
Physics Letters B 754 (2016) 1–5
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Trapping penguins with entangled B mesons

Ryan Dadisman, Susan Gardner ∗, Xinshuai Yan

Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 April 2015
Received in revised form 6 January 2016
Accepted 6 January 2016
Available online 8 January 2016
Editor: B. Grinstein

The first direct observation of time-reversal (T) violation in the B B system has been reported by the BaBar 
Collaboration, employing the method of Bañuls and Bernabéu. Given this, we generalize their analysis 
of the time-dependent T-violating asymmetry (AT ) to consider different choices of CP tags for which 
the dominant amplitudes have the same weak phase. As one application, we find that it is possible to 
measure departures from the universality of sin(2β) directly. If sin(2β) is universal, as in the Standard 
Model, the method permits the direct determination of penguin effects in these channels. Our method, 
although no longer a strict test of T, can yield tests of the sin(2β) universality, or, alternatively, of penguin 
effects, of much improved precision even with existing data sets.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A goal of B-physics is to study the nature of CP violation and 
to discern, ultimately, whether sources of CP violation exist beyond 
that of the Standard Model (SM). This means the weak phases as-
sociated with various decays are measured to test whether they 
fit the SM pattern or not. Thus far such searches have proven nil, 
noting, e.g., Ref. [1] and its update in Ref. [2], and it is of inter-
est to carry these tests to higher precision. For example, in the 
SM the CP asymmetries associated with the quark decays b → cc̄s, 
b → cc̄d, and b → sss measure sin(2β), up to penguin contribu-
tions and new physics in the decay amplitudes [3].1 Measurements 
of the time-dependent asymmetry in the penguin mode B → φK S
(b → ss̄s) and others are statistics limited, and follow-up studies 
are planned at Belle-II [4]. A compilation of existing measure-
ments can be found in Ref. [5]. Improved tests of weak-phase 
universality, notably that of sin(2β), using the usual measurement 
of time-dependent CP asymmetries will require experiments at 
new facilities. In this paper, we propose a more accessible way 
to sharpen these tests by determining effective weak-phase dif-
ferences through a single asymmetry measurement; thus an im-
proved test can come from existing data sets.

The BaBar Collaboration has observed direct T violation [6] by 
exploiting the quantum entanglement of the B B̄ mesons produced 
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in ϒ(4S) decays, as long familiar from other contexts [7–10]. That 
is, because the ϒ(4S) state has definite flavor and CP, the flavor-
or CP-state of a B meson can be determined, or “tagged,” at a time 
t by measuring the decay of the other B meson at that instant. 
In a seminal paper, Bañuls and Bernabéu showed that by select-
ing suitable combinations of flavor and CP tags of the B-mesons 
in the entangled pair, CP, T, and CPT asymmetries [11] can all 
be constructed. Consequently, BaBar uses the final states J/�K L
(CP = +) and J/�K S (CP = −) as CP tags and the sign of the 
charged lepton in �± X decay as a flavor tag. Thus by employ-
ing either flavor or CP tagging they are able to form a time-
dependent asymmetry AT , such as AT = (�(B0 → B+) − �(B+ →
B0))/(�(B0 → B+) +�(B+ → B0)), where B± denotes a state with 
CP = ± [6,11–13]. Thus if the rates of B0 → B+ and B+ → B0 are 
not the same, i.e., not in “detailed balance,” then time-reversal 
symmetry is broken. BaBar measures the T-violating parameters 
�S+

T = −1.37 ± 0.14stat ± 0.06syst and �S−
T = 1.17 ± 0.18stat ±

0.11syst, so that both measurements exceed discovery significance, 
and reports observing T violation with an effective significance of 
14σ [6]. Previously a failure of detailed balance was reported in 
K 0 ↔ K̄ 0 transitions by CPLEAR [14], but the concomitant claim 
of direct T violation of 〈Aexp

T 〉 = (6.6 ± 1.3stat ± 1.0syst) × 10−3

is only of 4σ significance if statistical and systematic errors are 
combined in quadrature. Moreover, the interpretation of the ex-
periment as a test of T has been criticized [15,16]. In the case of 
the concept [11,12] employed by the BaBar experiment [6], the 
use of entanglement with distinct kinds of tags allows the reser-
vations [15,16] levied against the CPLEAR experiment to be set to 
rest [2,17,18].

