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We calculate corrections to the BDS formula for the six-particle planar MHV amplitude for the gluon 
transition 3 → 3 in the multi-Regge kinematics for the physical region, in which the Regge pole ansatz is
not valid. The remainder function at two loops is obtained by an analytic continuation of the expression 
derived by Goncharov, Spradlin, Vergu and Volovich to the kinematic region described by the Mandelstam 
singularity exchange in the crossing channel. It contains both the imaginary and real contributions being 
in agreement with the BFKL predictions. The real part of the three loop expression is found from a 
dispersion-like all-loop formula for the remainder function in the multi-Regge kinematics derived by one 
of the authors. We also make a prediction for the all-loop real part of the remainder function multiplied 
by the BDS phase, which can be accessible through calculations in the regime of the strong coupling 
constant.

Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

In recent years we witnessed a significant progress in under-
standing the structure of the scattering amplitudes in the super-
symmetric theories. The pioneering paper of Parke and Taylor [1] 
on the MHV amplitudes eventually led to a formulation of a sim-
ple all-loop expression for multi-leg amplitudes in N = 4 SYM by
Anastasiou, Bern, Dixon and Kosower (ABDK) [2] and then by Bern, 
Dixon and Smirnov (BDS) [3]. However it was shown by two of the 
authors of this study in collaboration with Sabio Vera [4] that the 
BDS ansatz is violated at two loops starting from six external glu-
ons, confirming a conclusion derived by Alday and Maldacena [5] 
that the BDS formula is to be violated at large number of external 
gluons. It was argued by two of the authors [4] that this viola-
tion is related to the fact that the BDS amplitude is not compatible 
with the Steinmann relations [6], imposing the absence of simulta-
neous singularities in the overlapping channels. Moreover, the BDS 
ansatz in some channels does not contain the contributions of the 
so-called Mandelstam cuts, which are the moving Regge singular-
ities in the complex momenta plane. We call these channels the 
Mandelstam channels. The analytic properties of the BDS ampli-
tude in the Regge kinematics were also investigated by Brower, 
Nastase, Schnitzer and C.-I. Tan [7,8].

The BDS amplitude differs from the full MHV amplitude by 
a factor [9] being a function of the dual conformal invariants 
according to the analysis of Drummond, Henn, Korchemsky and
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Sokatchev [10]. This function is commonly referred to as the re-
mainder function R(l)

n for the n external legs at l loops. The leading
logarithmic term of R(2)

6 for the Mandelstam channels of the 2 → 4
and 3 → 3 scattering amplitudes in the Regge kinematics was ex-
plicitly calculated by the authors of Ref. [11] using a solution to 
the color octet Balitsky–Fadin–Kuraev–Lipatov (BFKL) [12] equa-
tion, which is a special case of the Schrödinger equation for the 
open integrable Heisenberg spin chain [13].

It was suggested that in general kinematics R(l)
n can be ob-

tained from the expectation value of the light-like polygonal Wil-
son loops [9]. In particular, the remainder function for the six-
gluon MHV amplitude at two loops was calculated by Drummond, 
Henn, Korchemsky and Sokatchev [14], confirmed numerically by 
Bern, Dixon, Kosower, Roiban, Spradlin, Vergu and Volovich [15] 
and then it was expressed in terms of the generalized polylog-
arithms by Del Duca, Duhr and Smirnov [16,17]. Their lengthy 
expression for R(2)

6 was greatly simplified by Goncharov, Spradlin,
Vergu and Volovich (GSVV) [18] and written in terms of only clas-
sical polylogarithms. The GSVV expression was analytically contin-
ued by two of us [19] to the Mandelstam channel of the 2 → 4
scattering amplitude considered in Ref. [11] and showed a full 
agreement within leading logarithmic accuracy. The leading log-
arithmic term and the real part of the next-to-leading term of the 
remainder function at three loops were found in Ref. [20]. The an-
alytic continuation at the strong coupling was performed by one 
of the authors with collaborators [21].

