or ω1 = 0 > ω2

and

f !!
ω =

{ {(i′′, j ′′)} if either ω1 > 0 or ω1 = 0 < ω2,

{(i′, j ′)} if either ω1 < 0 or ω1 = 0 > ω2.

Let

S′ = {
(i, j) ∈ Supp(f ): j > j ′} and S′′ = {

(i, j) ∈ Supp(f ): j < j ′′}
and

Ω =
{

{w ∈ Z2
z : |ω| = |ω| and ω1ω1 > 0} if ω1 �= 0,

{ω ∈ Z2: |ω| = |ω| and ω1 = 0} if ω1 = 0.
z
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Let

Ω̂ ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ω ∈ Z2
x : |ω| = max(i,j)∈S′ i′−i

j ′−j
} if ω1 > 0 and S′ �= ∅,

{ω ∈ Z2
z : ω1 = 0 < ω2} if ω1 > 0 and S′ = ∅,

{ω ∈ Z2
x : |ω| = max(i,j)∈S′ i′′−i

j ′′−j
} if ω1 = 0 > ω2 and S′ �= ∅,

{ω ∈ Z2
z : ω1 = 0 < ω2} if ω1 = 0 > ω2 and S′ = ∅,

{ω ∈ Z2
x−: |ω| = max(i,j)∈S′′ i′′−i

j ′′−j
} if ω1 < 0 and S′′ �= ∅,

{ω ∈ Z2
z : ω1 = 0 > ω2} if ω1 < 0 and S′′ = ∅,

{ω ∈ Z2
x−: |ω| = max(i,j)∈S′′ i′−i

j ′−j
} if ω1 = 0 < ω2 and S′′ �= ∅,

{ω ∈ Z2
z : ω1 = 0 > ω2} if ω1 = 0 < ω2 and S′′ = ∅

and

Ω̂ ′′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ω ∈ Z2
x : |ω| = min(i,j)∈S′′ i′′−i

j ′′−j
} if ω1 > 0 and S′′ �= ∅,

{ω ∈ Z2
z : ω1 = 0 > ω2} if ω1 > 0 and S′′ = ∅,

{ω ∈ Z2
x : |ω| = min(i,j)∈S′′ i′′−i

j ′′−j
} if ω1 = 0 < ω2 and S′′ �= ∅,

{ω ∈ Z2
z : ω1 = 0 > ω2} if ω1 = 0 < ω2 and S′′ = ∅,

{ω ∈ Z2
x−: |ω| = min(i,j)∈S′ i′−i

j ′−j
} if ω1 < 0 and S′ �= ∅,

{ω ∈ Z2
z : ω1 = 0 < ω2} if ω1 < 0 and S′ = ∅,

{ω ∈ Z2
x−: |ω| = min(i,j)∈S′ i′−i

j ′−j
} if ω1 = 0 > ω2 and S′ �= ∅,

{ω ∈ Z2
z : ω1 = 0 < ω2} if ω1 = 0 > ω2 and S′ = ∅

and call Ω̂ ′ (respectively Ω̂ ′′) the preantecedental set (respectively the preconsequental set) of
ω relative to f .

Let (where we condense the top 4 cases of Ω̂ ′ into one case)

Ω̂∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{ω̂ ∈ Z2
x : |ω| > |ω̂| > |ω| for all ω ∈ Ω̂ ′} if ω1 > 0 or ω1 = 0 > ω2,

{ω̂ ∈ Z2
x−: |ω| > |ω̂| > |ω| for all ω ∈ Ω̂ ′} if ω1 < 0 and S′′ �= ∅,

{ω̂ ∈ Z2
x−: |ω| > |ω̂|} if ω1 < 0 and S′′ = ∅,

{ω̂ ∈ Z2
x−: |ω̂| > |ω| for all ω ∈ Ω̂ ′} if ω1 = 0 < ω2 and S′′ �= ∅,

Z2
x− if ω1 = 0 < ω2 and S′′ = ∅

and (where we condense the top 4 cases of Ω̂ ′′ into one case)

Ω̂∗∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{ω̂ ∈ Z2
x : |ω| < |ω̂| < |ω| for all ω ∈ Ω̂ ′′} if ω1 > 0 or ω1 = 0 < ω2,

{ω̂ ∈ Z2
x−: |ω| < |ω̂| < |ω| for all ω ∈ Ω̂ ′′} if ω1 < 0 and S′ �= ∅,

{ω̂ ∈ Z2
x−: |ω| < |ω̂|} if ω1 < 0 and S′ = ∅,

{ω̂ ∈ Z2
x−: |ω̂| < |ω| for all ω ∈ Ω̂ ′′} if ω1 = 0 > ω2 and S′ �= ∅,

Z2
x− if ω1 = 0 > ω2 and S′ = ∅

and call Ω̂∗ (respectively Ω̂∗∗) the preantecedental segment (respectively the preconsequental
segment) of ω relative to f .
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Let

Ω̂ ′∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z2

x \ (Ω ∪ Ω̂ ′ ∪ Ω̂ ′′ ∪ Ω̂∗ ∪ Ω̂∗∗) if ω ∈ Z2
x,

(Z2
x− \ (Ω̂ ′ ∪ Ω̂∗)) ∪ (Z2

x \ (Ω̂ ′′ ∪ Ω̂∗∗)) if ω ∈ Z2−∞,

(Z2
x \ (Ω̂ ′ ∪ Ω̂∗)) ∪ (Z2

x− \ (Ω̂ ′′ ∪ Ω̂∗∗)) if ω ∈ Z2∞,

Z2
x− \ (Ω ∪ Ω̂ ′ ∪ Ω̂ ′′ ∪ Ω̂∗ ∪ Ω̂∗∗) if ω ∈ Z2

x−

and call Ω̂ ′∗ the prenonadjacency set of ω relative to f .
Here the prefix “pre” is meant to suggest that to take care of some exceptional cases, we want

to introduce an improved version of these concepts. To prepare for this, by Ω̂ ′−∞ (respectively
Ω̂ ′′−∞) we denote the common preantecendental set (respectively the common preconsequen-
tal set) of all ω ∈ Z2−∞, and call this the preantecedental set (respectively the preconsequental
set) of Z2−∞. Moreover, by Ω̂∗−∞ (respectively Ω̂∗∗−∞) we denote the common preantecenden-
tal segment (respectively the common preconsequental segment) of all ω ∈ Z2−∞, and call this
the preantecedental segment (respectively the preconsequental segment) of Z2−∞. Likewise, by
Ω̂ ′∞ (respectively Ω̂ ′′∞) we denote the common preantecendental set (respectively the com-
mon preconsequental set) of all ω ∈ Z2∞, and call this the preantecedental set (respectively the
preconsequental set) of Z2−∞. Moreover, by Ω̂∗∞ (respectively Ω̂∗∗∞ ) we denote the common pre-
antecendental segment (respectively the common preconsequental segment) of all ω ∈ Z2∞, and
call this the preantecedental segment (respectively the preconsequental segment) of Z2∞.

Now let

Ω ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ω̂ ′−∞ if ω1 > 0 & S′ = ∅ & defoY f is a monomial,

Ω̂ ′−∞ if ω1 = 0 > ω2 & S′ = ∅ & defoY f is a monomial,

Ω̂ ′∞ if ω1 < 0 & S′′ = ∅ & infoY f is a monomial,

Ω̂ ′∞ if ω1 = 0 < ω2 & S′′ = ∅ & infoY f is a monomial,

Ω̂ ′ if none of the above

and let

Ω ′′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ω̂ ′′∞ if ω1 > 0 & S′′ = ∅ & infoY f is a monomial,

Ω̂ ′′∞ if ω1 = 0 < ω2 & S′′ = ∅ & infoY f is a monomial,

Ω̂ ′′−∞ if ω1 < 0 & S′ = ∅ & defoY f is a monomial,

Ω̂ ′′−∞ if ω1 = 0 > ω2 & S′ = ∅ & defoY f is a monomial,

Ω̂ ′′ if none of the above.

Also let

Ω∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ω̂∗ ∪ Ω̂ ′ ∪ Ω̂∗−∞ if ω1 > 0 & S′ = ∅ & defoY f is a monomial,

Ω̂∗ ∪ Ω̂ ′ ∪ Ω̂∗−∞ if ω1 = 0 > ω2 & S′ = ∅ & defoY f is a monomial,

Ω̂∗ ∪ Ω̂ ′ ∪ Ω̂∗∞ if ω1 < 0 & S′′ = ∅ & infoY f is a monomial,

Ω̂∗ ∪ Ω̂ ′ ∪ Ω̂∗∞ if ω1 = 0 < ω2 & S′′ = ∅ & infoY f is a monomial,

Ω̂∗ if none of the above

and let
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Ω∗∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ω̂∗∗ ∪ Ω̂ ′′ ∪ Ω̂∗∗∞ if ω1 > 0 & S′′ = ∅ & infoY f is a monomial,

Ω̂∗∗ ∪ Ω̂ ′′ ∪ Ω̂∗∗∞ if ω1 = 0 < ω2 & S′′ = ∅ & infoY f is a monomial,

Ω̂∗∗ ∪ Ω̂ ′′ ∪ Ω̂∗∗−∞ if ω1 < 0 & S′ = ∅ & defoY f is a monomial,

Ω̂∗∗ ∪ Ω̂ ′′ ∪ Ω̂∗∗−∞ if ω1 = 0 > ω2 & S′ = ∅ & defoY f is a monomial,

Ω̂∗∗ if none of the above

and call Ω∗ (respectively Ω∗∗) the antecedental segment (respectively the consequental segment)
of ω relative to f .

Finally let

Ω ′∗ = Z2
z \ (

Ω ∪ Ω ′ ∪ Ω ′′ ∪ Ω∗ ∪ Ω∗∗)
and call Ω ′∗ the nonadjacency set of ω relative to f .

Then we have the following.
(I) The nine sets Ω,Ω̂ ′,Ω ′, Ω̂ ′′,Ω ′′, Ω̂∗ ⊂ Ω∗, Ω̂∗∗ ⊂ Ω∗∗ are nonempty subsets of Z2

z with
ω ∈ Ω such that for all ω ∈ Ω we have ‖ω‖ = ‖ω‖, for all ω, ω̂ in Ω̂ ′ we have ‖ω‖ = ‖ω̂‖, for
all ω, ω̂ in Ω ′ we have ‖ω‖ = ‖ω̂‖, for all ω, ω̂ in Ω̂ ′′ we have ‖ω‖ = ‖ω̂‖, and for all ω, ω̂

in Ω ′′ we have ‖ω‖ = ‖ω̂‖. Out of these the five sets Ω,Ω̂ ′, Ω̂ ′′, Ω̂∗, Ω̂∗∗ are pairwise disjoint
with the following exception (Ê), and the five sets Ω,Ω ′,Ω ′′,Ω∗,Ω∗∗ are pairwise disjoint,
with the following exceptions (E1) and (E2).

(Ê) If f is ω-horizontal (which means if f = f +
ω with ω1 = 0) then Ω̂ ′ = Ω̂ ′′ and for all

ω ∈ Ω̂ ′ = Ω̂ ′′ we have ‖ω‖ = ‖−ω‖ with f +
ω = f +−ω = f ; note that now Supp(f +

ω ) = Supp(f +
ω )

for all ω ∈ Ω̂ ′ = Ω̂ ′′ and hence: f is a monomial ⇔ f is a ω-monomial ⇔ f is a ω-monomial
for all ω ∈ Ω̂ ′ = Ω̂ ′′.

(E1) If f is ω-pseudolinear and f is a nonmonomial (which means if f = f +
ω and card

Supp(f ) �= 1) then Ω ′ = Ω ′′ and for all ω ∈ Ω ′ = Ω ′′ we have ‖ω‖ = ‖−ω‖ with f +
ω =

f +−ω = f , and hence in particular Supp(f +
ω ) = Supp(f +

ω ) and f is not a w-monomial.
(E2) If f is a monomial (i.e., if card Supp(f ) = 1) then Ω∗ ∩ Ω∗∗ �= ∅ and for all ω ∈ Z2

z we
have f +

ω = f and hence in particular Supp(f +
ω ) = Supp(f +

ω ) and f is a w-monomial.
(II) If ω1 > 0 then for all ω ∈ Ω̂ ′ we have |ω| < |ω|, and for all ω ∈ Ω̂ ′′ we have |ω| > |ω|.

If ω1 < 0 then for all ω ∈ Ω̂ ′ we have either |ω| < |ω| or |ω| = ∞, and for all ω ∈ Ω̂ ′′ we have
either |ω| > |ω| or |ω| = −∞. If ω1 = 0 < ω2 then for all ω ∈ Ω̂ ′ we have |ω| ∈ Q∪{∞}, and for
all ω ∈ Ω̂ ′′ we have |ω| ∈ Q∪{∞}. If ω1 = 0 > ω2 then for all ω ∈ Ω̂ ′ we have |ω| ∈ Q∪{−∞},
and for all ω ∈ Ω̂ ′′ we have |ω| ∈ Q ∪ {−∞}.

(III) For all ω ∈ Ω̂∗ we have Supp(f +
ω ) ∩ Supp(f +

ω ) = {f !
ω} = {f !!

ω }, for all ω ∈ Ω̂∗∗ we have
Supp(f +

ω )∩Supp(f +
ω ) = {f !!

ω } = {f !
ω}, for all ω ∈ Ω̂∗ ∪ Ω̂∗∗ we have that f is a ω-monomial. If

ω ∈ Z2
x then for any ω ∈ Z2

x we have: ω ∈ Ω̂ ′∗ ⇔ Supp(f +
ω )∩ Supp(f +

ω ) = ∅. If ω ∈ Z2−∞ ∪Z2∞
then for any ω ∈ Z2

x ∪ Z2
x− we have: ω ∈ Ω̂ ′∗ ⇔ Supp(f +

ω ) ∩ Supp(f +
ω ) = ∅. If ω ∈ Z2

x− then
for any ω ∈ Z2

x− we have: ω ∈ Ω̂ ′∗ ⇔ Supp(f +
ω ) ∩ Supp(f +

ω ) = ∅.
If f is not ω-horizontal then: for all ω ∈ Ω̂ ′ we have Supp(f +

ω ) ∩ Supp(f +
ω ) = {f !

ω} = {f !!
ω },

for all ω ∈ Ω̂ ′′ we have Supp(f +
ω ) ∩ Supp(f +

ω ) = {f !!
ω } = {f !

ω}, and for all ω ∈ (Ω̂ ′ ∪ Ω̂ ′′) ∩
(Z2

x ∪ Z2
x−) we have that f is not a ω-monomial.

(IV) For all ω ∈ Ω∗ we have Supp(f +
ω ) ∩ Supp(f +

ω ) = {f !
ω} = {f !!

ω }, for all ω ∈ Ω∗∗ we have
Supp(f +

ω ) ∩ Supp(f +
ω ) = {f !!

ω } = {f !
ω}, for all ω ∈ Ω∗ ∪ Ω∗∗ we have that f is a ω-monomial,

and for any ω ∈ Z2
z we have: ω ∈ Ω ′∗ ⇔ Supp(f +

ω ) ∩ Supp(f +) = ∅.
ω



1206 S.S. Abhyankar / Journal of Algebra 319 (2008) 1154–1248
If f is not ω-pseudolinear then: for all ω ∈ Ω ′ we have Supp(f +
ω ) ∩ Supp(f +

ω ) = {f !
ω} =

{f !!
ω }, for all ω ∈ Ω ′′ we have Supp(f +

ω ) ∩ Supp(f +
ω ) = {f !!

ω } = {f !
ω}, and for all ω ∈ Ω ′ ∪ Ω ′′

we have that f is not a ω-monomial.
(V) Assuming f ∈ k[X,Y ]× is not a ω-monomial we have the following.
(V.1) If ω1 �= 0 then j ′ > j ′′ and |ω| = i′−i′′

j ′−j ′′ with degω f = (i′′j ′−i′j ′′)ω1
j ′−j ′′ .

(V.2) If ω1 = 0 then j ′ = j ′′ with i′ < i′′ and |ω| = ±∞ (according as ω2 is negative or
positive) with degω f = j ′ω2.

(V.3) If {f !
ω,f !!

ω } ⊂ Z2
z then |f !

ω| < |f !!
ω | or |f !

ω| = |f !!
ω | or |f !

ω| > |f !!
ω | according as degω f > 0

or degω f = 0 or degω f < 0. [Note that if degω f �= 0 then obviously {f !
ω,f !!

ω } ⊂ Z2
z .] For

pictures see (9.7).
(V.4) If either (i) ω1 > 0 < ω2, or (ii) ω1 > 0 � ω2 with f − f (0,0) /∈ Yk[X,Y ], or (iii) ω2 >

0 � ω1 with f − f (0,0) /∈ Xk[X,Y ], then degω f > 0 and hence by (V.3) we get {f !
ω,f !!

ω } ⊂ Z2
z

with |f !
ω| < |f !!

ω |.