Nevertheless, there has been discussion of the conditions under 
which a measured non-zero value of AT proves that time-reversal 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The transition B0 → B− and the construction of its time-conjugate B− → B0. a) Idealized: the initial detection of �− projects the other B into the orthogonal flavor 
state, realizing B0 → B− upon subsequent detection of J/ψ K S , whereas the initial detection of J/ψ KL projects the other B into the CP = − state. In this latter case 
subsequent detection of �+ X realizes B− → B0, the time-reversed process associated with B0 → B− . The initial-state projections can be thought of as inverse decays of �+
and J/ψ K S , respectively [19]. b) Expanded to include the particles that are detected (boxes) to tag the initial and final states of the B-meson. The second process is not the 
time conjugate of the first once direct CP violation in the tagging decay is included. The CP state of the B-meson prepared through inverse decay is not identical to that of 
the B which decays to J/ψ K S (π+π−). Note at the B-factories that KL is reconstructed through its interactions with the detector [22].
symmetry is broken. Generally, the existence of penguins compli-
cates the interpretation of these measurements as tests of T (or of 
CPT), though in the specific final states studied by BaBar [6] AT

is a true test of T irrespective of penguin effects in the B-meson 
decay [19]. Direct CP violation in the CP tag, however, which is 
possible if K S,L are reconstructed through their hadronic decays, 
also causes the interpretation of AT as a test of T to fail — this has 
also been noted by Ref. [20] in an analogous study of K K̄ transi-
tions and in Ref. [21]. In this paper we break the interpretation of 
AT as a test of T purposefully through the choice of different CP 
tags, and the resulting variations in the effective T violation can 
be used to probe the existence of different small effects. In par-
ticular, we show that with specially chosen “generalized” CP tags 
the dominant amplitudes cancel in observables associated with AT , 
thus yielding a direct test of weak phase universality, or, alterna-
tively, a measurement of differences of penguin pollution in the 
SM. These differences have been difficult to quantify [5], and our 
procedure gives direct access to them. To explicate this, we shall 
start by revisiting the interpretation of AT .

2. Interpreting AT

The combination of Einstein–Podolsky–Rosen (EPR) entangle-
ment in the B B̄ system from ϒ(4s) decay with the possibility of 
both lepton and CP tagging (using J/ψ K S,L ) allows a near-perfect 
experimental realization of a process and its time-reversal conju-
gate, making the measurement of AT a true test of time-reversal 
symmetry. The first tag at t0, of CP (or flavor), sets the initial state 
of the remaining particle. Following the formalism of the recent 
analysis of BaBar’s measured AT by Applebaum et al. [19], the 
state assignment of the remaining B-meson can be thought of as 
an inverse decay at t0 from the opposite CP (or flavor) tag. Fig. 1
visualizes this result. The inverse decay is realized through EPR 
entanglement and the decay of another particle, and Applebaum 
et al. state the conditions under which a nonzero AT reveals T vi-
olation, though, as we will show, the conditions turn out to be 
necessary but not sufficient. That is, they note that (i) the absence 
of CPT violation in strangeness changing decays and (ii) the ab-
sence of wrong sign decays or the absence of direct CP violation 
in semileptonic decays if wrong sign decays occur are required to 
interpret AT as a test of T invariance [19]. (A complementary dis-
cussion of the conditions under which AT serves as a test of T can 
be found in Ref. [21].) Fig. 1a illustrates the ideal case in which the 
detection of one state projects the other B-meson into the state or-
thogonal to it, thus realizing the exchange of initial and final states 
needed to construct the time-conjugate process.
Fig. 2. The B0 → B− transition and its time conjugate using general CP tags fo and 
fe , which are odd and even, respectively, under CP. In this case the interpretation 
of AT as a test of T can be broken at the tag level. Thus detecting fe at t0 is 
tantamount to the inverse decay f ′

o → B− , where fo and f ′
o are distinct states. 

Here circles are used to indicate that the CP tag may be reconstructed rather than 
directly detected.