In the present Letter we consider the 3 → 3 gluon scattering
amplitude in the Mandelstam channels. The asymptotic behavior of 
this amplitude cannot simply be obtained from that of the 2 → 4
amplitude considered in the previous studies [19,20]. It has to be
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Fig. 1. The 3 → 3 gluon scattering amplitude.

derived independently, and it brings new information about the
analytic structure of the six-gluon MHV amplitude. We perform
the analytic continuation of the GSVV expression for the two-loop
remainder function to the Mandelstam channel of the 3 → 3 am-
plitude and simplify it in the Regge limit. The result is similar
to that of the 2 → 4 case and differs by the overall sign and
the presence of the real contribution. The obtained real contri-
bution confirms general all-loop dispersion relations for the real
and imaginary parts of the remainder function derived by one of
the authors [22]. These dispersion relations are used to calculate
also the leading logarithmic terms and the real part of the next-
to-leading contribution at three loops. Another important result of
the present study is the prediction, in the region under considera-
tion, of the real constant part of the remainder function multiplied
by the phase present in the BDS amplitude. This prediction is valid
for an arbitrary value of the coupling constant and can be accessi-
ble through the strong coupling calculations.

2. Analytic continuation

We consider a special case of the six-gluon planar MHV scat-
tering amplitude for three gluon scattering (3 → 3 amplitude) il-
lustrated in Fig. 1. The energy invariants are defined by s13 =
(pB + k1)

2, s02 = (p A′ + k2)
2, s = (pB + k1 + p A)2, t′

2 = (p A −
p A′ − k2)

2, s1 = (k1 + p A)2, s3 = (pB ′ + k2)
2, t2 = (p A − p A′ + k1)

2,
t1 = (p A − p A′ )2 and t3 = (pB − pB ′ )2. The dual conformal cross
ratios are expressed in terms of the energy invariants as follows

u1 = s13s02

st′
2

, u2 = s1s3

st2
, u3 = t1t3

t2t′
2
. (1)

In the multi-Regge kinematics for the direct channel, where all in-
variants are negative

−s � −s1,−s3,−t′
2 � −t1,−t2,−t3 > 0, (2)

the remainder function R(l)
6 is zero, while in the physical region of

the Mandelstam channel depicted in Fig. 2, where

s1, s3, s13, s02 < 0 and s, t′
2 > 0, (3)

it contains a non-vanishing contribution.
This situation was thoroughly discussed in Refs. [4,11] as well

as in Ref. [22]. The physical reason for the violation of the BDS
ansatz in this region is the fact that the BDS formula does not have
correct analytic properties, in particular, it does not account prop-
erly for the Mandelstam (Regge) cuts. In the Mandelstam chan-
nel (3) in the multi-Regge kinematics the dual conformal cross
ratios (1) possess a non-zero phase

u1 → |u1|ei2π , u2 → |u2|eiπ , u3 → |u3|eiπ . (4)

Using this phase structure one can perform an analytic contin-
uation of the remainder function to our kinematic region. The
Fig. 2. The 3 → 3 gluon scattering amplitude in the Mandelstam channel given by
s1, s3, s13, s02 < 0 and s, t′

2 > 0.

two-loop remainder function for the six-gluon MHV amplitude in
terms of the classical polylogarithms was calculated by Goncharov,
Spradlin, Vergu and Volovich [18]. They found that in the variables

x±
i = uix

±, x± = u1 + u2 + u3 − 1 ± √
�

2u1u2u3
, (5)

where � = (u1 + u2 + u3 − 1)2 − 4u1u2u3, the remainder function
R(2)

6 can be written in a rather compact way

R(2)
6 (u1, u2, u3) =

3∑
i=1

(
L4

(
x+

i , x−
i

) − 1

2
Li4(1 − 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+ 1

24
J 4 + π2

12
J 2 + π4

72
. (6)

The functions L4(x+, x−) and J are defined by

L4
(
x+, x−) = 1

8!! log
(
x+x−)4 +

3∑
m=0

(−1)m

(2m)!! log
(
x+x−)m

× (
�4−m

(
x+) + �4−m

(
x−))

(7)

and

�n(x) = 1

2

(
Lin(x) − (−1)n Lin(1/x)

)
,

J =
3∑

i=1

(
�1

(
x+

i

) − �1
(
x−

i

))
. (8)