Proof of Fact (1). To prove (I), since (i, j) and (i′, j ′) both belong to Supp(f +
ω ), we see that

iω1 + jω2 = i′ω1 + j ′ω2; consequently, if j ′ �= j then we must have ω1 �= 0 and dividing by it
we get |ω| = i′−i

j ′−j
∈ Q. By the relations iω1 + jω2 = i′ω1 + j ′ω2 and (i, j) �= (i′, j ′), we also

see that if j ′ = j then we must have ω1 = 0. The rest of (I) is now clear.
To prove (II), clearly it suffices to establish the three implications:

(i) Supp(f +
ω ) ∩ Supp(f +

ω ) �= ∅ ⇒ f +
ω = f = f +

ω ,
(ii) f +

ω = f +
ω ⇒ Supp(f +

ω ) ∩ Supp(f +
ω ) �= ∅, and

(iii) f = f +
ω ⇒ f = f +

ω .

To establish (i), taking some (i�, j �) in Supp(f +
ω ) ∩ Supp(f +

ω ) we get⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max{iω1 + jω2: (i, j) ∈ Supp(f )}
= i�ω1 + j�ω2

= −(i�ω1 + j�ω2)

= −max{iω1 + jω2: (i, j) ∈ Supp(f )}
= −max{−iω1 − jω2: (i, j) ∈ Supp(f )}
= min{iω1 + jω2: (i, j) ∈ Supp(f )}

and hence for all (i, j) ∈ Supp(f ) we must have iω1 + jω2 = i�ω1 + j�ω2 and therefore also
iω1 + jω2 = i�ω1 + j�ω2; consequently f +

ω = f = f +
ω . (ii) is obvious. To establish (iii), taking

some (i�, j �) ∈ Supp(f +
ω ) we see that for all (i, j) ∈ Supp(f ) we have iω1 +jω2 = i�ω1 +j�ω2,

and hence for all (i, j) ∈ Supp(f ) we have iω1 + jω2 = i�ω1 + j�ω2, and therefore f = f +
ω .

(III) is obvious and in view of it, while proving (IV) to (IX), by replacing ω,ω by their norms
we may assume that they coincide with their norms, and then (IV) to (IX) follow from (II). By
(I) to (III) we get (X). (XI) is obvious and in view of it (XII) follows from (I), (IV), and (V). �
Proof of Fact (2). By symmetry, first in X,Y and then in (i′, j ′), (i′′, j ′′), without loss of gen-
erality, we may assume that

(III∗) j ′ < j < j ′′.
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Then by (I) we get ω1 �= 0, and hence dividing (I) by ω1 we see that |ω| ∈ Q with

(I∗) i′ − j ′|ω| = i − |ω|j = i′′ − |ω|j ′′.

If ω1 = 0 then (IV) follows from (III∗). So assume that ω1 �= 0. Then dividing (II) by ω1 we see
that |ω| ∈ Q with

(II∗) i′ − j ′|ω| �= i − |ω|j �= i′′ − |ω|j ′′.

By (I*) and (II*) we get |ω| �= |ω| and hence

(III∗∗) either |ω| < |ω| or |ω| > |ω|.

Dividing by ω1 we see that (IV) is equivalent to saying that

(IV∗)
{

either i′ − j ′|ω| < i − |ω|j < i′′ − |ω|j ′′

or i′ − j ′|ω| > i − |ω|j > i′′ − |ω|j ′′

and hence it is also equivalent to saying that

(IV∗∗)
{

either (j − j ′)|ω| + (i′ − i) < 0 and (j ′′ − j)|ω| + (i − i′′) < 0

or (j − j ′)|ω| + (i′ − i) > 0 and (j ′′ − j)|ω| + (i − i′′) > 0.

By (I∗) we see that

(I∗∗) (j − j ′)|ω| + (i′ − i) = 0 and (j ′′ − j)|ω| + (i − i′′) = 0.

Now (IV∗∗) follows from (III∗∗) and (I∗∗) by using (V). �
Proof of Fact (3). The proof of (3) follows from the thirty-five parts (10), (11), (12), (13′), . . . ,
(35) which are established below and are collated in the last part (35). Thus the proof of (3) is
long, but it is internally repetitive. For instance parts (20) to (28′′) are mostly obtained from parts
(10) to (18′′) by selectively flipping the signs < and > (also the signs � and �); same applies to
parts (13′′) to (18′′) and (13′) to (18′); likewise parts (23′′) to (28′′) and (23′) to (28′); similarly
the material between (10) and (12) has an internal repetition of this type, and so does the material
between (20) and (22).

Now

for any ω ∈ Z2
x we have |ω| = −ω2/ω1 with ω1 > 0

and therefore

⎧⎪⎪⎨⎪⎪⎩
(i, j) ∈ Supp(f ) and (i�, j �) ∈ Supp(f +

ω ) with ω ∈ Z2
x

⇒ iω1 + jω2 � i�ω1 + j�ω2

⇒ i − j |ω| � i� − j�|ω|
� �
⇒ (j − j )|ω| + (i − i) � 0
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(where for the second implication divide by ω1 > 0) and hence

(10)

{
for any (i, j) ∈ Supp(f ) and (i�, j �) ∈ Supp(f +

ω ) with ω ∈ Z2
x

we have (j − j�)|ω| + (i� − i) � 0

and therefore by (2)(V) we see that

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any ω ∈ Z2
x & ω̂ ∈ Z2

z with (i�, j �) ∈ Supp(f +
ω ) and (i, j) ∈ Supp(f )

we have that if |ω̂| < |ω| and j � j� then (j − j�)|ω̂| + (i� − i) � 0

whereas if |ω̂| < |ω| and j < j� then (j − j�)|ω̂| + (i� − i) > 0

& if |ω̂| < |ω| and j = j� with i �= i� then (j � − j)ω̂ + (i� − i) > 0

and similarly if |ω̂| > |ω| and j � j� then (j − j�)|ω̂| + (i� − i) � 0

whereas if |ω̂| > |ω| and j > j� then (j − j�)|ω̂| + (i� − i) > 0

& if |ω̂| > |ω| and j = j� with i �= i� then (j � − j)ω̂ + (i� − i) > 0

where the j = j� assertions follow from the j � j� and j � j� assertions, and hence upon
multiplying by ω̂1 > 0 we see that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any ω, ω̂ in Z2
x with (i�, j �) ∈ Supp(f +

ω ) and (i, j) ∈ Supp(f )

we have that if |ω̂| < |ω| and j � j� then (j � − j)ω̂2 + (i� − i)ω̂1 � 0

whereas if |ω̂| < |ω| and j < j� then (j � − j)ω̂2 + (i� − i)ω̂1 > 0

& if |ω̂| < |ω| and j = j� with i �= i� then (j � − j)ω̂2 + (i� − i)ω̂1 > 0

and similarly if |ω̂| > |ω| and j � j� then (j � − j)ω̂2 + (i� − i)ω̂1 � 0

whereas if |ω̂| > |ω| and j > j� then (j � − j)ω̂2 + (i� − i)ω̂1 > 0

& if |ω̂| > |ω| and j = j� with i �= i� then (j � − j)ω̂2 + (i� − i)ω̂1 > 0

and therefore by transferring terms we see that

(12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any ω, ω̂ in Z2
x with (i�, j �) ∈ Supp(f +

ω ) and (i, j) ∈ Supp(f )

we have that if |ω̂| < |ω| and j � j� then i�ω̂1 + j�ω̂2 � iω̂1 + jω̂2

whereas if |ω̂| < |ω| and j < j� then i�ω̂1 + j�ω̂2 > iω̂1 + jω̂2

& if |ω̂| < |ω| and j = j� with i �= i� then i�ω̂1 + j�ω̂2 > iω̂1 + jω̂2

and similarly if |ω̂| > |ω| and j � j� then i�ω̂1 + j�ω̂2 � iω̂1 + jω̂2

whereas if |ω̂| > |ω| and j > j� then i�ω̂1 + j�ω̂2 > iω̂1 + jω̂2

& if |ω̂| > |ω| and j = j� with i �= i� then i�ω̂1 + j�ω̂2 > iω̂1 + jω̂2

(13′) From here until (18′) suppose that ω ∈ Ω̂ ′ with S′ �= ∅ and either (i) ω1 > 0 or (ii)
ω1 = 0 > ω2 with i′ changed to max{i: (i, j) ∈ Supp(f +

ω )}.
Now

(14′) |ω| = −ω2/ω1 with ω1 > 0

and we can take
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(15′)
(
i∗, j∗) ∈ S′ with |ω| = i′ − i∗

j ′ − j∗ = max
(i,j)∈S′

i′ − i

j ′ − j
.

If ω1 = 0 > ω2 then |ω| = ∞ and hence |ω| < |ω| by (14′), whereas if ω1 > 0 then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i∗, j∗) ∈ S′

⇒ i∗ω1 + j∗ω2 < i′ω1 + j ′ω2

⇒ i∗ − j∗|ω| < i′ − j ′|ω| dividing by ω1 > 0

⇒ (j ′ − j∗)|ω| < i′ − i∗

⇒ |ω| > i′−i∗
j ′−j∗ dividing by j ′ − j∗ < 0

and so |ω| < |ω| by (15′). Thus in both the cases we have

(16′) |ω| < |ω|.

By (15′) we also see that {
for all (i, j) ∈ S′ we have

i − j |ω| � i′ − j ′|ω| = i∗ − j∗|ω|

and hence, in view of (14′), multiplying by ω1 > 0 we conclude that

(17′)
{

for all (i, j) ∈ S′ we have

iω1 + jω2 � i′ω1 + j ′ω2 = i∗ω1 + j∗ω2.

Transferring terms in (17′) and dividing by ω1 > 0 we see that{
for all (i, j) ∈ S′ we have (j ′ − j)|ω| + (i − i′) � 0

and we always have (j ′ − j∗)|ω| + (i∗ − i′) = 0

and hence by (2)(V) we see that⎧⎨⎩
for all ω̂ ∈ Z2

x we have that

if |ω̂| > |ω| then (j ′ − j)|ω̂| + (i − i′) < 0 for all (i, j) ∈ S′,
whereas if |ω̂| < |ω| then (j ′ − j∗)|ω̂| + (i∗ − i′) > 0

and therefore transferring terms and multiplying by ω̂1 > 0 we conclude that

(18′)

⎧⎨⎩
for all ω̂ ∈ Z2

x we have that

if |ω̂| > |ω| then iω̂1 + jω̂2 < i′ω̂1 + j ′ω̂2 for all (i, j) ∈ S′,
whereas if |ω̂| < |ω| then i∗ω̂1 + j∗ω̂2 > i′ω̂1 + j ′ω̂2.

(13′′) From here until (18′′) suppose that ω ∈ Ω̂ ′′ with S′′ �= ∅ and either ω1 > 0 or ω1 =
0 < ω2.
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Now

(14′′) |ω| = −ω2/ω1 with ω1 > 0

and we can take

(15′′)
(
i∗, j∗) ∈ S′′ with |ω| = i′′ − i∗

j ′′ − j∗ = min
(i,j)∈S′′

i′′ − i

j ′′ − j
.

If ω1 = 0 < ω2 then |ω| = −∞ and hence |ω| > |ω| by (14′′), whereas if ω1 > 0 then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i∗, j∗) ∈ S′′

⇒ i∗ω1 + j∗ω2 < i′′ω1 + j ′′ω2

⇒ i∗ − j∗|ω| < i′′ − j ′′|ω| dividing by ω1 > 0

⇒ (j ′′ − j∗)|ω| < i′′ − i∗

⇒ |ω| < i′′−i∗
j ′′−j∗ dividing by j ′′ − j∗ > 0

and so |ω| > |ω| by (15′′). Thus in both the cases we have

(16′′) |ω| > |ω|.

By (15′′) we also see that {
for all (i, j) ∈ S′′ we have

i − j |ω| � i′′ − j ′′|ω| = i∗ − j∗|ω|
and hence, in view of (14′′), multiplying by ω1 > 0 we conclude that

(17′′)
{

for all (i, j) ∈ S′′ we have

iω1 + jω2 � i′′ω1 + j ′′ω2 = i∗ω1 + j∗ω2.

Transferring terms in (17′′) and dividing by ω1 > 0 we see that{
for all (i, j) ∈ S′′ we have (j ′′ − j)|ω| + (i − i′′) � 0

and we always have (j ′′ − j∗)|ω| + (i∗ − i′′) = 0

and hence by (2)(V) we see that⎧⎨⎩
for all ω̂ ∈ Z2

x we have that

if |ω̂| < |ω| then (j ′′ − j)|ω̂| + (i − i′′) < 0 for all (i, j) ∈ S′′,
whereas if |ω̂| > |ω| then (j ′′ − j∗)|ω̂| + (i∗ − i′′) > 0

and therefore transferring terms and multiplying by ω̂1 > 0 we conclude that

(18′′)

⎧⎨⎩
for all ω̂ ∈ Z2

x we have that

if |ω̂| < |ω| then iω̂1 + jω̂2 < i′′ω̂1 + j ′′ω̂2 for all (i, j) ∈ S′′,
∗ ∗ ′′ ′′
whereas if |ω̂| > |ω| then i ω̂1 + j ω̂2 > i ω̂1 + j ω̂2.
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Turning to negative x-weight

for any ω ∈ Z2
x− we have |ω| = −ω2/ω1 with ω1 < 0

and therefore

⎧⎪⎪⎨⎪⎪⎩
(i, j) ∈ Supp(f ) and (i�, j �) ∈ Supp(f +

ω ) with ω ∈ Z2
x−

⇒ iω1 + jω2 � i�ω1 + j�ω2

⇒ i − j |ω| � i� − j�|ω|
⇒ (j − j�)|ω| + (i� − i) � 0

(where for the second implication divide by ω1 < 0) and hence

(20)

{
for any (i, j) ∈ Supp(f ) and (i�, j �) ∈ Supp(f +

ω ) with ω ∈ Z2
x−

we have (j − j�)|ω| + (i� − i) � 0

and therefore by (2)(V) we see that

(21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any ω ∈ Z2
x− & ω̂ ∈ Z2

z with (i�, j �) ∈ Supp(f +
ω ) and (i, j) ∈ Supp(f )

we have that if |ω̂| > |ω| and j � j� then (j − j�)|ω̂| + (i� − i) � 0

whereas if |ω̂| > |ω| and j < j� then (j − j�)|ω̂| + (i� − i) < 0

& if |ω̂| > |ω| and j = j� with i �= i� then (j � − j)ω̂ + (i� − i) > 0

and similarly if |ω̂| < |ω| and j � j� then (j − j�)|ω̂| + (i� − i) � 0

whereas if |ω̂| < |ω| and j > j� then (j − j�)|ω̂| + (i� − i) < 0

& if |ω̂| < |ω| and j = j� with i �= i� then (j � − j)ω̂ + (i� − i) > 0

where the j = j� assertions follow from the j � j� and j � j� assertions, and hence upon
multiplying by ω̂1 < 0 we see that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any ω, ω̂ in Z2
x− with (i�, j �) ∈ Supp(f +

ω ) and (i, j) ∈ Supp(f )

we have that if |ω̂| > |ω| and j � j� then (j � − j)ω̂2 + (i� − i)ω̂1 � 0

whereas if |ω̂| > |ω| and j < j� then (j � − j)ω̂2 + (i� − i)ω̂1 > 0

& if |ω̂| > |ω| and j = j� with i �= i� then (j � − j)ω̂2 + (i� − i)ω̂1 > 0

and similarly if |ω̂| < |ω| and j � j� then (j � − j)ω̂2 + (i� − i)ω̂1 � 0

whereas if |ω̂| < |ω| and j > j� then (j � − j)ω̂2 + (i� − i)ω̂1 > 0

& if |ω̂| < |ω| and j = j� with i �= i� then (j � − j)ω̂2 + (i� − i)ω̂1 > 0.

and therefore by transferring terms we see that
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(22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any ω, ω̂ in Z2
x− with (i�, j �) ∈ Supp(f +

ω ) and (i, j) ∈ Supp(f )

we have that if |ω̂| > |ω| and j � j� then i�ω̂1 + j�ω̂2 � iω̂1 + jω̂2

whereas if |ω̂| > |ω| and j < j� then i�ω̂1 + j�ω̂2 > iω̂1 + jω̂2

& if |ω̂| > |ω| and j = j� with i �= i� then i�ω̂1 + j�ω̂2 > iω̂1 + jω̂2

and similarly if |ω̂| < |ω| and j � j� then i�ω̂1 + j�ω̂2 � iω̂1 + jω̂2

whereas if |ω̂| < |ω| and j > j� then i�ω̂1 + j�ω̂2 > iω̂1 + jω̂2

& if |ω̂| < |ω| and j = j� with i �= i� then i�ω̂1 + j�ω̂2 > iω̂1 + jω̂2.

(23′) From here until (28′) suppose that ω ∈ Ω̂ ′′ with S′ �= ∅ and either ω1 < 0 or ω1 =
0 > ω2.