There is one more effect to consider in interpreting AT as a test 
of T, and it can arise if the CP tagging state is itself reconstructed 
through its decay to hadrons. That is, direct CP violation in the de-
cay of CP tag to hadronic final states breaks the ability to construct 
the time-reversed process. (This is distinct from the complications 
due to εK , noted in Ref. [19].) Fig. 1b illustrates this, though the 
details are provided in the following section. Ideally, K S and K L

can be reconstructed unambiguously, but direct CP violation in 
the reconstruction of the K S from K S → ππ decay prevents this. 
In the formalism of [19], it appears as if it were a CPT-violating 
effect. Of course, CPT is not actually broken, but, rather, the rela-
tionships between the T and CP asymmetries expected under an 
assumption of CPT invariance will not hold because of direct CP 
violation in the kaon decay. The effect of direct CP violation in 
K S → ππ is numerically very small [23]. Nevertheless it can limit 
the sensitivity of CPT tests that follow from comparing T and CP 
asymmetries, AT and ACP . (We note that the best limits on the real 
part of the CPT-violating parameter z in the B system come from 
studies of b → cc̄s decay [24,25].) The new method we propose ex-
ploits the potential failure of AT as a test of T by selecting CP tags 
of common dominant weak phase (in the SM) but differing pen-
guin pollution, e.g., to yield new observables — this is illustrated 
in Fig. 2. These new observables probe small effects that have not 
previously been directly measured. In these cases as well we find 
|AT | 	= |ACP| without CPT violation. We now turn to the details.

3. Details

The time-dependent decay rate for B B̄ mesons produced in 
ϒ(4S) decay, in which one B decays to final state f1 at time t1
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and the other decays to final state f2 at a later time t2 has been 
analyzed in the presence of CPT violation, wrong-sign semileptonic 
decays, and wrong strangeness decays [19]. In what follows we 
assume all of these refinements to be completely negligible. More-
over, we neglect CP violation in B B̄ mixing and set the width dif-
ference of the B-meson weak eigenstates to zero, i.e., �H −�L = 0. 
The decay rate to f1 and then f2 is denoted as �( f1)⊥, f2 and is 
thus given by

�( f1)⊥, f2 = N1N2e−�(t1+t2)[1 + C(1)⊥,2 cos(�mB t)

+ S(1)⊥,2 sin(�mB t)] , (1)

with � ≡ (�H + �L)/2, �mB ≡ mH − mL , t = t2 − t1 ≥ 0, S(1)⊥,2 ≡
C1 S2 − C2 S1, and C(1)⊥,2 ≡ −[C2C1 + S2 S1] [19]. Moreover, C f ≡
(1 − |λ f |2)/(1 + |λ f |2) and S f ≡ 2�(λ f )/(1 + |λ f |2), where λ f ≡
(q/p)( Ā f /A f ), noting A f ≡ A(B0 → f ), Ā f ≡ A(B̄0 → f ), N f ≡
A2

f + Ā2
f , and q and p are the usual B B̄ mixing parameters [23]. 

Since we neglect wrong-sign semileptonic decay, C�+ X = −C�− X =
1. Defining normalized rates as per �′

( f1)⊥, f2
≡ �( f1)⊥, f2/(N f1N f2 )

we have, in the case of the asymmetry illustrated in Fig. 1,

AT =
�′

(�− X)⊥, J/ψ K S
− �′

( J/ψ K L)⊥,�+ X

�′
(�− X)⊥, J/ψ K S

+ �′
( J/ψ K L)⊥,�+ X

. (2)

Note that normalizing each rate is important to a meaningful 
experimental asymmetry because the J/ψ K S (or, more gener-
ally, cc̄K S ) and J/ψ K L final states have different reconstruc-
tion efficiencies [13]. BaBar constructs four different asymmetries, 
based on four distinct subpopulations of events, namely, those 
for �(�+ X)⊥,cc̄K S (B̄0 → B−), �(cc̄K S )⊥,�+ X (B+ → B0), �(�+ X)⊥, J/ψ KL

(B̄0 → B+), �( J/ψ KL )⊥,�+ X (B− → B0), and their T conjugates, re-
spectively, and finds the measurements of the individual asymme-
tries to be compatible [6]. We note that the normalization factors 
N f for general CP tags will differ; nevertheless, meaningful exper-
imental asymmetries can be constructed through the use of nor-
malized decay rates as already implemented in BaBar’s AT analy-
sis [6].