In this Letter we perform the analytic continuation of (6) in
phases of ui given by (4) to the Mandelstam channel of the 3 → 3
scattering amplitude in the multi-Regge limit. We find that it is not
so much different from the remainder function in the Mandelstam
channel of the 2 → 4 gluon scattering amplitude calculated by the
authors in Refs. [19,20]. This fact can be explained by the Regge
factorization as discussed below. The main difference between the
two is that in the 3 → 3 case we get a non-vanishing real contri-
bution in the next-to-leading logarithmic approximation (NLLA) as
predicted by one of the authors [22]. At two loops we keep only
the leading order (LLA) and constant terms (NLLA) in the logarithm
of the energy ln(u1 − 1),1 where

u1 − 1 � (q1 + q3 − q2)
2

|t′
2| . (9)

1 Note that in the 3 → 3 case u1 > 1, in contrast to the 2 → 4 case, where u1 < 1.
For more details the reader is referred to Refs. [4,11].
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Fig. 3. The 3 → 3 gluon scattering amplitude with discontinuity in t′
2 channel.

The logarithmic contributions in ln(u1 − 1) originate from the dis-
continuities in s- and t′

2-channels illustrated in Fig. 2 and Fig. 3
respectively. Each order of the perturbation theory brings a power
of ln(u1 − 1) in the multi-Regge kinematics, so that at two loops
one expects at most the first power of ln(u1 − 1) (we start with an
imaginary constant at one loop) and at three loops there appears
a term proportional to ln2(u1 − 1).

The remainder function after the analytic continuation (4) to
the Mandelstam channel of 3 → 3 amplitude in the multi-Regge is
given by

R(2)
6

(
|u1|ei2π ,

eiπ |1 − u1|
|1 + w|2 ,

eiπ |1 − u1||w|2
|1 + w|2

)

� − iπ

2
ln(u1 − 1) ln |1 + w|2 ln

∣∣∣∣1 + 1

w

∣∣∣∣
2

+ π2

2
ln |1 + w|2 ln

∣∣∣∣1 + 1

w

∣∣∣∣
2

− iπ

2
ln |w|2 ln2 |1 + w|2

+ iπ

3
ln3 |1 + w|2 − iπ ln |w|2(Li2(−w) + Li2

(−w∗))
+ i2π

(
Li3(−w) + Li3

(−w∗)). (10)

The complex variable w is expressed in terms of the reduced cross
ratios

ũ2 = |u2|
|1 − u1| , ũ3 = |u3|

|1 − u1| (11)

through

w = B+

ũ2
, w∗ = B−

ũ2
(12)

for B± defined by [20]

B± = 1 − ũ2 − ũ3 ± √
(1 − ũ2 − ũ3)2 − 4ũ2ũ3

2
. (13)

In the course of the analytic continuation we obtain terms of the
order ln2(u1 − 1) and ln3(u1 − 1). These higher order terms in the
logarithm of the energy all cancel in the final result. The remainder
function R(2)

6 in (10) is symmetric under substitution w → 1/w
and vanishes in the limit |w| → 0 or |w| → ∞.

The expression in (10) was obtained by the analytic continua-
tion for the 3 → 3 amplitude (see (4)) of the remainder function
of Goncharov et al. in (6) and then simplified in the Regge limit
Fig. 4. The 3 → 3 gluon scattering amplitude for the Mandelstam channel, where
t′

2, s, s1, s3 < 0 and s13, s02 > 0.

|u1| → 1+, |u2| → 0+, |u3| → 0+,

ũ2,3 ∼ O(1). (14)

However it is also possible to get the same expression from the
remainder function for the 2 → 4 amplitude with the use of its
cyclic symmetry [22]. The remainder function for the 2 → 4 case
was found by two of the authors [19,20] analytically continuing (6)
in

u1 → |u1|e−i2π , u2 → u2, u3 → u3 (15)

and then simplifying in the Regge limit

|u1| → 1−, |u2| → 0+, |u3| → 0+,

ũ2,3 ∼ O(1). (16)

Another interesting physical region of the Mandelstam channel
is depicted in Fig. 4. It can be obtained from Fig. 3 by twisting the
lower part of figure. In this region t′

2, s, s1, s3 < 0 and s13, s02 > 0,
so that the corresponding analytic continuation is given by

u1 → |u1|e−i2π , u2 → u2, u3 → u3. (17)

Thus this case is trivially related to the 2 → 4 amplitude consid-
ered in Refs. [4,11,19,20], in particular, here we also have |u1| < 1.
The similarity between the two cases is expected from the Regge
factorization of the scattering amplitudes. In the rest of the present
Letter we focus on the non-trivial region of the 3 → 3 amplitude
shown in Fig. 3.