Now

(24′) |ω| = −ω2/ω1 with ω1 < 0

and we can take

(25′)
(
i∗, j∗) ∈ S′ with |ω| = i′ − i∗

j ′ − j∗ = min
(i,j)∈S′

i′ − i

j ′ − j
.

If ω1 = 0 > ω2 then |ω| = ∞ and hence |ω| < |ω| by (24′), whereas if ω1 < 0 then

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i∗, j∗) ∈ S′

⇒ i∗ω1 + j∗ω2 < i′ω1 + j ′ω2

⇒ i∗ − j∗|ω| > i′ − j ′|ω| dividing by ω1 < 0

⇒ (j ′ − j∗)|ω| > i′ − i∗

⇒ |ω| < i′−i∗
j ′−j∗ dividing by j ′ − j∗ < 0

and so |ω| > |ω| by (25′). Thus

(26′) |ω| > |ω| or |ω| < |ω| according as ω1 < 0 or ω1 = 0 > ω2.

By (25′) we also see that {
for all (i, j) ∈ S′ we have

i − j |ω| � i′ − j ′|ω| = i∗ − j∗|ω|

and hence, in view of (24′), multiplying by ω1 < 0 we conclude that

(27′)
{

for all (i, j) ∈ S′ we have

iω1 + jω2 � i′ω1 + j ′ω2 = i∗ω1 + j∗ω2.

Transferring terms in (27′) and dividing by ω1 < 0 we see that{
for all (i, j) ∈ S′ we have (j ′ − j)|ω| + (i − i′) � 0

′ ∗ ∗ ′
and we always have (j − j )|ω| + (i − i ) = 0
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and hence by (2)(V) we see that

⎧⎨⎩
for all ω̂ ∈ Z2

x− we have that

if |ω̂| < |ω| then (j ′ − j)|ω̂| + (i − i′) > 0 for all (i, j) ∈ S′,
whereas if |ω̂| > |ω| then (j ′ − j∗)|ω̂| + (i∗ − i′) < 0

and therefore transferring terms and multiplying by ω̂1 < 0 we conclude that

(28′)

⎧⎨⎩
for all ω̂ ∈ Z2

x− we have that

if |ω̂| < |ω| then iω̂1 + jω̂2 < i′ω̂1 + j ′ω̂2 for all (i, j) ∈ S′,
whereas if |ω̂| > |ω| then i∗ω̂1 + j∗ω̂2 > i′ω̂1 + j ′ω̂2.

(23′′) From here until (28′′) suppose that ω ∈ Ω̂ ′ with S′′ �= ∅ and either (i) ω1 < 0 or (ii)
ω1 = 0 < ω2 with i′′ changed to min{i: (i, j) ∈ Supp(f +

ω )}.
Now

(24′′) |ω| = −ω2/ω1 with ω1 < 0

and we can take

(25′′)
(
i∗, j∗) ∈ S′′ with |ω| = i′′ − i∗

j ′′ − j∗ = max
(i,j)∈S′′

i′′ − i

j ′′ − j
.

If ω1 = 0 < ω2 then |ω| = −∞ and hence |ω| > |ω| by (24′′), whereas if ω1 < 0 then

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i∗, j∗) ∈ S′′

⇒ i∗ω1 + j∗ω2 < i′′ω1 + j ′′ω2

⇒ i∗ − j∗|ω| > i′′ − j ′′|ω| dividing by ω1 < 0

⇒ (j ′′ − j∗)|ω| > i′′ − i∗

⇒ |ω| > i′′−i∗
j ′′−j∗ dividing by j ′′ − j∗ > 0

and so |ω| < |ω| by (25′′). Thus

(26′′) |ω| < |ω| or |ω| > |ω| according as ω1 < 0 or ω1 = 0 < ω2.

By (25′′) we also see that

{
for all (i, j) ∈ S′′ we have

i − j |ω| � i′′ − j ′′|ω| = i∗ − j∗|ω|

and hence, in view of (24′′), multiplying by ω1 < 0 we conclude that

(27′′)
{

for all (i, j) ∈ S′′ we have
′′ ′′ ∗ ∗
iω1 + jω2 � i ω1 + j ω2 = i ω1 + j ω2.
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Transferring terms in (27′′) and dividing by ω1 < 0 we see that

{
for all (i, j) ∈ S′′ we have (j ′′ − j)|ω| + (i − i′′) � 0

and we always have (j ′′ − j∗)|ω| + (i∗ − i′′) = 0

and hence by (2)(V) we see that

⎧⎨⎩
for all ω̂ ∈ Z2

x− we have that

if |ω̂| > |ω| then (j ′′ − j)|ω̂| + (i − i′′) > 0 for all (i, j) ∈ S′′,
whereas if |ω̂| < |ω| then (j ′′ − j∗)|ω̂| + (i∗ − i′′) < 0

and therefore transferring terms and multiplying by ω̂1 < 0 we conclude that

(28′′)

⎧⎨⎩
for all ω̂ ∈ Z2

x− we have that

if |ω̂| > |ω| then iω̂1 + jω̂2 < i′′ω̂1 + j ′′ω̂2 for all (i, j) ∈ S′′,
whereas if |ω̂| < |ω| then i∗ω̂1 + j∗ω̂2 > i′′ω̂1 + j ′′ω̂2.

Putting together parts (10) to (28′′) we claim that

(31) assertions (I) to (III) are true.

Namely, paying special attention to the easy case of S′ = ∅, by (10), (12) and (13′) to (18′)
we get (1′) stated below. Similarly, paying special attention to the easy case of S′′ = ∅, by (10),
(12) and (13′′) to (18′′) we get (1′′) stated below. Moreover, paying special attention to the easy
case of S′ = ∅, by (20), (22) and (23′) to (28′) we get (2′) stated below. Likewise, paying special
attention to the easy case of S′′ = ∅, by (20), (22) and (23′′) to (28′′) we get (2′′) stated below.

(1′) If ω1 > 0 or f − f +
ω �= 0 = ω1 = 0 > ω2 then: For all ω ∈ Ω̂ ′ we have that |ω| < |ω|.

For all ω ∈ Ω̂ ′ ∪ Ω̂∗ we have that Supp(f +
ω ) ∩ Supp(f +

ω ) = {f !
ω} = {f !!

ω }. For all ω̂ ∈ Z2
x and

ω ∈ Ω̂ ′ with |ω̂| < |ω| we have that Supp(f +
ω ) ∩ Supp(f +

ω̂ ) = ∅. For all ω ∈ Ω̂∗ we have that f

is a ω-monomial. For all ω ∈ Ω̂ ′ ∩ Z2
x we have that f is not a ω-monomial.

(1′′) If ω1 > 0 or f − f +
ω �= 0 = ω1 = 0 < ω2 then: For all ω ∈ Ω̂ ′′ we have that |ω| > |ω|.

For all ω ∈ Ω̂ ′′ ∪ Ω̂∗∗ we have that Supp(f +
ω ) ∩ Supp(f +

ω ) = {f !!
ω } = {f !

ω}. For all ω̂ ∈ Z2
x and

ω ∈ Ω̂ ′′ with |ω̂| > |ω| we have that Supp(f +
ω ) ∩ Supp(f +

ω̂ ) = ∅. For all ω ∈ Ω̂∗∗ we have that
f is a ω-monomial. For all ω ∈ Ω̂ ′′ ∩ Z2

x we have that f is not a ω-monomial.
(2′) If ω1 < 0 or f − f +

ω �= 0 = ω1 = 0 < ω2 then: For all ω ∈ Ω̂ ′ we have |ω| > |ω| or
|ω| < |ω| according as ω1(ordY f +

w − ordY f ) = 0 or not. For all ω ∈ Ω̂ ′ ∪ Ω̂∗ we have that
Supp(f +

ω ) ∩ Supp(f +
ω ) = {f !

ω} = {f !!
ω }. For all ω̂ ∈ Z2

x− and ω ∈ Ω̂ ′ with |ω̂| < |ω| we have
that Supp(f +

ω ) ∩ Supp(f +
ω̂ ) = ∅. For all ω ∈ Ω̂∗ we have that f is a ω-monomial. For all ω ∈

Ω̂ ′ ∩ Z2
x− we have that f is not a ω-monomial.

(2′′) If ω1 < 0 or f − f +
ω �= 0 = ω1 = 0 > ω2 then: For all ω ∈ Ω̂ ′′ we have |ω| < |ω| or

|ω| > |ω| according as ω1(degY f − degY f +
w ) = 0 or not. For all ω ∈ Ω̂ ′′ ∪ Ω̂∗∗ we have that

Supp(f +
ω ) ∩ Supp(f +

ω ) = {f !!
ω } = {f !

ω}. For all ω̂ ∈ Z2
x− and ω ∈ Ω̂ ′′ with |ω̂| > |ω| we have

that Supp(f +
ω ) ∩ Supp(f +

ω̂ ) = ∅. For all ω ∈ Ω̂∗∗ we have that f is a ω-monomial. For all
ω ∈ Ω̂ ′′ ∩ Z2

x− we have that f is not a ω-monomial.
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Now, tacitly using Fact (I) and paying special attention to the easy case of f = f +
ω with

ω1 = 0. Assertions (II) and (III) follow from (1′), (1′′), (2′), and (2′′). Assertion (I) is obvious

except for the pairwise disjointness claims which use Assertion (II).

By (11) and (20) (or alternatively by (10) and (21)) we get the following.

(32)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

If ω ∈ Z2
z with ω1ω1 < 0 is such that

for some (i�, j �) and (i�, j �) in Supp(f +
ω ) ∩ Supp(f +

ω )

we have degY f �= j� and ordY f �= j�, then |ω| = |ω|.
Likewise if ω ∈ Z2

z with ω1ω1 < 0 is such that

for some (i�, j �) ∈ Supp(f +
ω ) ∩ Supp(f +

ω ) and (i, j) ∈ Supp(f )

we have j = j� and i �= i�, then |ω| = |ω|.
By (31) and (32) we see that

(33) assertion (IV) is true.

Next we claim that

(34) assertion (V) is true.

To see this note that

(1∗) i′ω1 + j ′ω2 = i′′ω1 + j ′′ω2 = degω f � iω1 + jω2 for all (i, j) ∈ Supp(f ).

For a moment assume that ω1 �= 0. Then upon letting λ = (degw f )/ω1 and dividing (1*)

by ω1, we get

(2∗) i′ − j ′|ω| = i′′ − j ′′|ω| = λ

and

(3∗) for all (i, j) ∈ Supp(f ) we have λ

{� i − j |ω| if ω1 > 0,

� i − j |ω| if ω1 < 0.

By (2∗) we see that

(4∗) j ′ > j ′′.

Subtracting the RHS of the first equation of (2*) from the LHS of that equation we see that

(i′ − i′′) − (j ′ − j ′′)|ω| = 0 and hence

(5∗) |ω| = i′ − i′′
′ ′′
j − j
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and substituting this in the second equation of (2*) we get

λ = i′′ − j ′′ i′ − i′′

j ′ − j ′′ = i′′j ′ − i′j ′′

j ′ − j ′′

and therefore

(6∗) i′′j ′ − i′j ′′ = (j ′ − j ′′)λ

which proves (V.1). By (1*) we get (V.2). So let us prove (V.3).
Now assuming ω1 > 0, we have the following. If degω f > 0 then by (4∗) and (6∗) we get

i′′j ′−i′j ′′ > 0 �= i′′; therefore if i′ �= 0 then j ′/i′ > j ′′/i′′ and hence |f !
ω| = −j ′/i′ < −j ′′/i′′ =

|f !!
ω |; moreover if i′ = 0 then |f !

ω| = −∞ < −j ′′/i′′ = |f !!
ω |. If degω f < 0 then by (4∗) and (6∗)

we get i′′j ′ − i′j ′′ < 0 �= i′; therefore if i′′ �= 0 then j ′/i′ < j ′′/i′′ and hence |f !
ω| = −j ′/i′ >

−j ′′/i′′ = |f !!
ω |; moreover if i′′ = 0 then |f !

ω| = −j ′/i′ > −∞ = |f !!
ω |. If degω f = 0 then by

(4*) and (6*) we get i′′j ′ − i′j ′′ = 0 < j ′ − j ′′; therefore if i′′ �= 0 then i′ �= 0 and hence |f !
ω| =

−j ′/i′ = −j ′′/i′′ = |f !!
ω |; moreover if i′′ = 0 �= j ′′ then i′ = 0 and hence |f !

ω| = −∞ = |f !!
ω |. So

far {f !
ω,f !!

ω } ⊂ Z2
z . In the left over case {f !

ω,f !!
ω } �⊂ Z2

z .
Next assuming ω1 < 0, we have the following. If degω f < 0 then by (4∗) and (6∗) we

get i′′j ′ − i′j ′′ > 0 �= i′′; therefore if i′ �= 0 then j ′/i′ > j ′′/i′′ and hence |f !!
ω | = −j ′/i′ <

−j ′′/i′′ = |f !
ω|; moreover if i′ = 0 then |f !!

ω | = −∞ < −j ′′/i′′ = |f !
ω|. If degω f > 0 then

by (4∗) and (6∗) we get i′′j ′ − i′j ′′ < 0 �= i′; therefore if i′′ �= 0 then j ′/i′ < j ′′/i′′ and
hence |f !!

ω | = −j ′/i′ > −j ′′/i′′ = |f !
ω|; moreover if i′′ = 0 then |f !!

ω | = j ′/i′ > −∞ = |f !
ω|.

If degω f = 0 then by (4∗) and (6∗) we get i′′j ′ − i′j ′′ = 0 < j ′ − j ′′; therefore if i′′ �= 0 then
i′ �= 0 and hence |f !!

ω | = −j ′/i′ = −j ′′/i′′ = |f !
ω|; moreover if i′′ = 0 �= j ′′ then i′ = 0 and hence

|f !!
ω | = −∞ = |f !

ω|. So far {f !
ω,f !!

ω } ⊂ Z2
z . In the left over case {f !

ω,f !!
ω } �⊂ Z2

z .
Finally assuming ω1 = 0, by (V.2) we get the following. If degw f > 0 < ω2 then j ′ =

j ′′ > 0; therefore if i′ �= 0 then |f !
ω| = −j ′/i′ < −j ′′/i′′ = |f !!

ω |; moreover if i′ = 0 then
|f !

ω| = −∞ < −j ′′/i′′ = |f !!
ω |. If degw f < 0 > ω2 then j ′ = j ′′ > 0; therefore if i′ �= 0 then

|f !!
ω | = −j ′/i′ < −j ′′/i′′ = |f !

ω|; moreover if i′ = 0 then |f !!
ω | = −∞ < −j ′′/i′′ = |f !

ω|. If
either degw f < 0 < ω2 or degw f > 0 > ω2 then we get a contradiction to degw f = j ′ω2.
If degw f = 0 then j ′ = j ′′ = 0; therefore if i′ �= 0 then |f !

ω| = −j ′/i′ = −j ′′/i′′ = |f !!
ω | or

|f !!
ω | = −j ′/i′ = −j ′′/i′′ = |f !

ω| according as ω2 > 0 or ω2 < 0. So far {f !
ω,f !!

ω } ⊂ Z2
z . In the

left over case {f !
ω,f !!

ω } �⊂ Z2
z . This completes the proof of (V.3).

In view of (V.3), to prove (V.4) we only have to show that in cases (i), (ii), (iii), we have
degw f > 0. This follows by noting that in case (i) we have (i, j) ∈ Supp(f ) for some (i, j) ∈ N2

with (i, j) �= (0,0), in case (ii) we have (i,0) ∈ Supp(f ) for some i ∈ N+, and in case (iii) we
have (0, j) ∈ Supp(f ) for some j ∈ N+. This completes the proof of (34).

Finally by (31), (33), and (34) we see that

(35) Fact (3) is true. �
8. Degraded weight systems

To generalize the concepts of weight systems still further we proceed thus.

Definition (8.1). Let θ = θ(X,Y ) ∈ k[X,X−1, Y,Y−1] where k is a field.
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Corresponding to Z2
c we introduce the full rational numbers set Qc as the disjoint union

Qc = Qd � Q � {±∞}
where Qd = the set of degraded rational numbers is a set together with a

bijection Qd → Q given by w �→ w� = the sharpened version of w.

We make Qc into a linearly ordered set by taking the obvious linear orders on Qd and Q∪{±∞},
and declaring w < w for all w ∈ Qd and w ∈ Q ∪ {±∞}. Thus Qc contains two copies of every
rational number, the ordinary and the degraded, whereby all the degraded rationals are regarded
as smaller than all the ordinary rationals (including ±∞). We get a

bijection Qc → Z2
c given by w �→ w� = (

w
�
1,w

�
2

)
where ⎧⎪⎨⎪⎩

w ∈ Qd ⇒ w� = −w
�
2/w

�
1 with w

�
1 < 0,

w ∈ Q ⇒ w = −w
�
2/w

�
1 with w

�
1 > 0,

w = −∞ or ∞ ⇒ (w
�
1,w

�
2) = (0,1) or (0,−1) respectively.