In what follows we generalize the choice of CP final states, so 
that J/ψ K S → fo and J/ψ K L → fe , where “o” (“e”) denotes a CP-
odd (even) final state. We define

Ae+
CP ≡

�′
(�− X)⊥, fe

− �′
(�+ X)⊥, fe

�′
(�− X)⊥, fe

+ �′
(�+ X)⊥, fe

= Ce cos(�mB t) − Se sin(�mB t) , (3)

Ae−
CP ≡

�′
( fe)⊥,�− X − �′

( fe)⊥,�+ X

�′
( fe)⊥,�− X + �′

( fe)⊥,�+ X

= Ce cos(�mB t) + Se sin(�mB t) , (4)

where Ae+
CP → Ao+

CP and Ae−
CP → Ao−

CP follow by replacing fe → fo . 
Note that A f +

CP and A f −
CP employ distinct data samples. Moreover,

Ao+
T ≡

�′
( fo)⊥,�− X − �′

(�+ X)⊥, fe

�′
( fo)⊥,�− X + �′

(�+ X)⊥, fe

= (Ce + Co) cos(�mB t) + (So − Se) sin(�mB t)

2 + (Co − Ce) cos(�mB t) + (So + Se) sin(�mB t)
, (5)

Ao−
T ≡

�′
(�− X)⊥, fo

− �′
( fe)⊥,�+ X

�′
(�− X)⊥, fo

+ �′
( fe)⊥,�+ X

= (Ce + Co) cos(�mB t) − (So − Se) sin(�mB t)
, (6)
2 + (Co − Ce) cos(�mB t) − (So + Se) sin(�mB t)
and

Ae+
T ≡

�′
( fe)⊥,�− X − �′

(�+ X)⊥, fo

�′
( fe)⊥,�− X + �′

(�+ X)⊥, fo

= (Ce + Co) cos(�mB t) − (So − Se) sin(�mB t)

2 − (Co − Ce) cos(�mB t) + (So + Se) sin(�mB t)
, (7)

Ae−
T ≡

�′
(�− X)⊥, fe

− �′
( fo)⊥,�+ X

�′
(�− X)⊥, fe

+ �′
( fo)⊥,�+ X

= (Ce + Co) cos(�mB t) + (So − Se) sin(�mB t)

2 − (Co − Ce) cos(�mB t) − (So + Se) sin(�mB t)
. (8)

Each time-dependent asymmetry has four parameters made distin-
guishable by the various time-dependent functions, and they can 
be measured experimentally. Indeed the individual asymmetries 
can be simultaneously fit for So + Se , So − Se , Co + Ce , and Co − Ce . 
Note that if Co = Ce and So = −Se , Ae+

CP = Ao−
CP = Ao+

T = Ae−
T and 

Ae−
CP = Ao+

CP = Ao−
T = Ae+

T . Neglecting CP violation in kaon decay, 
we note that λ J/ψ K S = −λ J/ψ KL . The K S is reconstructed through 
its decays to ππ (2π ), whereas the K L , at BaBar and Belle, is not 
determined from its decay to π0π0π0, though this can be done at 
DAPHNE [20]. We calculate λ2π

λ2π = q

p

〈K̄ 0|B̄0〉
〈K 0|B0〉

1 + εK

1 − εK

1 + η2π

1 − η2π
, (9)

where η2π ≡ 〈2π |K L〉/〈2π |K S 〉 and εK captures CP violation in K K̄
mixing. Since η2π 	= 0 [23], we find C2π 	= C KL and S2π 	= −S KL , 
yielding |ACP| 	= |AT | (in all cases) without CPT violation. Though 
we concur with Ref. [19] that neither direct CP violation in B me-
son decay nor CP violation in K K̄ mixing can generate this effect, 
we see explicitly that the effect of direct CP violation in K decay 
can be included through a nonzero θ f , a nominally CPT-violating 
parameter, in the formalism of Ref. [19]. We note the criteria of 
Applebaum et al. [19], enumerated in the previous section, should 
be supplemented with the neglect of direct CP violation in kaon 
decay, if the kaon is reconstructed through its hadronic decays, in 
order to interpret AT as a test of T .