The remainder function for the Mandelstam channel of the
3 → 3 case in (10) differs from the remainder function for the cor-
responding channel of the 2 → 4 case (see (22) of Ref. [20]) only
by the overall sign and the presence of the real term subleading in
the logarithm of the energy ln(u1 − 1). In order to understand the
general structure of the remainder function let us briefly recapit-
ulate the arguments given in [4] and [22]. In order to satisfy the
Steinmann relations the 2 → 4 scattering amplitude, in the multi-
Regge kinematics, can be written a sum of five terms. Assuming
Regge pole factorization [23] one finds that, after analytically con-
tinuing into the region s, s2 > 0; s1, s3 < 0, a singularity appears
(proportional to 1

sinπω2
where j2 = 1 + ω2 is the angular momen-

tum of the t2-channel; for further details see Eq. (E6) in [4] and
Eq. (36) in [22]). This singularity is incompatible with perturba-
tion theory. In Yang–Mills theory this problematic singularity is



510 J. Bartels et al. / Physics Letters B 705 (2011) 507–512
cancelled by the Regge cut piece which has just the right struc-
ture to cancel this pole term. An analogous singularity appears in
the 3 → 3 amplitude in the region s, t′

2 > 0,s1, s3, s13, s02 < 0,
and, again, the existence of the Regge cut piece cancels this pole.
As outlined in [22], this close correspondence between Regge pole
and Regge cut terms in Yang–Mills theory allows to include the
problematic piece of the Regge pole term into the Regge cut piece.
In the case of the BDS amplitude, this redefinition leads, for the
2 → 4 amplitude in the region defined by (15) and (16), to the
following form of the remainder function:

R6eiπδ = cosπωab + i

i∞∫
−i∞

dω

2π i
f (ω)e−iπω|1 − u1|−ω. (18)

For the 3 → 3 amplitude in the region defined by (4) and (14) it
reads

R6e−iπδ = cosπωab − i

i∞∫
−i∞

dω

2π i
f (ω)|1 − u1|−ω, (19)

where R6 are the remainder functions for corresponding process.
The phases δ and ωab are defined by [22]

δ = γK

8
ln ũ2ũ3 = γK

8
ln

|w|2
|1 + w|4 ,

ωab = γK

8
ln

ũ2

ũ3
= γK

8
ln

1

|w|2 , (20)

where γK is the cusp anomalous dimension γK � 4a for a =
g2Nc/8/π2 and ω is related to the angular momentum in t2-
channel.2

The all-loop expressions in (18) and (19) have a meaning of dis-
persion relations, which establish a connection between real and
imaginary parts of the scattering amplitude. It is worth emphasiz-
ing that the integral term in (18) and (19) is formally divergent at
one loop and should be understood in the sense of the principal
value prescription (cf. [11]). It cancels the one-loop contribution
from the BDS phase δ, so that R(1)

6 is zero as expected.
A few words to be said about the structure of (18) and (19).

As it was discussed in Refs. [4,22] assuming the Regge pole fac-
torization the six-gluon amplitude can be written as five contri-
butions compatible with the Steinmann relations. Values of four
out of five relative coefficients are fixed by the BDS amplitude in
the four physical regions. Using the Weis factorization property
[23] one can fix the whole Regge pole structure of the six-gluon
amplitude, however the resulting expression has unpleasant ana-
lytic properties. Namely, it includes some singularities incompat-
ible with the perturbation theory. It was argued by one of the
authors [22] that these dangerous terms can be absorbed in the
Mandelstam cut contribution because they have the same phase
structure. The resulting expressions have correct analytic proper-
ties and can be written in the form of (18) and (19). The contri-
butions of the Regge pole (cosπωab) and the Mandelstam cut (the
integral over ω) are functions of only dual conformal cross ratios.
The factors e±iπδ for the corresponding physical regions accounts
for a phase already present in the BDS amplitude. They are ex-
tracted from the BDS amplitude to make it self-consistent. For
more details the reader is referred to Section 2 of Ref. [22]. The
“dispersion” relations in (18) and (19) are correct in the Regge

2 More details on Eqs. (18) and (19), including the rigorous definitions of ω and
f (ω) are presented in Refs. [20,22].
kinematics for any number of loops and thus allow us to make
predictions also for a strong coupling regime as discussed below.