Letting Qd+ be the inverse images of Q+ under the bijection Qd → Q, and letting the super-
script � denote the image under the bijection Qc → Z2

c , we clearly have

Q� = Z2
c ∩ Z2

x

with

Q
�
+ = Z2

c ∩ Z2
x ∩ Z2

y− and Q
�
d+ = Z2

c ∩ Z2
y ∩ Z2

x−.

Let us observe that for any w ∈ Q ∪ {±∞}, we clearly have: degw θ = degw� θ , θ+
w = θ+

w� ,

θ0
w = θ0

w� , w-homogeneous iff it is (w�)-homogeneous, w-automorphic pair iff it is a (w�)-
automorphic pair, having one or two (respectively at most two) points at infinity in the w-
weighted sense iff in the (w�)-sense, w-similar iff it is (w�)-similar, lagw(f,g) = lagw�(f, g),
and w-monomial iff (w�)-monomial.

Correspondingly, for any w ∈ Qd , let us proceed to define: degw θ = degw� θ , θ+
w = θ+

w� , θ0
w =

θ0
w� , w-homogeneous iff it is (w�)-homogeneous, w-automorphic pair iff it is a (w�)-automorphic

pair, having one or two (respectively at most two) points at infinity in the w-weighted sense iff
in the (w�)-sense, w-similar iff it is (w�)-similar, lagw(f,g) = lagw�(f, g), and w-monomial iff
(w�)-monomial.

Symmetry (8.2). Now we come to assertions (8.3.u) and (8.4.v) which, by symmetry, mostly
follow from (7.3.u) and (7.4.v) respectively.

As common notation for (8.3.u) and (8.4.v) let k be a field of characteristic 0 and let w ∈ Qc

or w ∈ Z2
z ; from Remark–Definition (8.4.14) onwards, we specify the range of w more ex-

plicitly. As common notation for (8.3.u) let F,G be nonzero w-homogeneous members of
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k[X,X−1, Y,Y−1]. As common notation for (8.4.v) with v < 14 let f,g be nonzero members
of k[X,Y ].

Complemented Eulerian and Jacobian Lemmas with some consequences (8.3.1), (8.3.2.6)
to (8.3.2.9), (8.3.3.1) to (8.3.3.4), (8.4.1) to (8.4.5), (8.4.9), and (8.4.10). Respectively same as
(3.1), (3.2.6) to (3.2.9), (3.3.1) to (3.3.4), (4.1) to (4.5), (4.9), and (4.10), with w ∈ Qc or w ∈ Z2

z .
In items (8.3.2.9), (8.3.3.4), (8.4.5), (8.4.9), and (8.4.10), in case of w ∈ Qc , replace (w1,w2) by
(w

�
1,w

�
2).

Remark–Definition (8.4.14). Noting that items (8.4.11) to (8.4.13) are nonexistent, we proceed
to generalize the concepts of antecedent and consequent introduced in (4.14) to w ∈ {±∞} and
w ∈ Qd . Pictures in (9.4) to (9.6).

In (8.4.14) we let f belong to k[X,X−1, Y,Y−1]× with any commutative ring k.

We start by extending the definitions of (4.14) to w ∈ {±∞} thus.
Note that

f +−∞ = f +
(0,1) = defoY f =

∑
i′�i�i′′

αiX
iY j ′

where

deg−∞ f = deg(0,1) f = degY f = j ′ = j ′′ and αi ∈ k with αi′ �= 0 �= αi′′

and

f +∞ = f +
(0,−1)

= infoY f =
∑

i∗�i�i∗∗
βiX

iY j∗

where

−deg∞ f = −deg(0,−1) f = ordY f = j∗ = j∗∗ and βi ∈ k with βi∗ �= 0 �= βi∗∗ .

[Also note that f +
0 = f +

(1,0) = defoX f and f +
(−1,0) = infoX f .]

Let S be the set of all (i, j) in Supp(f ) with j < j ′′, and let T be the set of all (i, j) in
Supp(f ) with j > j∗.

We define the degreewise antecedent (−∞)†(f ) ∈ Qd of −∞ relative to f by putting

(
(−∞)†(f )

)� = max
(i,j)∈S

i′ − i

j ′ − j

with the understanding that if S = ∅ then (−∞)†(f ) = ∞. Note that

(−∞)†(f ) ∈ Qd ∪ {∞}.
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We define the degreewise consequent (−∞)‡(f ) ∈ Q of −∞ relative to f by putting

(−∞)‡(f ) = min
(i,j)∈S

i′′ − i

j ′′ − j

with the understanding that if S = ∅ then (−∞)‡(f ) = ∞. Note that

(−∞)‡(f ) ∈ Q ∪ {∞}.

We define the degreewise antecedent ∞†(f ) ∈ Q of ∞ relative to f by putting

∞†(f ) = max
(i,j)∈T

i∗∗ − i

j∗∗ − j

with the understanding that if T = ∅ then ∞†(f ) = −∞. Note that

∞†(f ) ∈ Q ∪ {−∞}.

We define the degreewise consequent ∞‡(f ) ∈ Qd of ∞ relative to f by putting

(∞‡(f )
)� = min

(i,j)∈T

i∗ − i

j∗ − j

with the understanding that if T = ∅ then ∞‡(f ) = −∞. Note that

∞‡(f ) ∈ Qd ∪ {−∞}.

Now we extend the definitions of (4.14) to w ∈ Qd thus.
First for a moment let j† be the smallest value of j with (i, j) varying over Supp(f +

w ), let i†

be the unique value of i with (i, j†) ∈ Supp(f +
w ), and let S† be the set of all (i, j) in Supp(f )

with j < j†. We define the degreewise antecedent w†(f ) of w relative to f by putting

(
w†(f )

)� = max
(i,j)∈S†

i† − i

j† − j

with the understanding that if S† = ∅ then w†(f ) = ∞. Note that

w†(f ) ∈ Qd ∪ {∞}.

Next for a moment let j‡ be the largest value of j with (i, j) varying over Supp(f +
w ), let i‡

be the unique value of i with (i, j‡) ∈ Supp(f +
w ), and let S‡ be the set of all (i, j) in Supp(f )

with j > j‡. We define the degreewise consequent w‡(f ) of w relative to f by putting

(
w‡(f )

)� = min
‡

i‡ − i

j‡ − j
(i,j)∈S
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with the understanding that if S‡ = ∅ then w‡(f ) = −∞. Note that

w‡(f ) ∈ Qd ∪ {−∞}.

This completes the definition of w†(f ) and w‡(f ) for all w ∈ Qc . Now for all w ∈ Qc , upon
letting ω = w�, in the notation of Fact (3) of (7.4.14) we clearly have

w†(f )� ∈ Ω̂ ′ and w‡(f )� ∈ Ω̂ ′′

and to match up with Ω ′ and Ω ′′ we define the full antecedent of w relative to f and the full
consequent of w relative to f to be the unique members w

†
c (f ) and w

‡
c (f ) of Qc such that

w†
c (f )� ∈ Ω ′ and w‡

c (f )� ∈ Ω ′′

respectively. So we may tacitly use Fact (3) of (7.4.14) in dealing with the above four displayed
objects.

For any w ∈ Qc we define the dotted w-degree form f �
w of f and the double dotted w-degree

form f ��
w of f by putting

f �
w =

⎧⎪⎪⎨⎪⎪⎩
defoY f +

w if w ∈ Q,

infoX f +
w if w = −∞,

defoX f +
w if w = ∞,

infoY f +
w if w ∈ Qd

and

f ��
w =

⎧⎪⎪⎨⎪⎪⎩
infoY f +

w if w ∈ Q,

defoX f +
w if w = −∞,

infoX f +
w if w = ∞,

defoY f +
w if w ∈ Qd .

Clearly these are monomials and hence we have unique κ� and κ�� in k× together with (i�, j�)

and (i��, j��) in Z2 such that

f �
w = κ�Xi�Y j�

and f ��
w = κ��Xi��

Y j��
.

We put

f ?
w = κ� ∈ k× and f ??

w = κ�� ∈ k×

and we call these the questioned w-constant of f and the double questioned w-constant of f

respectively. Likewise we put

f !
w = ((

f !
w

)
,
(
f !

w

) ) = (
i�, j�) ∈ Z2
1 2
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and

f !!
w = ((

f !!
w

)
1,

(
f !!

w

)
2

) = (
i��, j��) ∈ Z2

and we call these the banged w-point of f and the double banged w-point of f respectively.
Note that for any w ∈ Qc , upon letting ω = w�, we have

f �
ω = f �

w and f ��
ω = f ��

w

and

f ?
ω = f ?

w and f ??
ω = f ??

w

and

f !
ω = f !

w and f !!
ω = f !!

w.

The following assertions (1) to (6) and (1*) to (6*) enhance assertions (1) to (6) of (4.14);
details in (7.4.14)(3).

(1) If w ∈ Q ∪ {∞} then we have that: w†(f ) ∈ Q ⇔ w†(f ) �= −∞ ⇔ there is some (i, j) ∈
Supp(f ) such that j > j∗ for every (i∗, j∗) ∈ Supp(f +

w ) ⇒ f is not a w†(f )-monomial and
for w = w†(f ) we have Supp(f +

w ) ∩ Supp(f +
w ) = {(i†, j†)} where (i†, j†) = f !

w and for every

(i, j) ∈ Supp(f +
w ) \ {(i†, j†)} we have w = i†−i

j†−j
.

(2) If w ∈ Q ∪ {−∞} then we have that: w‡(f ) ∈ Q ⇔ w‡(f ) �= ∞ ⇔ there is some (i, j) ∈
Supp(f ) such that j < j∗ for every (i∗, j∗) ∈ Supp(f +

w ) ⇒ f is not a w‡(f )-monomial and
for w = w‡(f ) we have Supp(f +

w ) ∩ Supp(f +
w ) = {(i‡, j‡)} where (i‡, j‡) = f !!

w and for every

(i, j) ∈ Supp(f +
w ) \ {(i‡, j‡)} we have w = i‡−i

j‡−j
.

(3) If w ∈ Q ∪ {∞} with w†(f ) ∈ Q then we have that: w > w†(f ) and for all ŵ ∈ {w̃ ∈
Qd : w̃†(f ) ∈ Qd or w̃†(f ) > w} ∪ {−∞} ∪ {w′ ∈ Q: w†(f ) > w′} we have Supp(f +

w ) ∩
Supp(f +

ŵ ) = ∅ and for all ŵ ∈ Q with w > ŵ > w†(f ) we have that f is a ŵ-monomial with

Supp(f +
ŵ ) = {(i†, j†)} where (i†, j†) is as in (1).

(4) If w ∈ Q ∪ {−∞} with w‡(f ) ∈ Q then we have that: w < w‡(f ) and for all ŵ ∈
{w̃ ∈ Qd : w̃‡(f ) ∈ Qd or w̃‡(f ) < w} ∪ {∞} ∪ {w′ ∈ Q: w‡(f ) < w′} we have Supp(f +

w ) ∩
Supp(f +

ŵ ) = ∅ and for all ŵ ∈ Q with w < ŵ < w‡(f ) we have that f is a ŵ-monomial with

Supp(f +
ŵ ) = {(i‡, j‡)} where (i‡, j‡) is as in (2).

(5) If w ∈ Q ∪ {∞} is such that w†(f ) ∈ Q and f is not a w-monomial then we have
w†(f )‡(f ) = w. If w ∈ Q∪{∞} is such that f is not a w†(f )-monomial then we have w

†
c (f ) =

w†(f ). If w ∈ Q ∪ {∞} is such that f is a w†(f )-monomial then we have w
†
c (f ) = w†(f )†(f ).

(6) If w ∈ Q ∪ {−∞} is such that w‡(f ) ∈ Q and f is not a w-monomial then we have
w‡(f )†(f ) = w. If w ∈ Q ∪ {−∞} is such that f is not a w‡(f )-monomial then we have
w

‡
c (f ) = w‡(f ). If w ∈ Q ∪ {−∞} is such that f is a w‡(f )-monomial then we have w

‡
c (f ) =

w‡(f )‡(f ).
(1∗) If w ∈ Qd ∪ {−∞} then we have: w†(f ) ∈ Qd ⇔ w†(f ) �= ∞ ⇔ there is some (i, j) ∈

Supp(f ) such that j < j∗ for every (i∗, j∗) ∈ Supp(f +
w ) ⇒ f is not a w†(f )-monomial and
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for w = w†(f ) we have Supp(f +
w ) ∩ Supp(f +

w ) = {(i†, j†)} where (i†, j†) = f !
w and for every

(i, j) ∈ Supp(f +
w ) \ {(i†, j†)} we have w� = i†−i

j†−j
.

(2∗) If w ∈ Qd ∪ {∞} then we have: w‡(f ) ∈ Qd ⇔ w‡(f ) �= −∞ ⇔ there is some (i, j) ∈
Supp(f ) such that j > j∗ for every (i∗, j∗) ∈ Supp(f +

w ) ⇒ f is not a w‡(f )-monomial and
for w = w‡(f ) we have Supp(f +

w ) ∩ Supp(f +
w ) = {(i‡, j‡)} where (i‡, j‡) = f !!

w and for every

(i, j) ∈ Supp(f +
w ) \ {(i‡, j‡)} we have w� = i‡−i

j‡−j
.

(3∗) If w ∈ Qd with w†(f ) ∈ Qd then we have: w > w†(f ). Moreover, if we have w ∈ Qd ∪
{−∞} with w†(f ) ∈ Qd then: for all ŵ ∈ {w̃ ∈ Q: w̃†(f ) ∈ Q or w̃†(f ) > w �= −∞ or w̃†(f ) =
−∞ �= w} ∪ {∞} ∪ {w′ ∈ Qd : w†(f ) > w′} we have Supp(f +

w ) ∩ Supp(f +
ŵ ) = ∅ and for all

ŵ ∈ Qd with w > ŵ > w†(f ) we have that f is a ŵ-monomial with Supp(f +
ŵ ) = {(i†, j†)}

where (i†, j†) is as in (1*).
(4∗) If w ∈ Qd with w‡(f ) ∈ Qd then we have: w < w‡(f ). Moreover, if we have w ∈ Qd ∪

{∞} with w‡(f ) ∈ Qd then: for all ŵ ∈ {w̃ ∈ Q: w̃‡(f ) ∈ Q or w̃‡(f ) < w �= ∞ or w̃‡(f ) =
∞ �= w} ∪ {−∞} ∪ {w′ ∈ Qd : w‡(f ) < w′} we have Supp(f +

w ) ∩ Supp(f +
ŵ ) = ∅ and for all

ŵ ∈ Qd with w < ŵ < w‡(f ) we have that f is a ŵ-monomial with Supp(f +
ŵ ) = {(i†, j†)}

where (i‡, j‡) is as in (2*).
(5∗) If w ∈ Qd ∪ {−∞} is such that w†(f ) ∈ Qd and f is not a w-monomial then we have

w†(f )‡(f ) = w. If w ∈ Qd ∪ {−∞} is such that f is not a w†(f )-monomial then we have
w

†
c (f ) = w†(f ). If w ∈ Qd ∪ {−∞} is such that f is a w†(f )-monomial then we have w

†
c (f ) =

w†(f )†(f ).
(6∗) If w ∈ Qd ∪ {∞} is such that w‡(f ) ∈ Qd and f is not a w-monomial then we have

w‡(f )†(f ) = w. If w ∈ Qd ∪{∞} is such that f is not a w‡(f )-monomial then we have w
‡
c (f ) =

w‡(f ). If w ∈ Qd ∪{∞} is such that f is a w‡(f )-monomial then we have w
‡
c (f ) = w‡(f )‡(f ).

Remark–Definition (8.4.15). Since there is nothing to add to (4.15), we use this space to en-
hance the algebra behind the geometry of the Degreewise Newton Polygon of f to be formally
discussed in Section 9. For pictures see (9.1) and (9.4) to (9.7).

In (8.4.15) we continue letting f belong to k[X,X−1, Y,Y−1]× with any commutative ring k.

We define the system w(f ) of degreewise line weights of f , the degreewise length l(f ) of f ,
the system wd(f ) of degraded line weights of f , the degraded length ld (f ) of f , the system
wc(f ) of full line weights of f , and the full length lc(f ) of f , by putting

w(f ) = {
w ∈ Q ∪ {±∞}: card Supp

(
f +

w

)
> 1

}
and l(f ) = cardw(f )

and

wd(f ) = {
w ∈ Qd : card Supp

(
f +

w

)
> 1

}
and ld (f ) = cardwd(f )

and

wc(f ) = {
w ∈ Qc: card Supp

(
f +

w

)
> 1

}
and lc(f ) = cardwc(f ).