Thus far we have discussed the CP final states fo = J/ψ K S and 
fe = J/ψ K L , though other choices are possible. If we choose CP fi-
nal states that share a dominant weak phase with each other and 
with J/ψ K S,L , we have fo′ = φK S , ηK L, η′K L, ρ0 K S , ωK S , π0 K L

and fe′ = φK L, ηK S , η′K S , ρ0 K L, ωK L, π0 K S , respectively, with 
the prime notation henceforth representing a CP tag other than 
J/ψ K S,L . These are the two-body “sin(2β)” modes commonly 
studied2 to test its universality [23,28]. Not only can we use 
these modes to form the AT asymmetries we have discussed thus 
far [29], such as the comparison of B̄0 → Bo′ with Bo′ → B̄0, we 
can form two more for each one: e.g., we can compare B̄0 → Bo′
to Bo → B̄0, as well as B̄0 → Bo to Bo′ → B̄0. Turning to Eq. (8), 
we see that the parameters associated with the sin(�mBt) terms 
in these comparisons are, e.g., So′ − Se and So′ + Se . In So′ + Se the 
dominant weak phase contributions (in the SM) cancel, and the 
small terms, namely, the penguin contributions, as well as possi-
ble contributions from new physics, are determined directly. In the 
analogous comparison of B̄0 → Be′ with Be → B̄0 decay, the dom-
inant weak phases cancel in So + Se′ . Note that the possibility of 
a direct measurement of a quantity in which the dominant weak 
phases can cancel is special to the AT construction.

2 Three-body decays, such as K S K S K S or K + K − K S , have also been studied, 
though determining the CP content of the K + K − K S Dalitz plot requires an angular 
moment analysis [26,27].
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In order to demonstrate this, we first define the parameter λ f

on which So,e depend. There is a factor of exp(−i2β) from B B̄
mixing, and, in general, the decay amplitude can be written as a 
linear combination of 2 weak phases (we select “up” and “charm”): 
A f = ac

f e−iθc +au
f e−iθu , in which “ac

f ”, “au
f ” contain the magnitudes 

of the amplitude associated with each phase, including diagram-
matic tree and penguin contributions. The associated weak phases 
are θc = 0 and θu ≡ γ . The dominant weak phase is determined 
by the quark-flavor content of the final state. Our focus is on the 
sin(2β) modes, for which ac

f is the dominant amplitude. Defin-
ing

λ f = −η
f
CPe−2iβ 1 + d f e−iγ

1 + d f eiγ
, (10)

d f ≡
∣
∣
∣
∣

V ∗
ub V us

V ∗
cb V cs

∣
∣
∣
∣

au
f

ac
f

, (11)

where CP| f 〉 = η
f
CP| f 〉, a simple calculation gives us: [30]

S f = −η
f
CP

sin(2β) + 2
(d f ) sin(2β + γ ) + |d f |2 sin(2β + 2γ )

1 + |d f |2 + 2
(d f ) cos(γ )
,

C f = −2�(d f ) sin(γ )

1 + |d f |2 + 2
(d f ) cos(γ )
. (12)

As long familiar, a difficulty arises in attempting to separate the 
dominant term from any small effects. Setting the smaller, wrong 
phase contribution to zero, we recover the simplified expressions 
C f = 0, S f = −η

f
CP sin(2β) for all f . It is convenient to define δS f

such that S f = −η
f
CP(sin(2β) + δS f ).3

Several theoretical studies have been made of the deviations of 
S f , measured through A f +

CP , from sin(2β), through computation of 
the amplitudes in the SM [30–36], as well as through approaches 
using SU(3)-flavor-based assumptions [37,38,43]. A particular effort 
has been placed on determining the size of the small penguin pol-
lution in the golden J/ψ K S,L modes, for which ancillary data and 
flavor-based relations can be used [39–43]. Experimentally one can 
form

δS f = −η
f
CP S f − sin(2β) (13)

using the determination of sin(2β) in B → cc̄ K S and J/�K L final 
states [6,44,45], though the error in δS f is dominantly that in S f . 
We now compare this procedure to our AT method with general-
ized CP tags. In this new case, assuming sin(2β) universality, the 
sin(2β) term in S f cancels, yielding

(Se + So) = δSo − δSe (14)

and providing a direct measurement of the difference of devia-
tions from sin(2β) for the chosen CP tags. If we use a golden 
mode for which δSe(o) ≈ 0, such as J/�K S,L , to define sin(2β), 
then Se + So ≈ ± sin(2βo(e)) ∓ sin(2β) ± δSo(e) , where the up-
per sign is associated with o. Thus we test the deviation of S f
from sin(2β) through a single asymmetry measurement, whereas 
a “double” difference appears in Eq. (13). Of course sin(2β) in 
B → cc̄ K S , J/�K L decays is very well known (0.677 ± 0.020 [5]), 
so that it is more pertinent to note that the asymmetry AT can 
directly employ these highly precise decay samples as well [6,44,
45].