Substituting the expansion of the remainder function

R6 � 1 + a2 R(2)
6 (21)

and the leading logarithmic (LLA) approximation of R(2)
6 for 2 → 4

amplitude calculated in Ref. [11] we find that the subleading in
ln(1 − u1) real term in R(2)

6 fully cancels with the contributions
from δ and ωab [22]. The physical meaning of this is that contri-
butions from Regge poles (the cosine term depending on ωab) and
Mandelstam cuts with the factor e−iπω in the integral of (18) are
related to each other due to the analyticity of the amplitude.

This cancellation does not happen for the 3 → 3 amplitude,
where the contribution from the Mandelstam cut is pure imag-
inary (no factor e−iπω in the integrand). The contribution from
Regge poles cosπωab is pure real, but the phase of BDS ampli-
tude δ mixes between real and imaginary parts of the remainder
function. Thus the 3 → 3 remainder function does have a real part
at two loops in region (4). Indeed, expanding (19) to the second
order in a we obtain

a2 R(2)
6 − π2δ2

2
= −π2ω2

ab

2
− i

a2

2

∂2

∂a2

×
( i∞∫

−i∞

dω

2π i
f (ω)(u1 − 1)−ω

)∣∣∣∣∣
a=0

. (22)

The integral term in (22) gives a pure imaginary contribution and
thus the real part of the 3 → 3 remainder function reads


(
R(2)

6

) = π2δ2

2a2
− π2ω2

ab

2a2
= π2

2
ln ũ3 ln ũ2

= π2

2
ln |1 + w|2 ln

∣∣∣∣1 + 1

w

∣∣∣∣
2

, (23)

in full agreement with (10).
From (18) and (19) we deduce that the remainder function of

the 3 → 3 amplitude can be obtained from that of the 2 → 4 am-
plitude by a simple transformation

ln(1 − u1) → ln(u1 − 1) − iπ (24)

together with the subsequent complex conjugation. This is related
to the fact, that the Mandelstam cut contribution is constructed
from impact factors and the corresponding Green functions, which
are the same for 2 → 4 and 3 → 3 amplitudes. It is easy to see
that the transformation (24) is true for (22) of Ref. [20] and (10).

3. 3 → 3 remainder function at three loops

In this section we find the remainder function for the 3 →
3 scattering amplitude at three loops with logarithmic accuracy
R(3)LLA

6 as well as the real part of the next-to-leading logarithmic

term 
(R(3)NLLA
6 ). In accordance to the general analytic proper-

ties of the scattering amplitudes the leading term in the leading
logarithmic approximation (LLA) is pure imaginary. The integral
all-order representation for the LLA part of the remainder func-
tion was found in Ref. [11] using the solution to the octet BFKL
equation. It was shown that the LLA term of the remainder func-
tion at arbitrary numbers of loops in the Mandelstam channel of
the 3 → 3 amplitude differs from that of the 2 → 4 amplitude only
by the overall sign. The explicit expression for R(3)LLA

6 in the Man-
delstam channel of the 2 → 4 amplitude was found in Ref. [20].
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Using this result we readily calculate the leading logarithmic con-
tribution to the remainder function of the Mandelstam channel of
the 3 → 3 amplitude at three loops

R(3)LLA
6 = − iπ

4
ln(u1 − 1)2

(
ln |w|2 ln2 |1 + w|2

− 2

3
ln3 |1 + w|2 + 1

2
ln |w|2(Li2(−w) + Li2

(−w∗))
− 1

4
ln2 |w|2 ln |1 + w|2 − Li3(−w) − Li3

(−w∗)).