By (7.4.14)(2) we see that l(f ), ld(f ), lc(f ) are nonnegative integers. Let

w(f,1) < w(f,2) < · · · < w
(
f, l(f )

)
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and

wd(f,1) < wd(f,2) < · · · < wd

(
f, ld(f )

)
and

wc(f,1) < wc(f,2) < · · · < wc

(
f, lc(f )

)
be the unique (strictly ascending) sequences in w(f ), wd(f ), and wc(f ) respectively. We
call w(f, i) (respectively wd(f, i), wc(f, i)) the ith line weight (respectively ith degraded line
weight, ith full line weight) of f . Note that clearly

lc(f ) = ld (f ) + l(f )

and we have

wc(f, i) =
{

wd(f, i) for 1 � i � ld (f ),

w(f, i − ld (f )) for ld (f ) < i � lc(f ).

For any w ∈ Qc we define the full f -length of w to be the unique nonnegative integer lc(f,w) �
lc(f ) obtained by putting

lc(f,w) =

⎧⎪⎪⎨⎪⎪⎩
0 if lc(f ) = 0,

lc(f ) if lc(f ) �= 0 with w � wc(f, lc(f )),

min{i ∈ N: 0 � i � lc(f ) − 1 with w < wc(f, i + 1)}
if lc(f ) �= 0 with w < wc(f, lc(f )).

For any w ∈ Qc , by removing the subscript c or replacing it by the subscript d we get the defini-
tion of the f -length l(f,w) of w or the degraded f -length ld (f,w) of w respectively.

Now essentially (cf. Section 9) the system w(f ) or the sequence w(f, i) is the Degreewise
Newton Polygon of f . Or letting i range over 1 � i � l(f ), in terms of a plethora of words,
w(f, i), f +

w(f,i)
, f �

w(f,i)
, and f !

w(f,i)
are the ith newton slope, ith newton line, ith newton mono-

mial, and ith newton vertex of f respectively. Moreover, f ��
w(f,i) and f !!

w(f,i) are simply the once

pushed forward incarnations of f �
w(f,i) and f !

w(f,i) respectively.
The above description applies to the case of a monic polynomial in Y with coefficients in k[X].

In the general case, the system wc(f ) or the sequence wc(f, i) is the Full Newton Polygon of f ,
whose “left side” is the sequence wd(f, i) and whose “right side” is the sequence w(f, i). The
Degreewise Newton Polygon and the Full Newton Polygon are sometimes called the Abhyankar
Polygon of f , since they were introduced in Abhyankar’s Purdue Lectures of 1971–1972 as the
polynomial incarnation of the polygon which Newton introduced for power series.

As useful subsets of Qc , consider the elongated rational numbers set Qe , the augmented
rational numbers set Qa , the basic rational numbers set Qb , the infinity rational numbers set
Q∞, the degraded basic rational numbers set Qβ , the mixed rational numbers set Qm, and the
full positive rational numbers set Qp obtained by putting

Qe = Q ∪ {−∞} and Qa = Qe \ Q+ and Qb = Q+ and Q∞ = {∞}
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and

Qβ = Qd+ and Qm = Qβ ∪ {−∞} and Qp = Qβ ∪ Qe.

As the corresponding subsystems of wc(f ), let us define the system we(f ) of elongated line
weights of f , the elongated length le(f ) of f , the system wa(f ) of augmented line weights of f ,
the augmented length la(f ) of f , the system wb(f ) of basic line weights of f , the basic length
lb(f ) of f , the system w∞(f ) of infinity line weights of f , the infinity length l∞(f ) of f , the
system wβ(f ) of degraded basic line weights of f , the degraded basic length lβ(f ) of f , the
system wm(f ) of mixed line weights of f , the mixed length lm(f ) of f , the system wp(f ) of
positive line weights of f , and the positive length lp(f ) of f , by putting

we(f ) = {
w ∈ Qe: card Supp

(
f +

w

)
> 1

}
and le(f ) = cardwe(f )

and . . .

wp(f ) = {
w ∈ Qp: card Supp

(
f +

w

)
> 1

}
and lp(f ) = cardwp(f ).

Noting that le(f ), . . . , lp(f ) are nonnegative integers by (7.4.14)(2), we let

we(f,1) < we(f,2) < · · · < we

(
f, le(f )

)
and . . .

wp(f,1) < wp(f,2) < · · · < wp

(
f, lp(f )

)
be the unique (strictly ascending) sequences in we(f ), . . . ,wp(f ) respectively. These are “seg-
mental subsequences” of the sequence wc(f, i), i.e., for a nonnegative integer l′e with l′e + le � lc
we have wc(f, i) = we(f, i − l′e) for l′e < i � l′e + le and similarly with the subscript replaced by
the subscript a, . . . ,p. We call we(f, i), . . . ,wp(f, i) the ith elongated line weight of f , . . . , the
ith positive line weight of f respectively. Note that clearly

l(f ) = le(f ) + l∞(f ) with l∞(f ) � 1

and

le(f ) = la(f ) + lb(f ) with lp(f ) = lβ(f ) + le(f )

and we have

wp(f, i) =
{

wβ(f, i) for 1 � i � lβ(f ),

we(f, i − lβ(f )) for lβ(f ) < i � lp(f )

and so on. For any w ∈ Qc, by changing the subscript c to the subscript e, . . . , p in the above
definition of wc(f,w) we define of the elongated f -length we(f,w) of w, . . . , the positive f -
length wp(f,w) of w respectively.
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We define the ith full vertex vc(f, i) of f by putting

vc(f, i) =
{

f !
wc(f,i)

if 1 � i � lc(f ),

f !!
wc(f,i) if 1 < i = lc(f ) + 1.

By dropping the subscript or replacing it by the subscript d, . . . ,p we define the ith vertex v(f, i)

of f , . . . , the ith positive vertex vp(f, i) of f respectively.
Now the system wp(f ) or the sequence wp(f, i) or the sequence vp(f, i) may be called the

Positive Newton Polygon of f , and so on.
To illustrate the tacit use of Fact (3) of (7.4.14), we observe that

(1)

⎧⎪⎪⎨⎪⎪⎩
if i in N+ with i � lc(f ) and w,w in Qc with w < w = wc(f, i)

are such that in case of i > 1 we have wc(f, i − 1) � w,

then w
‡
c (f ) = w

and Supp(f +
w ) ∩ Supp(f +

w ) = {f !!
w} = {f !

w} = {vc(f, i)}
and

(2)

⎧⎪⎪⎨⎪⎪⎩
if i in N+ with i � lc(f ) and w,w in Qc with wc(f, i) = w < w

are such that in case of i < lc(f ) we have w � wc(f, i + 1),

then w
†
c (f ) = w

and Supp(f +
w ) ∩ Supp(f +

w ) = {f !
w} = {f !!

w} = {vc(f, i + 1)}.
In view of (1) and (2), by (7.4.14)(3)(V) we see that

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if lp(f ) > 0 and f ∈ k[X,Y ]×

with f − f (0,0) /∈ (Xk[X,Y ]) ∪ (Yk[X,Y ])
then for 1 � i � lp(f ) we have

{vp(f, i), vp(f, i + 1)} ⊂ Z2
z with |vp(f, i)| < |vp(f, i + 1)|.

Sometimes it is convenient to put a different order on Qc whereby ∞ moves from being the
largest element to becoming the smallest element. With this new order we write Qγ instead of
Qc and call it the complete rational numbers set. Now

Qγ = Qε ∪ Qe where Qε = Q∞ ∪ Qd

and we call Qε the degraded elongated rational numbers set. Also

Qε = Qα ∪ Qβ where Qα = Qv ∪ (Qd \ Qd+)

and we call Qα the degraded augmented rational numbers set. The bijection Qd → Q given by
w �→ w� now extends to an order preserving bijection Qε → Qe by taking ∞� = −∞.

In an obvious manner we define the system wγ (f ) of complete line weights of f , the complete
length lγ (f ) of f , the system wε(f ) of degraded elongated line weights of f , the degraded
elongated length lε(f ) of f , the system wα(f ) of degraded augmented line weights of f , the
degraded augmented length lα(f ) of f , and so on.
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Now wγ (f ) may be called the Complete Newton Polygon of f , and so on.

Important Remark (8.4.16). Since the proofs of (4.16)(5) and (4.16)(6) use only w1 �= 0, as
further sharpenings of (3.5) we see that for all w ∈ Qc ∪ Z2

z we have facts (5) and (6) stated
below. [We have reverted to letting f,g belong to k[X,Y ]× with a field k of characteristic 0.]

(5) If J (f,g) = 0 and f is w-homogeneous then either deg(f ) = 1 or f = 0 X + P(Y ) with
P(Y ) ∈ k[Y ] or f = 0 Y + Q(X) with Q(X) ∈ k[X], and hence in particular (f, g) is an
automorphic pair by (4.16)(2).

(6) If J (f,g) = 0 and g is w-homogeneous then either deg(g) = 1 or g = 0 X + P(Y ) with
P(Y ) ∈ k[Y ] or g = 0 Y + Q(X) with Q(X) ∈ k[X], and hence in particular (f, g) is an
automorphic pair by (4.16)(3).

Important Lemma (8.4.17). Assume that w ∈ Z2
x ∪ Z2

y or w ∈ Qp with (w1,w2) = (w
�
1,w

�
2).

Also assume that J (f,g) = 0 and deg(f ) � 2 with deg(g) � 2. Then we have the following.
[We have reverted to letting f,g belong to k[X,Y ]× with a field k of characteristic 0.]

(1) Upon letting degw f = N and degw g = M we have min(N,M) � max(w1,w2) and hence
N > 0 and M > 0. Moreover f is w-similar to g, i.e., (f +

w )M = κ(g+
w)N for some κ ∈ k×.

(2) Suppose that w ∈ Qe . Then w < w‡(f ) = w‡(g) and we have: w‡(f ) ∈ Qe iff (f !!
w)2 �= 0.

Moreover, if w ∈ Qe is such that w < w � w‡(f ) then f is w-similar to g and, upon letting
degw f = N with degw g = M , we also have that: M,N are in N+ with M/N = M/N and

for all M̂, N̂ in N+ with M̂/N̂ = M/N we obtain (f +
w )M̂ = κ̂(g+

w)N̂ with (f +
w )M̂ = κ̂(g+

w)N̂

for some κ̂ ∈ k×.
(3) Suppose that w ∈ Qm. Then w > w†(f ) = w†(g) and we have: w†(f ) ∈ Qm iff (f !

w)2 �= 0.
Moreover, if w ∈ Qm is such that w > w � w†(f ) then f is w-similar to g and, upon letting
degw f = N with degw g = M , we also have that: M,N are in N+ with M/N = M/N and

for all M̂, N̂ in N+ with M̂/N̂ = M/N we obtain (f +
w )M̂ = κ̂(g+

w)N̂ with (f +
w )M̂ = κ̂(g+

w)N̂

for some κ̂ ∈ k×.

Proof. (1) follows from (4.17)(1) by “flipping” to go from Z2
x to Z2

y ; see (7.2). In view of (3.11),
(8.4.14)(2), (8.4.14)(4), and (4.16)(1), (2) follows from (1); details in (8.4.18) below. In view
of (3.11), (8.4.14)(1∗), (8.4.14)(3∗), and (4.16)(1), (3) follows from (1); details in (8.4.18) be-
low. �
Remark (8.4.18). Since there is nothing to add to (4.18), we use this space to discuss the sim-
ilarity of the Positive Newton Polygons of the members of a Jacobian pair. Again we revert to
letting f,g belong to k[X,Y ]× with a field k of characteristic 0.

In response to the “details in (8.4.18)” in the proofs of (4.17) and (8.4.17), we only need
to observe the following. Let w,w in Qc , and M,N,M,N,M̂, N̂ in N+, be as in (4.17)(2),
(8.4.17)(2), (8.4.17)(3), so that we have

(1)
(
f +

w

)M = κ
(
g+

w

)N

and

(2)
(
f +)M = κ

(
g+)N
w w
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with κ, κ in k×. Moreover, for suitable ω,ω∗ in {(0,1), (0,−1), (1,0), (−1,0)}, upon let-
ting

(3) P = (
f +

w

)+
ω

and Q = (
g+

w

)+
ω

we have that P and Q are nonconstant monomials with

(4)
(
f +

w

)+
ω∗ = P and Q = (

g+
w

)+
ω∗ = Q.

By (1) and (3) we get

(5) P M = κQN.

By (2) and (4) we get

(6) P M = κQN.

In view of (3.11), by (5) and (6) we see that

(7) M/N = M/N.

Since M̂/N̂ = M/N , in view of (3.11), by (1) we get

(8)
(
f +

w

)M̂ = κ̂
(
g+

w

)N̂

with κ̂ ∈ k×. Since M̂/N̂ = M/N , in view of (3.11), by (2) and (7) we get

(9)
(
f +

w

)M̂ = κ̂ ∗(g+
w

)N̂

with κ̂∗ ∈ k×. By (3) and (8) we see that

(10) P M̂ = κ̂QN̂ .

By (4) and (9) we see that

(11) P M̂ = κ̂ ∗QN̂ .

By (10) and (11) we see that

κ̂ ∗ = κ̂

and hence by (9) we conclude that

(12)
(
f +

w

)M̂ = κ̂
(
g+

w

)N̂
.

This takes care of the “also have that” in (4.17)(2), (8.4.17)(2), (8.4.17)(3). The only other
thing we need to note for their proof is that if f is w-similar to g then f +

w is a monomial iff g+
w

is a monomial.
Now as a consequence of (8.4.17) let us prove (13) and (14) stated below.

(13) Assume that w ∈ Z2
x ∪ Z2

y or w ∈ Qp with (w1,w2) = (w
�
1,w

�
2). Also assume that

J (f,g) = 0 and deg(f ) � 2 with deg(g) � 2. Then upon letting degw f = N and degw g = M

we have min(N,M) � max(w1,w2) and hence N > 0 and M > 0. Moreover f is w-similar
to g, i.e., (f +

w )M = κ(g+
w)N for some κ ∈ k×. Furthermore, upon letting M̂ and N̂ be any pos-

itive integers with M̂/N̂ = M/N we have (f +
w )M̂ = κ̂(g+

w)N̂ for some κ̂ ∈ k×. Finally, for any
w ∈ Z2

x ∪ Z2
y or w ∈ Qp , upon letting degw f = N with degw g = M , we have that M,N are

positive integers with M/N = M/N and (f +)M̂ = κ̂(g+)N̂ with the same κ̂ as above.
w w
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Proof. Without loss of generality we may assume that w and w belong to Qp .
For a moment suppose that (1•) lp(f,w) = lp(f,w) or (2•) lp(f,w) = lp(f,w) + 1 with

w = w†(f ) < w or (3•) lp(f,w) + 1 = lp(f,w) with w < w‡(f ) = w. If w = w then we have
nothing to show. So also suppose that w �= w. By symmetry we may assume that w < w. If
{w,w} ⊂ Qe then we are done by (8.4.17)(2). If {w,w} ⊂ Qm then we are done by taking (w,w)

for (w,w) in (8.4.17)(3). If {w,w} �⊂ Qe and {w,w} �⊂ Qm then we must have w < −∞ < w

and hence we are done by taking (−∞,w) for (w,w) in (8.4.17)(2) and taking (−∞,w) for
(w,w) in (8.4.17)(3). Thus we are done if (1•) or (2•) or (3•).

Now if lp(f,w) �= lp(f,w) then we can find ŵ ∈ Qp such that the pair satisfies (1•) or (2•)
or (3•), and we have 0 � |lp(f, ŵ) − lp(f,w)| < |lp(f,w) − lp(f,w)|. So we are done by “in-
duction” on |lp(f,w) − lp(f,w)|. �

(14) Similarity of positive Newton polygons. Assume that we have J (f,g) = 0 and
deg(f ) � 2 with deg(g) � 2. Let M̂ and N̂ be any positive integers with M̂/N̂ = deg(g)/deg(f ).
Then we have the following.

(I) For any w ∈ Z2
x ∪ Z2

y or w ∈ Qp with (w1,w2) = (w
�
1,w

�
2), upon letting degw f = N

and degw g = M we have that: min(N,M) � max(w1,w2) (and hence in particular N > 0 and
M > 0) with M/N = M̂/N̂ , and f is w-similar to g with (f +

w )M̂ = κ̂(g+
w)N̂ where κ̂ ∈ k×

depends only on f,g, M̂, N̂ and not on w.
(II) We have lp(f ) = lp(g) > 0 with wp(f ) = wp(g) and for 1 � i � lp(f ) we have

wp(f, i) = wp(g, i).
(III) For 1 � i � lp(f ) + 1 we have M̂vp(f, i) = N̂vp(g, i). [Also see (7.4.14)(3)(V) and

(8.4.15)(3).] For pictures see (9.7).

Proof. Clearly −1 ∈ Qp with deg(f ) = deg−1 f and deg(g) = deg−1 g; hence (I) follows from
(13).