3 We use “δS f ” in place of the “�S f ” used in Refs. [30–36] in order to avoid con-
fusion with the quantities �S±

T of Refs. [6,13,19] that we have already introduced.
An asymmetry AT generally requires the comparison of the 
rates ((�± X)⊥, fo(e)) and (( fe′(o′))⊥, �± X), or of their time conju-
gates, while ACP only requires the comparison of the ((�± X)⊥,

fo′(e′)) rates. Thus in the case of η′ K S , e.g., the determination of 
Se′ via ACP employs two subsamples of limited statistics, whereas 
the determination of Se′ + So via AT is formed from the compar-
ison of a limited statistics sample with the plentiful statistics of 
cc̄K S . Consequently, we expect improved access to δSe′ , for any 
of the CP-even modes that probe sin(2β), and analogous improve-
ments to the determination of δSo′ for any of the CP-odd modes. 
Current experimental results for S f have limited precision in 
many of the sin(2β) modes previously listed as CP-tag candidates 
(e.g., −η

f
CP Sπ0 K S

= 0.57 ± 0.17; −η
f
CP SωK S = 0.45 ± 0.24 [5]). Our 

method will be of greatest impact for these more poorly known 
modes. Comparing these results against predicted values of δSo′(e′)
in the SM should then yield sharper tests of new physics. Such 
sharpened determinations should also improve the ability to ex-
tract the true value of sin(2β) from fits to the experimental results 
in a theoretical framework including leading SU(3) flavor-breaking 
effects [38], again leading to improved tests of new physics. We 
note that diverse sources of the latter have been proposed [3,33,
46–48].

Our method requires the construction of normalized subsam-
ple rates as in Eq. (2); normalized subsample rates have already 
been employed in BaBar’s AT analysis [6]. The efficacy of this 
procedure can be roughly assessed through the comparison of 
BaBar’s claimed significance for the observation of T and CP vio-
lation through the measurement of AT and ACP , respectively. In 
this exact case BaBar measures T violation at 14σ and CP viola-
tion at 17σ [6], so that they are not very different, particularly 
when one notes that the AT measurement employs a J/ψ K L sub-
sample as well. Consequently, for various fo′(e′) we can expect a 
sharper determination of δSo′(e′) through the measurement of AT
than possible through study of ACP alone.

The method we have proposed can be generalized to other sorts 
of decay modes, such as those that probe sin(2α) [49]. The basic 
idea is that the CP-tagging modes are chosen so that their domi-
nant decay amplitudes (in the SM) share the same weak phase. In 
the cases we have considered in this paper, the CP-even and odd 
tags are chosen with a common dominant weak phase of sin(2β). 
In so doing, AT is no longer a true test of T, but we introduce 
new observables that permit a direct measurement of small depar-
tures from weak-phase universality. If the dominant weak phase 
is universal, then these observables measure the penguin pollution 
in these decays. We emphasize that although the phrase “penguin 
trapping” has previously been used to refer to the specific recon-
struction of the penguin amplitude using flavor-based assumptions 
and empirical data [50], we use it here to refer to a method by 
which a more precise empirical assessment can be made of ob-
servables in which penguin effects can appear.

4. Summary

We have described how a broader measurement program of the 
time-dependent asymmetry AT with generalized CP tags, possi-
ble at a B factory, can be used to measure small departures from 
weak-phase universality. Generally an analysis of AT provides four 
parameters composed of linear combinations of So(e) and Co(e); 
under the use of generalized CP tags the asymmetry AT no longer 
serves as a genuine T test — and |AT | 	= |ACP| can appear without 
CPT violation. However, the new observables the AT construction 
offers allow the direct measurement of the penguin effects with 
improved statistical control, information that can be used to test 
the universality of sin(2β). New results of greater precision can be 
obtained from existing B-factory data using this method, and we 
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believe it can also greatly enable precision studies of CP violation 
anticipated with the Belle II detector at KEK.
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