(25)

The real part of the next-to-leading contribution is found expand-
ing (19) to the third order in a and extracting the real terms


(
R(3)NLLA

6

) = iπδ

a
R(2)LLA

6 . (26)

For an arbitrary number of loops � � 3 this reads


(
R(�)NLLA

6

) = iπδ

a
R(�−1)LLA

6 , (27)

where

R(�)LLA
6 = −i

�!
∂�

∂a�

( i∞∫
−i∞

dω

2π i
f (ω)(u1 − 1)−ω

)∣∣∣∣∣
a=0

(28)

as follows from (19).
Using R(2)LLA

6 given by the first term on RHS of (10) we get


(
R(3)NLLA

6

) = π2

4
ln(u1 − 1) ln(ũ2ũ3) ln ũ2 ln ũ3

= −π2

4
ln(u1 − 1)

(
ln2 |1 + w|2 ln

∣∣∣∣1 + 1

w

∣∣∣∣
2

+ ln |1 + w|2 ln2
∣∣∣∣1 + 1

w

∣∣∣∣
2)

. (29)

The full remainder function at three loops in the Regge kinemat-
ics has also NLLA imaginary and next-to-next-to-leading logarith-
mic (NNLLA) contributions. To find them one needs to know the
higher order corrections to the function f (ω) in (19), which are
not available at the moment apart from the next-to-leading contri-
bution to the impact factor calculated in Ref. [20].

Both R(3)LLA
6 and R(3)NLLA

6 are symmetric under inversion w →
1/w and vanishing for |w| → 0 or |w| → ∞. The w → 1/w sym-
metry implies a target-projectile symmetry, where the amplitude
is symmetric with respect to the transformation p A , p A′ , pB , pB ′ ,
k1, k2 → pB , pB ′ , p A , p A′ , k2, k1.

As it was already mentioned the BDS phase δ mixes between
real and imaginary parts of the remainder function. This means
that by virtue of (19) the real part of the remainder function at an
arbitrary number of loops R(l)

6 is expressed through the BDS phase

δ and the remainder function with a lower number of loops R(l−1)
6 ,

R(l−2)
6 , etc. Despite this fact we can make an all-loop prediction for

a value of


(
R6e−iπδ

) = cosπωab, (30)

where δ and ωab are given by (20). In the Regge limit 
(R6e−iπδ)

gives the constant term, which is not accompanied by any loga-
rithm of the energy ln(u1 − 1). This all-loop result can be acces-
sible through calculations in the strong coupling regime. However
there is some difficulty in calculating (30) in this regime related
to the fact that at large coupling constants the functions δ and
ωab grow, and therefore the expression in (30) rapidly oscillates
and does not have a definite limit. Despite this technicality, we are
confident that this prediction is correct. Note, that the expression
in (30) is valid only for the Mandelstam channel of the 3 → 3 scat-
tering amplitude in the multi-Regge kinematics. In the 2 → 4 case
this simple structure is spoiled by the presence of the e−iπω factor
in the integrand of (18), although this factor disappears after the
analytic continuation to the non-physical region u1 > 1.

4. Discussion

In the present study we consider 3 → 3 planar gluon MHV
amplitude in the multi-Regge kinematics. We perform the ana-
lytic continuation of the six-gluon remainder function at two loops
found by Goncharov, Spradlin, Vergu and Volovich to the Mandel-
stam channel illustrated in Fig. 2 and then extract the logarithmic
and constant terms in the Regge limit. We find that despite the fact
that 2 → 4 and 3 → 3 amplitudes have a rather different structure,
the corresponding remainder functions have a similar form as ex-
pected from the Regge factorization of scattering amplitudes. The
only difference between them at two loops is the overall sign and
the presence of the real term for the 3 → 3 remainder function.
This result is in full agreement with a general all-loop dispersion
relations (18) and (19) derived by one of the authors [22]. Using
these dispersion relations we predict the leading term (25) and
the subleading real term (29) of the 3 → 3 remainder function at
three loops. We also make a prediction for all-loop expression of
the real part of the 3 → 3 remainder function multiplied by the
BDS phase (30). This relation can be accessible through calcula-
tions in the regime of the large coupling constant.
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