By (I), f is w-similar to g for all w ∈ Qp , and hence we get (II) except the assertion lp(g) > 0.
If degY g �= ordY g then (−∞)‡(g) ∈ wp(g) and hence lp(g) > 0. If degY g = ordY g and g is
not a monomial then −∞ ∈ wp(g) and hence lp(g) > 0. Since J (f,g) = 0 with deg(g) � 2, by
(4.16)(3) we see that g cannot be a monomial. This proves (II). (III) follows from (I) and (II). �

To relate the above Similarity (14) with the triangularity discussed in (6.2), we make the
following obvious observation.

(15) The Newton Polygon of f is a triangle if and only if either: (i) deg(f ) = 1 or: (ii)
lp(f ) = 1 with vp(f,1) = (0, ν) and vp(f,2) = (μ,0) for some ν,μ in N+.

Remark–Definition (8.4.19). Reverting to the set-up of Section 4, let

{
f and g be nonzero members of k[X,Y ]

where k is a field of characteristic 0

and for w ∈ Q∪{±∞} let (w1,w2) be the unique pair of coprime integers with w1 � 0 such that
if w ∈ Q then w = −w2/w1 with w1 > 0 whereas if w = −∞ or ∞ then (w1,w2) = (0,1) or
(0,−1) respectively. For pictures see (9.8).
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In the Brief Strategy at the beginning of Section 4, we outlined an inductive procedure for
constructing a sequence of polynomials g = g1, g2, . . . , ge such that

lagw(f,g1) > lagw(f,g2) > · · · > lagw(f,ge) = 0.

In property (XII) at the end of this subsection (8.4.19) we shall show that, under suitable con-
ditions, as w increases the lag becomes zero earlier. In Part III of this paper we shall apply this
when g1, . . . , ge are derived from certain strict approximate roots as described in Section 3 of
Part I of this paper. This will then be used for settling the sharper version of the two plus epsilon
characteristic pair case which we spoke of in the Introduction of Part I.

As illustrations for Remark (3.8), and as multiplicative incarnations of the concepts of the
derivative and the lag, we define the multiplicative w-derivative (w)′(f ) of f and the multi-
plicative w-lag λw(f,g) of (f, g) of f by putting

(w)′(f ) =
{ degw(f )

degw(XY)
if w �= 1,

∞ otherwise

and

λw(f,g) =
{

(w)′(f ) + (w)′(g) − (w)′(J (f, g)) if w �= 1 and J (f,g) �= 0,

∞ otherwise

and we note that

(1•) (w)′(f ) = ∞ ⇔ w = 1 ⇔ degw(XY) = 0

and

(2•) (w)′(f ) = 0 ⇔ w �= 1 and degw(f ) = 0.

For any w ∈ Q ∪ {±∞} we define the compound (w,w)-derivative (w,w)′(f ) of f by
putting

(w,w)′(f ) =
{

(w)′(f )
(w)′(f )

if w �= 1 �= w and degw(f ) �= 0,

∞ otherwise.

As a consequence of (1•) and (2•) let us note that

(3•) (w,w)′(f ) =
{

1 if w �= 1 and degw f �= 0,

∞ otherwise.

Here are 4 properties of the multiplicative derivative.
(I) If degw(XY) �= 0 then for all κ ∈ k× and c ∈ N we have (w)′(κf c) = c(w)′(f ).
(II) For every monomial H in f +

w we have (w)′(f ) = (w)′(H).
(III) If degw(XY) �= 0 > w − 1 and H is any monomial above (respectively below) the 45◦

line then (w)′(H) is a strictly decreasing (respectively increasing) function of w.
(IV) If degw(XY) �= 0 < w − 1 and H is any monomial above (respectively below) the 45◦

line then (w)′(H) is a strictly decreasing (respectively increasing) function of w.
[A monomial H is an expression H = κXiY j with κ ∈ k× and (i, j) ∈ N2. The monomial

H is in f +
w means (i, j) ∈ Supp(f +

w ) and κ is the coefficient of XiY j in f +
w . The monomial



1230 S.S. Abhyankar / Journal of Algebra 319 (2008) 1154–1248
H is above (respectively below) the 45◦ line means i < j (respectively i > j ). Property (III)
says that, for fixed H , if w < w < 1 in Q ∪ {−∞} are such that degw(XY) �= 0 �= degw(XY)

then: (w)′(H) < (w)′(H) or (w)′(H) > (w)′(H) according as i < j or i > j . Property (IV)
says that, for fixed H , if 1 < w < w in Q ∪ {∞} are such that degw(XY) �= 0 �= degw(XY) then:
(w)′(H) < (w)′(H) or (w)′(H) > (w)′(H) according as i < j or i > j . Note that by convention,
for any r ∈ Q, we have −∞ ± r = −∞ and ∞ ± r = ∞.]

Proof of (I) to (IV). Out of these, (I) and (II) are straightforward. To prove (III) and (IV), assume
H = κXiY j with κ ∈ k× and i �= j in N.

Now w1 + w2 = degw(XY) �= 0 and

(w)′(H) − j = iw1 + jw2

w1 + w2
− j = (i − j)w1

w1 + w2
.

If w1 > 0 then dividing by w1 we get

(1) (w)′(H) − j = i − j

1 − w

⎧⎪⎪⎨⎪⎪⎩
< 0 if i < j and w < 1,

> 0 if i > j and w < 1,

< 0 if i > j and w > 1,

> 0 if i < j and w > 1
and reciprocating we obtain

(2)
1

(w)′(H) − j
= w − 1

j − i

where the RHS is strictly increasing or decreasing in w < 1 according as i < j or i > j , and
hence the denominator of the LHS is strictly decreasing or increasing in w < 1 according as
i < j or i > j , and therefore the same is true after adding the constant j to the said denominator.
In other words, if w1 > 0 then by (2), according as i < j or i > j , we have

⎧⎪⎪⎨⎪⎪⎩
w < w < 1 in Q

⇒ 0 > w−1
j−i

> w−1
j−i

or 0 < w−1
j−i

< w−1
j−i

⇒ (w)′(H) − j < (w)′(H) − j or (w)′(H) − j > (w)′(H) − j

⇒ (w)′(H) < (w)′(H) or (w)′(H) > (w)′(H).

To prove (III) it only remains to note that if w = −∞ then (w1,w2) = (0,1) and hence
(w)′(H) = j , whereas if w < 1 in Q then by (1) we get (w)′(H) < j or (w)′(H) > j according
as i < j or i > j .

In (2) the RHS is strictly increasing or decreasing in w > 1 according as i < j or i > j , and
hence the denominator of the LHS is strictly decreasing or increasing in w > 1 according as
i < j or i > j , and therefore the same is true after adding the constant j to the said denominator.
In other words, if w1 > 0 then by (2), according as i < j or i > j , we have

⎧⎪⎪⎨⎪⎪⎩
1 < w < w in Q

⇒ w−1
j−i

> w−1
j−i

> 0 or w−1
j−i

< w−1
j−i

< 0

⇒ (w)′(H) − j < (w)′(H) − j or (w)′(H) − j > (w)′(H) − j
′ ′ ′ ′
⇒ (w) (H) < (w) (H) or (w) (H) > (w) (H).
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To prove (IV) it only remains to note that if w = ∞ then (w1,w2) = (0,−1) and hence
(w)′(H) = j , whereas if w > 1 in Q then by (1) we get (w)′(H) > j or (w)′(H) < j according
as i < j or i > j . �

Writing f ∼w g to mean f is w-similar to g, and f �w g for its negation, here are 6 properties
of similarity and multiplicative lag.

(V) If f ∼w g and degw f �= 0 with g+
w /∈ k then (degw f )(degw g) > 0.

[Note (V∗)(V∗)(V∗). (i) Concerning the condition (degw f )(degw g) > 0 we note that for any integers
(or rational numbers) N,M we have: NM > 0 iff either both N and M are positive or both are
negative; NM < 0 iff one of N and M is positive and the other is negative; NM = 0 iff at least
one of N and M is zero.

(ii) To see the necessity of assuming g+
w /∈ k, take (w1,w2) = (1,−2) and f = X with g =

1 + Y . Observe that now degw g = 0 with g+
w ∈ k but g /∈ k.]

(VI) If f and g are monomials such that either degw f �= 0 or degw g �= 0, then:

f ∼w g ⇔ f ∼w g for all w ∈ Q ∪ {±∞}.

[Note (VI∗)(VI∗)(VI∗). This note is not related to (VI) but is meant for making a list of claims to be
used in the proof of (VII). Given ŵ,w in Q ∪ {±∞}, we say ŵ is between w and w to mean
that either w > ŵ > w or w < ŵ < w. Given ω̂,ω in Z2 we say that ω̂ is proportional to ω, and
we write ω̂ ≈ ω, to mean that either ω̂ �= (0,0) �= ω with |ω̂| = |ω|, or ω̂ = (0,0), or ω = (0,0);
geometrically, this says that ω̂ and ω are on a line through the origin. With these definitions in
hand, here is the list of claims (i) to (xii).

(i) If f ∈ k then Supp(f ) = {(0,0)} and hence degw f = 0 for all w ∈ Q ∪ {±∞}. If f +
w ∈ k

then for all w � w ∈ Q ∪ {±∞} we have f +
w ∈ k with degw f = 0. If degw f = 0 and w = −∞

then f ∈ k[X] and hence Supp(f ) ⊂ {(i,0): i ∈ N} and so: degw f = 0 for all w ∈ Q ∪ {∞} in
case f ∈ k, whereas deg∞ f = 0 with degw f > 0 for all w ∈ Q in case f /∈ k. If degw f = 0
and w �= −∞ with (0,0) /∈ Supp(f ) then for all w̃ < w < w in Q ∪ {±∞} we have degw f <

0 < degw̃ f . If degw f = 0 and w �= −∞ with (0,0) ∈ Supp(f ) then for all w < w in Q ∪ {∞}
we have degw f = 0.

(ii) If degw f < 0 then for all w < w ∈ Q ∪ {±∞} we have degw f < 0.
(iii) If degw f > 0 and w < w ∈ Q∪{±∞} is such that degw f > 0 then for all ŵ ∈ Q∪{±∞}

between w and w we have degŵ f > 0.
(iv) If degw f > 0 and w < w ∈ Q∪{±∞} is such that degw f < 0 then there is a unique ŵ ∈

Q ∪ {±∞} between w and w for which degŵ f = 0; moreover, for this ŵ we have degw∗ f > 0
for all w∗ ∈ Q ∪ {±∞} between w and ŵ, and degw∗∗ f < 0 for all w∗∗ ∈ Q ∪ {±∞} between ŵ

and w.
(v) If degw f > 0 and w < w ∈ Q ∪ {±∞} is such that degw f = 0 then there is a unique

ŵ ∈ Q ∪ {±∞} with w < ŵ � w and degŵ f = 0 such that degw∗ f > 0 for all w∗ ∈ Q ∪ {±∞}
between w and ŵ, and degw∗∗ f = 0 for all w∗∗ ∈ Q ∪ {±∞} between ŵ and w; moreover, for
this ŵ we have that if (0,0) /∈ Supp(f ) then ŵ = w, and if (0,0) ∈ Supp(f ) then f is not a
ŵ-monomial.

(vi) If w ∈ Q ∪ {±∞} is such that w �= w with (degw f )(degw f ) > 0 then for every ŵ ∈
Q ∪ {±∞} which is between w and w we have (degw f )(degŵ f ) > 0.

(vii) If w ∈ Q ∪ {±∞} is such that w �= w with (degw f )(degw f ) < 0 then for some ŵ ∈
Q ∪ {±∞} which is between w and w we have degŵ f = 0.

(viii) If w < w ∈ Q ∪ {±∞} is such that Supp(f +
w ) ∩ Supp(f +) �= ∅ then f !!

w = f ! .
w w
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(ix) If w < w ∈ Q∪{±∞} is such that Supp(f +
w )∩Supp(f +

w ) = ∅ with degw f � 0 then f !!
w �=

(0,0) �= f !
w with |f !!

w| > |f !
w|. If w < w ∈ Q ∪ {±∞} is such that Supp(f +

w ) ∩ Supp(f +
w ) = ∅

with degw f > 0 and either: (′) degw f > 0, or: (′′) degw f = 0 with (0,0) /∈ Supp(f ), or: (′′′)
degw f = 0 with (0,0) ∈ Supp(f ) but degŵ f �= 0 for all ŵ ∈ Q between w and w, then f !!

w �=
(0,0) �= f !

w with |f !!
w| < |f !

w|.
(x) If w < w ∈ Q ∪ {±∞} is such that Supp(f +

w ) ∩ Supp(f +
w ) = ∅ then either f !!

w �= (0,0) �=
f !

w with |f !!
w| > |f !

w|, or f !!
w �= (0,0) �= f !

w with |f !!
w| < |f !

w|, or degŵ f = 0 for some ŵ ∈ Q ∪
{±∞} between w and w.

(xi) If w < w ∈ Q ∪ {±∞} is such that Supp(f +
w ) ∩ Supp(f +

w ) = ∅ with f !!
w ≈ f !

w then
degŵ f = 0 for some ŵ ∈ Q ∪ {±∞} which is between w and w.

(xii) If w ∈ Q ∪ {±∞} is such that Supp(f +
w ) ∩ Supp(f +

w ) �= ∅ with f ∼w g and f ∼w g

with (degw f )(degw f ) �= 0, and either w > w†(g) > w or w < w‡(g) < w, then for some ŵ ∈
Q ∪ {±∞} which is between w and w we have degŵ g = 0.]

(VII) Let w ∈ Q ∪ {±∞} be such that Supp(f +
w ) ∩ Supp(f +

w ) �= ∅. Also let degw f = N and
degw f = N with degw g = M and degw g = M . Then we have the following.

(VII.1) Exactly one of the following seven conditions holds:

(1) w = w;
(2) w > w > w†(f );
(3) w > w = w†(f ) > −∞;
(4) w > w = w†(f ) = −∞;
(5) w < w < w‡(f );
(6) w < w = w‡(f ) < ∞;
(7) w < w = w‡(f ) = ∞.

(VII.2) If f ∼w g and f ∼w g with NN �= 0 and for every ŵ ∈ Q ∪ {±∞} which is between
w and w we have degŵ g �= 0, then corresponding to (1) to (7) of (VII.1) we respectively have:

(1∗) w = w;
(2∗) w > w > w†(g);
(3∗) w > w = w†(f ) = w†(g) > −∞;
(4∗) w > w = w†(f ) = w†(g) = −∞;
(5∗) w < w < w‡(g);
(6∗) w < w = w‡(f ) = w‡(g) < ∞;
(7∗) w < w = w‡(f ) = w‡(g) = ∞;

and moreover we have:

Supp
(
g+

w

) ∩ Supp
(
g+

w

) �= ∅ and MM �= 0 with M/N = M/N

and

(w,w)′(f ) = (w,w)′(g).

(VII.3) If f ∼w g and f ∼w g with NN > 0 and w �= 1 �= w then we have:

(w)′(g) ∈ Q with (w)′(g) ∈ Q
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and

(w)′(g) = (w,w)′(f )(w)′(g) with (w,w)′(f ) ∈ Q×.

(VIII) Let w ∈ Q ∪ {±∞} be such that Supp(f +
w ) ∩ Supp(f +

w ) �= ∅ and w �= 1 �= w. Also let
degw f = N and degw f = N with degw g = M and degw g = M . Then we have the following.

(VIII.1) Assume that NN �= 0 and f ∼w g with f ∼w g. Also assume that f ∼w J (f,g)

with f ∼w J (f,g), and for every ŵ ∈ Q ∪ {±∞} between w and w we have degŵ g �= 0 �=
degŵ J (f, g). Then

λw(f,g) ∈ Q with λw(f,g) ∈ Q

and

λw(f,g) = (w,w)′(f )λw(f,g) with (w,w)′(f ) ∈ Q×.

(VIII.2) Assume that NN > 0, and let f ,g in k[X,Y ]× be such that: either (i) (f , g) = (f, g),
or (ii) (f , g) = (f �

w ,g�
w) with w > w � w†(g), or (iii) (f , g) = (f ��

w ,g��
w ) with w < w �

w‡(g). Assume that f ∼w g and f ∼w g. Then we have:

(w)′(g) ∈ Q with (w)′(g) ∈ Q

and

(w)′(g) = (w,w)′(f )(w)′(g) with (w,w)′(f ) ∈ Q×.

Moreover, if also f ∼w J (f,g) with f ∼w J (f,g), then we have

λw(f,g) ∈ Q with λw(f,g) ∈ Q

and

λw(f,g) = (w,w)′(f )λw(f,g) with (w,w)′(f ) ∈ Q×.

(IX) If w �= 1 then we have:

λw(f,g) �= 1 ⇔ lagw(f,g) �= 0 ⇔ f ∼w g

and if w < 1 then we have:

λw(f,g) � 1.

(X) Let w ∈ Q be such that w < w = min(w‡(f ),w‡(g)) and −1 < w < 1. Assume that
f ∼w J (f,g) and f ∼w J (f,g) with f �w g. Also assume that (degw f )(degw f ) > 0 and
f ��

w is above the 45◦ line. Finally let us assume that either (i) w < 0 or (ii) w � 0 < degw f .
Then: w = 0 = w‡(f ) and f +

w = 0 Xi(Y + γ )j with g+
w = 0 Xi∗(Y + γ )j

∗
where γ ∈ k× and

i, j, i∗, j∗ are nonnegative integers such that i − j �= 0 �= i + j �= 0 �= i∗ + j∗ with (i∗, j∗) =
(1 + ci,1 + cj) and c ∈ Q.
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[Clearly: (degw f )(degw f ) > 0 and either (i) or (ii) hold iff degw f > 0 < degw f . Also
note that, under appropriate conditions including w �= 0, (X) essentially says: f ∼w J (f,g) &
f ∼w J (f,g) ⇒ f ∼w g.]

Proof of (V) to (X). (V) follows from (3.11) or can also be checked directly.
(V∗) does not require any proof.
(VI) follows from (V).
(VI∗) can be proved thus. We shall use the facts which say that: for any fixed (i, j) ∈ N2,

the function (1/w1)degw(XiY j ) = i − jw is monotonically decreasing in w ∈ Q if j �= 0
and constant if j = 0; collectively we call these the monotonicity. In addition to the basic
equation (1/w1)degw(XiY j ) = i − jw for w ∈ Q, we shall also use the subsidiary equations
deg−∞(XiY j ) = j and deg∞(XiY j ) = −j . For any (i, j) ∈ N2 and w < w in Q∪{±∞}, by the
monotonicity and the subsidiary equations we get (i′) to (v′):

(i′) If degw(XiY j ) � 0 with j �= 0 then degw(XiY j ) < 0. If degw(XiY j ) = 0 with j �= 0 then
degw̃(XiY j ) > 0 for all w̃ < w in Q ∪ {±∞}.

(ii′) If degw(XiY j ) < 0 then degw(XiY j ) < 0.
(iii′) If degw(XiY j ) > 0 < degw(XiY j ) then for all ŵ ∈ Q ∪ {±∞} between w and w we have

degŵ(XiY j ) > 0.
(iv′) If degw(XiY j ) > 0 > degw(XiY j ) then for a unique ŵ ∈ Q ∪ {±∞} between w and w

we have degŵ(XiY j ) = 0; moreover, for this ŵ we have degw∗(XiY j ) > 0 for all w∗ ∈
Q ∪ {±∞} between w and ŵ, and degw∗∗(XiY j ) < 0 for all w∗∗ ∈ Q ∪ {±∞} between ŵ

and w.
(v′) If degw(XiY j ) > 0 = degw(XiY j ) then (i, j) �= (0,0) and for all ŵ ∈ Q ∪ {±∞} between

w and w we have degŵ f > 0.

The first and the third sentences of (i) are self-explanatory. Consequently, to prove (i) we
may assume that degw f = 0 and w̃ < w < w in Q ∪ {±∞}. We want to show that: if f +

w ∈ k

then f +
w ∈ k; if (0,0) /∈ Supp(f ) then degw f < 0 < degw̃ f ; and if (0,0) ∈ Supp(f ) then

degw f = 0. Since w ∈ Q and degw f = 0, we can write f = α + ∑
(i,j)∈S βijX

iY j with α ∈ k

and βij ∈ k× where S is a finite subset of N2 \ {(0,0)} such that for all (i, j) ∈ S we have j �= 0
and degw(XiY j ) � 0; moreover, if α = 0 then degw(XiY j ) = 0 for some (i, j) ∈ S. Now by (i′)
we get degw(XiY j ) < 0 for all (i, j) ∈ S, and if α = 0 then degw̃(XiY j ) > 0 for some (i, j) ∈ S.
So we are done. [Similarly (ii) follows from (ii′).]

Now supposing w < w in Q ∪ {±∞}, let us prove the weaker versions (ii*) to (v*) of (ii)
to (v) obtained by assuming Supp(f +

w ) ∩ Supp(f +
w ) �= ∅. By (8.4.14)(1) to (8.4.14)(6) we know

that then there is a unique (i, j) ∈ N2 such that for all ŵ ∈ Q ∪ {±∞} with w < ŵ � w we have
Supp(f +

w ) ∩ Supp(f +
ŵ ) = {(i, j)} with f !!

w = (i, j) = f !̂
w . Hence by (ii′) to (v′) we respectively

get (ii∗∗) to (v∗∗):
(ii∗∗) If degw f < 0 then degw f < 0.
(iii∗∗) If degw f > 0 < degw f then for all ŵ ∈ Q ∪ {±∞} between w and w we have

degŵ f > 0.
(iv∗∗) If degw f > 0 > degw f then for a unique ŵ ∈ Q ∪ {±∞} between w and w we have

degŵ f = 0; moreover, for this ŵ we have degw∗ f > 0 for all w∗ ∈ Q∪{±∞} between w and ŵ,
and degw∗∗ f < 0 for all w∗∗ ∈ Q ∪ {±∞} between ŵ and w.

(v∗∗) If degw f > 0 = degw f then for all ŵ ∈ Q ∪ {±∞} between w and w we have
degŵ f > 0; moreover, if (0,0) ∈ Supp(f ) then f is not a w-monomial.
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This completes the proof of the weaker versions.
Continuing to suppose w < w ∈ Q ∪ {±∞}, we shall now deduce the original versions of (ii)

to (v) from their weaker versions by using the connectivity of the Degreewise Newton Polygon
w(f ) thus; this is similar to the use of connectivity of the Positive Newton Polygon wp(f ) in
the proof of (8.4.18)(14).

Let n = l(f,w)− l(f,w) and w̃ = w‡(f ). Then n ∈ N with w̃ ∈ Q∪{±∞} and by (8.4.14)(1)
to (8.4.14)(6) we see that: n = 0 ⇒ w � w̃ ⇒ we are in the weaker version, and w̃ < w ⇒ 0 �
l(f,w) − l(f, w̃) < l(f,w) − l(f,w). So (ii) follows by induction on n. In case of (iii) we see
that if w̃ < w then by (i) and (ii) we have degw̃ f > 0 and hence (iii) also follows by induction
on n. If w̃ < w with degw f > 0 = degw̃ f = 0 > degw f then by the last inequality we have
(0,0) /∈ Supp(f ) and hence by (i) we see that degw∗ f > 0 for all w∗ ∈ Q ∪ {±∞} between w

and w̃, and degw∗ f < 0 for all w∗∗ ∈ Q ∪ {±∞} between w̃ and w; consequently (iv) follows
by induction on n. Similarly, in view of (i) to (iii), we also get (v) by induction on n. In all this
the “initial case” of the induction is w � w̃ rather than n = 0.

This completes the proof of (i) to (v). To prove (vi) and (vii), by symmetry we may assume
that w < w and then, in view of (V*)(i), we are done by (ii) to (iv). (viii) follows from (8.4.14)(1)
to (8.4.14)(6).

To prove (ix) let w < w ∈ Q ∪ {±∞} be such that Supp(f +
w ) ∩ Supp(f +

w ) = ∅. Upon letting
r = l(f,w‡(f )) and t = l(f,w†(f )), in view of (8.4.14)(1) to (8.4.14)(6) we see that r � t �
l(f )in N+ and

w < w‡(f ) = w(f, r) < w(f, r + 1) < · · · < w(f, t) = w†(f ) < w.

Clearly

f !!
w = f !

w(f,r) and f !!
w(f,t) = f !

w

and we have

f !!
w(f,s) = f !

w(f,s+1) for r � s < t.

In a moment we shall show that:
(ix∗) if degw f � 0 then degw(f,s) f < 0 for r � s � t ,
(ix′) if degw f > 0 < degw f then degw(f,s) f > 0 for r � s � t ,
(ix′′) if degw f > 0 = degw f with (0,0) /∈ Supp(f ), then degw(f,s) f > 0 for r � s � t ,
(ix′′′) if degw f > 0 = degw f with (0,0) ∈ Supp(f ) but degŵ f �= 0 for all ŵ ∈ Q between

w and w, then degw(f,s) f > 0 for r � s � t ,
and by (7.4.14)(3)(V.3) this will complete the proof of (ix).
If degw f < 0 then (ix*) follows from (ii). If degw f = 0 with w �= −∞ and (0,0) /∈ Supp(f )

then (ix*) follows from (i). If degw f = 0 with w �= −∞ and (0,0) ∈ Supp(f ) then by (i)
we get (0,0) ∈ Supp(f +

w ) ∩ Supp(f +
w ) which contradicts the assumption that Supp(f +

w ) ∩
Supp(f +

w ) = ∅. If degw f = 0 with w = −∞ then by (i) we get Supp(f ) ⊂ {(i,0): i ∈ N} and
hence w‡(f ) = ∞ which contradicts the above displayed inequalities w < w‡(f ) < w. This
proves (ix∗).

(ix′) follows from (iii). (ix′′) and (ix′′′) follow from (v).
This completes the proof of (ix), and by (iv) it implies (x). (xi) follows from (x).
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To prove (xii), by symmetry we may assume that w < w ∈ Q∪{±∞} is such that Supp(f +
w )∩

Supp(f +
w ) �= ∅ with f ∼w g and f ∼w g with (degw f )(degw f ) �= 0, and w < w‡(g) < w. We

want to show that then for some ŵ ∈ Q ∪ {±∞} which is between w and w we have degŵ g = 0.
Since w < w‡(g) < w, by (8.4.14)(1) to (8.4.14)(6) we see that Supp(g+

w) ∩ Supp(g+
w) = ∅; in

a moment we shall show that g!!
w ≈ g!

w and then we will be done by taking g for f in (xi). If
g+

w ∈ k then clearly g!!
w = (0,0) and if g+

w ∈ k then clearly g!
w = (0,0); in both the cases we have

g!!
w ≈ g!

w . So we may assume that g+
w /∈ k and g+

w /∈ k.
Let degw f = N and degw f = N with degw g = M and degw g = M . Then, since we are

assuming f ∼w g and f ∼w g with N �= 0 �= N , in view of (3.11), by (V) we get M �=
0 �= M with (f +

w )|M| = 0 (g+
w)|N | and (f +

w )|M| = 0 (g+
w)|N |. Therefore f !!

w �= (0,0) �= g!!
w with

|M|f !!
w = |N |g!!

w and f !
w �= (0,0) �= g!

w with |M|f !
w = |N |g!

w . Since Supp(f +
w )∩ Supp(f +

w ) �= ∅,
by (8.4.14)(1) to (8.4.14)(6) we see that f !!

w = f !
w . Consequently g!!

w ≈ g!
w .

This completes the proof of (xii), and hence of the entire Note (VI*).
(VII.1) follows from (8.4.14)(1) to (8.4.14)(6).
(VII.2) can be proved thus. If w = w then we are done by (3•). So assume that w �= w. Now

upon letting

S = Supp
(
f +

w

) ∩ Supp
(
f +

w

)
and

S′ = {
(i, j) ∈ Supp(f ): j >

(
f !

w

)
2

}
and

S′′ = {
(i, j) ∈ Supp(f ): j <

(
f !!

w

)
2

}
by (8.4.14)(1) to (8.4.14)(6) we see that (with (2) to (7) as in (VII.1))

(A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2) ⇒ S = {f !
w} = {f !!

w} & f +
w is a monomial;

(3) ⇒ S = {f !
w} = {f !!

w} & f +
w is not a monomial & S′ �= ∅;

(4) ⇒ S′ = ∅;

(5) ⇒ S = {f !!
w} = {f !

w} & f +
w is a monomial;

(6) ⇒ S = {f !!
w} = {f !

w} & f +
w is not a monomial & S′′ �= ∅;

(7) ⇒ S′′ = ∅
and upon letting

T = Supp
(
g+

w

) ∩ Supp
(
g+

w

)
and

T ′ = {
(i, j) ∈ Supp(g): j >

(
g!

w

)
2

}
and

T ′′ = {
(i, j) ∈ Supp(g): j <

(
g!!

w

) }

2
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by (8.4.14)(1) to (8.4.14)(6) we also see that

(B)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w > w > w†(g) ⇒ T = {g!
w} = {g!!

w} & g+
w is a monomial;

w > w = w†(g) > −∞ ⇒ T = {g!
w} = {g!!

w}
& g+

w is not a monomial & T ′ �= ∅;

w > w = w†(g) = −∞ ⇒ T ′ = ∅;

w < w < w‡(g) ⇒ T = {g!!
w} = {g!

w} & g+
w is a monomial;

w < w = w‡(g) < ∞ ⇒ T = {g!!
w} = {g!

w}
& g+

w is not a monomial & T ′′ �= ∅;

w < w = w‡(g) = ∞ ⇒ T ′′ = ∅.

Clearly

(C)

{
if f ∼w g with degw f �= 0 �= degw g then:

f is a w-monomial iff g is a w-monomial.

Under the hypothesis of (VII.2) we have

(D) f ∼w g with f ∼w g

and in view of (VI∗)(i) we see that

(E) N �= 0 �= N with M �= 0 �= M

and by (VI∗)(xii) we see that

(F) either w > w � w†(g) or w < w � w‡(g).

Now (disregarding the hypothesis of (VII.2) but assuming w �= w), in view of (3.11), (8.4.14)(1)
to (8.4.14)(6), (V), (VII.1), and (A) to (F), we see that (2) to (7) respectively imply (2*) to (7*)
and we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(f +
w )+w = (f +

w )+w = a monomial Hf

with (g+
w)+w = (g+

w)+w = a monomial Hg

and (Hf )M = 0 (Hg)
N with (Hf )M = 0 (Hg)

N ,

and T �= ∅ with M/N = M/N.

Therefore by (I) and (II) we conclude that

(w,w)′(f ) = (w,w)′(g)

where we note that if either w = 1 or w = 1 then by definition both sides of the above equation
are reduced to ∞. This completes the proof of (VII.2).

(VII.3) can be proved thus. In view of (1•) we see that (w,w)′(f ) ∈ Q× and (w)′(g) ∈ Q with
(w)′(g) ∈ Q. Now clearly 1/(w,w)′(f ) = (w,w)′(f ) and hence by symmetry we may assume
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that w � w. If M = 0 then in view of (V) and (VI*)(i) we see that M = 0 and hence (w)′(g) =
0 = (w)′(g) ∈ Q and therefore (w)′(g) = (w,w)′(f )(w)′(g). If M < 0 then by (V) and (VI*)(ii)
we see that all the four integers N,N,M,M are negative and for every ŵ ∈ Q ∪ {±∞} between
w and w we have degŵ g < 0, and therefore by (VII.2) we get (w)′(g) = (w,w)′(f )(w)′(g).
So now we may assume that M > 0. Then by (V) we get N > 0 < N . In view of (8.4.14)(1) to
(8.4.14)(6), the similarities f ∼w g and f ∼w g tell us that

f ��
w = f �

w and
(
f ��

w

)M = (
g��

w

)N with
(
f �

w

)M = (
g�

w

)N
.

Since g!!
w ∈ Supp(g), by the above display we get M > 0. Now by (VI∗)(iii) we see that for every

ŵ ∈ Q ∪ {±∞} between w and w we have degŵ g > 0, and therefore again by (VII.2) we get
(w)′(g) = (w,w)′(f )(w)′(g).

(VIII.1) can be proved thus. By (1•), (2•), and (VII.2) we see that

(1′)

⎧⎨⎩
(w)′(f ) ∈ Q× with (w)′(f ) ∈ Q×

and (w)′(J (f, g)) ∈ Q with (w)′(J (f, g)) ∈ Q

and (w)′(g) ∈ Q with (w)′(g) ∈ Q

and

(2′)

⎧⎪⎪⎨⎪⎪⎩
upon letting μ = (w,w)′(f )

we have μ ∈ Q× with (w)′(f ) = (w)′(f )μ

and (w)′(J (f, g)) = (w)′(J (f, g))μ

and (w)′(g) = (w)′(g)μ.

Now, in view of (1′) and (2′), by the definition of the multiplicative lag we get

λw(f,g) ∈ Q and λw(f,g) ∈ Q with λw(f,g) = λw(f,g)μ.

(VIII.2) can be proved thus. By (1•), (2•), and (VII.3) we see that

(1′′)

⎧⎨⎩
(w)′(f ) ∈ Q× with (w)′(f ) ∈ Q×

and upon letting μ = (w,w)′(f )

we have μ ∈ Q× with (w)′(f ) = (w)′(f )μ

and

(2′′)

⎧⎨⎩
if f ∼w J (f,g) with f ∼w J (f,g)

then we have (w)′(J (f, g)) ∈ Q with (w)′(J (f, g)) ∈ Q

and (w)′(J (f, g)) = (w)′(J (f, g))μ.

By (8.4.14)(1) to (8.4.14)(6) we see that⎧⎨⎩
in cases (ii) and (iii),

the monomial f is in f +
w as well as in f +

w ,

and the monomial g is in g+ as well as in g+,
w w
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and hence in view of (II) we see that (it being trivial in case (i)) in all the three cases we have

(3′′)
{

(w)′(f ) = (w)′(f ) with (w)′(f ) = (w)′(f ),

and (w)′(g) = (w)′(g) with (w)′(g) = (w)′(g)

In view of (3′′), by (1•), (2•), and (VII.3) we see that

(4′′)
{

(w)′(f ) ∈ Q× with (w)′(f ) ∈ Q×

and (w)′(g) ∈ Q with (w)′(g) ∈ Q

and

(5′′)

⎧⎪⎪⎨⎪⎪⎩
recalling that μ = (w,w)′(f )

we have μ ∈ Q×

with (w)′(f ) = (w)′(f )μ

and (w)′(g) = (w)′(g)μ.

Now, in view of (1′′) to (5′′), by the definition of the multiplicative lag we see that if f ∼w

J (f,g) with f ∼w J (f,g) then

λw(f,g) ∈ Q and λw(f,g) ∈ Q with λw(f,g) = λw(f,g)μ.

(IX) follows from (7.4.1).
(X) can be proved thus. Disregarding the last two sentences which start with “Finally” but

assuming that degw f > 0 and f ��
w ∼w g��

w , by (VI) and case (iii) of (VIII.2) we see that

λw(f,g) = (w,w)′(f )λw(f,g).

But by (IX) we have λw(f,g) = 1 � λw(f,g) and by (III) we have (w,w)′(f ) > 1, which
contradicts the above displayed equation. Therefore f ��

w �w g��
w . By (8.4.14)(1) to (8.4.14)(6)

we have f ��
w = f �

w with g��
w = g�

w , and hence by (VI) we get f �
w �w g�

w . By (8.4.14)(2) we
also see that either f is not a w-monomial or g is not a w-monomial. Therefore, in view of
(3.3.5*), we are done by (4.6); in greater detail, because of −1 < w < 1, we must have 0 � w or
0 > w > −1, i.e., we are respectively in case (4) or (3) of (4.6) and, because f or g is non-w-
monomial, in both the cases we get γ �= 0, and moreover:

(A) If 0 � w then, because of f �
w �w g�

w & (3.3.5*), we have: γ �= 0 ⇒ w = 0.
(B) If 0 > w > −1 then we have: γ �= 0 ⇒ −1/w is an integer � 2 ⇒ f �

w ∼w g�
w (because

both are constant multiples of powers of Y ) ⇒ contradiction. �
Note (XI). Given any w,w ∈ Q ∪ {±∞}, we say that w is f -intersecting to w to mean that
Supp(f +

w ) ∩ Supp(f +
w ) �= ∅, and we say that w is f -contiguous to w to mean that one of the

7 conditions (1) to (7) of (VII) holds as observed in the proof of (VII). In view of (8.4.14)(1)
to (8.4.14)(6) we have: f -intersecting iff f -contiguous. If w �= w is f -contiguous to w then we
may further qualify it by saying that w is forward f -contiguous to w or backwards f -contiguous
to w according as w < w or w > w.

Given any w,w ∈ Qc , we say that w is full f -intersecting to w to mean that Supp(f +
w ) ∩

Supp(f +) �= ∅ (so this is the same without the adjective full), and we say that w is full f -
w
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contiguous to w to mean that one of the following 5 conditions holds: (1) w = w; (2) w > w >

w
†
c (f ); (3) w > w = w

†
c (f ); (4) w < w < w

‡
c (f ); (5) w < w = w

‡
c (f ). In view of (7.4.14)(3)

we have: full f -intersecting iff full f -contiguous. Now forward full contiguous and backwards
full contiguous have obvious meanings.

The versatile example f = 1 + XY can be used to avoid many pitfalls. For instance in
(VI*)(ix) we could have been tempted to condense the three case (′), (′′), (′′′) into one case saying
that: if w < w ∈ Q ∪ {±∞} is such that Supp(f +

w ) ∩ Supp(f +
w ) = ∅ with degw f > 0 � degw f

then f !!
w �= (0,0) �= f !

w with |f !!
w| < |f !

w|. This would be wrong because for the above f with
−1/2 = w < w = ∞ we have f !

w = (0,0). Note that now w is not forward f -contiguous to w.

(XII) Sequence property of similarity. Let us consider a sequence g1, g2, . . . , ge in k[X,Y ]×
with integer e > 1. Assume that f ∼w gj for 1 � j < e with f �w ge. Also assume that f ∼w

J (f,gj ) for 1 � j � e. Finally assume that f ��
w is above the 45◦ line and degw f > 0 with

w < w‡(f ) ∈ Q. For every w ∈ Q with w < w � w‡(f ), consider the largest positive integer
ε(w) � e such that f ∼w gj for 1 � j < ε(w). Then we have the following.

(1) Let w ∈ Q be such that w < w = w‡(ge) < w‡(f ). Assume that −1 < w < 1 with
degw f > 0 and f ∼w J (f,gj ) for 1 � j � ε(w). Then ε(w) < e and f �w gε(w).

(2) Let w ∈ Q be such that w < w = w‡(f ). Assume that for every ŵ ∈ Q with w < ŵ � w we
have: −1 < ŵ < 1 with degŵ f > 0 and f ∼ŵ J (f, gj ) for 1 � j � ε(ŵ). Then either we
have:
(i) ε(w) < e and f �w gε(w),

or we have:
(ii) w = 0 and f +

w = 0 Xi(Y + γ )j with (ge)
+
w = 0 Xi∗(Y + γ )j

∗
where γ ∈ k× and

i, j, i∗, j∗ are nonnegative integers such that i − j �= 0 �= i + j �= 0 �= i∗ + j∗ with
(i∗, j∗) = (1 + ci,1 + cj) and c ∈ Q.

Proof of (XII). In (1), assuming ε(w) = e, we get a contradiction by taking g = ge in (X). Now
consider (2) and let w̃ = w‡(ge). If w̃ � w then we are done by taking g = ge in (X). [Note:
this is the only occurrence of (ii).] If w̃ < w then by (1) we have ε(w̃) < e and f �w̃ gε(w̃). If
ε(w̃) = 1 then we are done by taking (w,g) = (w̃, g1) in (X). Otherwise apply induction on e

with (w̃, ε(w̃)) replacing (w, e). �
9. More geometry or degreewise Newton polygon

To continue with the geometric vein initiated in the Introduction, let us talk about the Newton
Polygon.

(9.1). We start with the bivariate power series f (X,Y ) = ∑
aijX

iY j with coefficients aij in
a field k. By applying the Weierstrass Preparation Theorem (cf. p. 85 of [Ab6]), we can arrange
f to be a polynomial in Y whose coefficients are power series in X. Considering the support

Supp(f ) = {
(x, y) = (i, j)

∣∣ aij �= 0
}

we plot these points in the xy-plane. Then taking the convex hull, we get the ordinary (order-
wise) Newton Polygon; an example of it is the following diagram on the left. Since we have
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power series in X, there could be infinitely many dots above the polygon. See pp. 373–396
vol. II of [Chr] and pp. 98–106 of [Wal].

Now assume that f is a nonzero polynomial in X and Y . Then the support is a nonempty
finite set. So the convex hull will look something like the following diagram on the right, and we
call it the Degreewise Newton Polygon or DNP.

If f is monic in Y then its DNP will look like the following diagram on the left. If f is regular
in Y , i.e., if its Y -degree equals its total degree, then its DNP will look like the following diagram
on the right where the exhibited angle could be smaller than 135◦. See (8.4.15).

135◦

(9.2). For the concepts of 1 or 2 points at infinity see (1.2), (3.4), (4.6), and the preamble to
Section 2. Here on the left is a picture for 1 point at infinity when f is regular in Y .

Moreover, on the right is a picture when f has 2 points at infinity, but f is neither monic
nor regular in Y . Starting with f which is regular in Y and has two points at infinity by an
appropriate linear transformation, we can arrange our polynomial to be such, as in the following
shortsqueezed vertical rectangle on the right.
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(0,N)

(N,0)

(9.3). Let us look at this Degreewise Newton Polygon more thoroughly. By collecting terms
of like degree, we can decompose f into its homogeneous components, i.e.,

f = Fd + Fd−1 + · · · + Fδ

where Fd is nonzero, and either F� is homogeneous of degree � or F� is identically zero. Plotting
Supp(f ) in the xy-plane, we can exhibit this decomposition by a diagram:

Fd

Fd−1

Fδ

135◦

Note that the lines corresponding to homogeneous components of f will exhaust all of the points
of Supp(f ). Also note that some of the lines may not contain any points of Supp(f ). The equa-
tion of these lines is x + y = �.

As a side note, we would like to address the angles that these newton lines make with the
X-axis. You will notice that in some of the diagrams, the angles are sharper or more shallow than
the 135◦ line. In our preparation for writing this paper, we have referred to these as 120◦ and
150◦ lines, simply to indicate that some lines are sharper or more shallow than 135◦. The reason
we have not labeled the diagrams with these angles is simply because such an angle would give
us an irrational value of w, which we wish to avoid. In fact, we cannot find a “nice” angle that
would give us a rational w. As such, we leave the extrapolation of such ideas up to the reader.

(9.4). Let us now give weights to the variables, where x has weight w1 and y has weight w2;
see Sections 2, 7, and 8. We can look at pictures when w1 > w2 as in the following diagram on



S.S. Abhyankar / Journal of Algebra 319 (2008) 1154–1248 1243
the left. Alternatively we can look at the picture when w1 < w2 as in the following diagram on
the right.

Note that in both of these diagrams, w1 > 0. Then taking the generic equation of these lines as
xw1 + yw2 = c for some constant c, we can divide by w1 to get x − (−w2/w1)y = γ for some
constant γ . Now by using the definition that w = −w2/w1, we have the equation x = wy + γ .
Then we can clearly see that w represents what we call the y-slope. In fact, w is a slope, and we
use the term y-slope to distinguish it from our usual definition of slope, and also to indicate that
we are taking slopes with respect to the positive y-axis.

Now we look at two new diagrams. Our first diagram is similar to the diagram found in (9.3).
However, instead of taking homogeneous components, we take the Y -degree components. The
reader may consider this the same as taking homogeneous components after making the substi-
tution X = c for suitable constant c. Our second diagram is taking the X-degree components.

degY

ordY

ordX degX

In the first diagram, we notice that the top-most such line gives the Y -degree of f , and the
bottom-most line gives the Y -order of f . We have similar notions for the X-degree diagram.
As noted above, for the Y -degree diagram, we can think of substituting X = c. However, this
is equivalent to saying w1 = 0 and w2 = 1. Then degY = deg(0,1) = deg−∞, where in the last
expression, we used degw = deg(w1,w2)

. This makes sense when we remember that (w1,w2) =
(0,1), so w = −w2/w1 = −∞. With the X-degree diagram, we can similarly say that degX =
deg(1,0) = deg0.

These diagrams become important when we consider (4.16)(1) which implies that if f and
g are two polynomials of degree � 2 with J (f,g) = 0 , then neither X nor Y can divide f . In
terms of the diagrams, this says that on the Y -degree diagram, the ordY (f ) line is the x-axis, and
on the X-degree diagram, the ordX(f ) line is the y-axis.

(9.5). The following picture on the right depicts the w-degree form f +
w of f when −1 <

w < 0; it is similar to the first figures in (9.2) and (9.4). The following picture on the left depicts
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the Full Newton Polygon as described in (8.4.15); here Q+, Q−, and Qd respectively denote the
positive, negative, and degraded rationals; moreover, we let f belong to k[X,X−1, Y,Y−1]×;
see (8.1).

w = −∞
w ∈ Q−

w = 0

w ∈ Q+
w = ∞

w ∈ Qd

f +
w

The following diagrams depict f +
w when w ∈ Q+. Lemma (4.17) says that if f and g are poly-

nomials of degree � 2 with J (f,g) = 0 then degw f > 0 and hence the following diagram on
the right cannot occur.

f +
w f +

w

(9.6). Let us now discuss some of the terminology found in this paper. We remind the reader
that at some points we talk about the antecedent and the consequent, as well as several other
points of notation. Rather than rehashing them here, let us simply display the necessary ter-
minology diagrammatically. The left hand figure below depicts the procedure for finding the
consequent w‡(f ), i.e., the next newton line, and one can draw a similar picture for finding the
antecedent w†(f ), i.e., the previous newton line. The right hand figure below depicts all sorts
of other objects described in (4.14), (7.4.14) and (8.4.14). In particular f �

w and f ��
w are the top

and bottom points of the newton line of f belonging to the weight w. Also Ω∗ and Ω∗∗ are re-
spectively the segments of all weights w∗ and w∗∗ such that w

†
c (f ) < w∗ < w < w∗∗ < w

‡
c (f );

these are point weights rather than line weights of f .
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w

w
‡
c (f )

w
†
c (f )

Ω∗

Ω∗∗

f �
w

f ��
w

(9.7). Now referring to (8.4.18)(14), in the following diagram on the left we depict the sim-

ilarity of the Newton Polygons of a Jacobian pair (f, g). Moreover referring to (7.4.14)(3)(V),

(8.4.15)(3), and (8.4.18)(14), in the following diagram on the right we depict the clockwise be-

havior of the vertices Pi = vp(f, i) for 1 � i � s = lp(f ) + 1.

P1

P2

Ps−1

Ps

Notice that in similar polygons, we require that each line be parallel to its mate in the other

diagram. Now let us be more specific so we can analyze when similar newton polygons occur. Let

us take a weight w, and let degw(f ) = N with degw(g) = M . Now take w to be the consequent

of w relative to f as well as g, and let degw(f ) = N with degw(g) = M . Then in (4.17) we see

the claim that N/M = N/M which results in the local similarity of the newton polygons as in

the following diagram.
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w-segment

w-segment

N

N

M

M

g-diagram

f -diagram

(9.8). Continuing with the discussion of (9.7), and referring to items in (8.4.19), let us point

out some reasons why we need to be careful about similarity. In the following two diagrams

we have f ∼w g with f ∼w g, and moreover the weights w and w are f -contiguous but not

g-contiguous. The hypotheses of (VII.2) and (VII.3) are designed to avoid this.

P

w

w

diagram for f

θ

Q

Q

w

w

possible diagram for g

θ

Above is a simple case of (VI*)(xii) and in it we have f ∼ŵ g for all w � ŵ � w. The left

diagram below is a more complicated case of (VI*)(xii) and is a refinement of its predecessor.

As an explanation, we analogize this to the mean value theorem or Rolle’s Theorem. Basically,

given a Newton Polygon, during the transition from positive w-degrees to negative w-degrees,

we must pass through a zero w-degree.

The large polygon in the right diagram below illustrates the general fact that we have

degw f > 0 for certain contiguous weights w and, provided (0,0) /∈ Supp(f ), we have

degw f < 0 for another contiguous range of weights w, with degw f = 0 for exactly two

weights w.
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Q

Q

w

w

possible diagram for g

θ

degwf = 0

degwf < 0

degwf > 0

The final pair of polygons below illustrate a case when f ∼w g for all w ∈ Qc; see (8.1). This
could be an example where J (f,g) = 0 but the full polygons are not similar as objects in the
Euclidean plane.

(3,7)

P = (4,6)

(2,4)

θ

(3,7)

Q = (4,6)

Q = (2,3)

(1,2)

θ

Thus we see that no matter how much similarity is assumed, contiguity is not guaranteed. Notice
that such discontiguities are found along the degree zero part. If we assume that both degw f

and degw f are positive, then we can guarantee contiguity. Note that there are at most two such
discontiguities, as we can see in the large polygon above.

10. Problems about trivariate Jacobian Conjecture

Let f,g,h be nonzero polynomials in X,Y,Z with coefficients in a field k of characteristic
zero. Recall that (f, g,h) is a Jacobian triple means J (f,g,h) = 0 , and (f, g,h) is an automor-
phic triple means k[X,Y,Z] = k[f,g,h]. The trivariate Jacobian Problem conjectures that every
Jacobian triple is an automorphic triple. Here are two simple test cases of this, both of which are
good thesis problems.

(10.1). Generalize the important divisibility fact (4.16)(1) by showing that if f = X + X2Y

then (f, g,h) is not a Jacobian triple for any g and h in k[X,Y,Z]×.

(10.2). Show that if (f, g,h) is a Jacobian triple then all the curves at infinity on the surface
f = 0 are rational, i.e., every nonunit irreducible factor of the degree form of f represents a
rational curve in the projective plane. In particular show that if f = Xn + Yn + Zn with n � 3
then (f, g,h) is not a Jacobian triple for any g and h in k[X,Y,Z]×. The hint is to use the
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results of my (= Abhyankar’s) 1956 paper “On the valuations centered in a local domain” on
pp. 321–348 of volume 78 of the American Journal of Mathematics.

Apropos the trivariate Jacobian Problem, and in continuation of the proposal made in the
Introduction of giving an algorithmic rendering of the plane convexity hull, at a still further
opportunity, we propose to present a generalization of convex hull construction to three and
higher dimensions, which should be quite useful for the applied areas of Operations Research as
well as the theoretical needs of the multivariate Jacobian Problem.
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