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Abstract 
 
Raindrop impact and surface flow trigger the downstream movement of soil particles by the processes of rainfall-induced soil 
erosion. A set of laboratory simulated rainfall experiments was carried out to study soil loss and size characteristics of 
discharged sediments of a soil under a rainfall intensity of 70 mm/h, controlled initial soil suctions and moistures. The 
rainfall simulation was instrumented with tensiometers and moisture sensors. A new device capable of deriving impact force, 
velocity, and kinetic energy of a falling waterdrop was developed. Sediment sizes in runoff were characterized by a laser 
particle size analyzer in order to correlate with the properties of rainfall. 1D simulated rainfall experiments were also 
employed to study soil detachment and soil susceptibility to rainfall under both saturated and unsaturated soil conditions. The 
processes of soil erosion and outflow size characteristics of sediments relating to effect of suction were discussed. The 
proposed set of experiments will be a viable tool for measuring soil loss, sediment runoff, and sediment sizes discharged 
from a farmland pertaining to properties of rain, soil and flow. 
© 2015 Norityuki Yasufuku and Ryohei Ishikura. Published by Elsevier Ltd. Selection and/or peer-review under organizing 
committee of I3R2 2015 
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1. Introduction 
 
    Global warming effect triggers a change in climate and is likely to shift the characteristics of heavy 
and extreme rainfall in forms of pattern, amount, duration, frequency and intensity. The potential shift 
is strongly expected to influence the characteristics of soil erosion, surface runoff, and sizes of 
discharged sediments (Nearing et al. 2004). Rain is a natural dynamic movement of water that varies 
spatially and temporally under amounts and intensities. Rain is also considered as one of the most key 
erosion factors under all natural conditions in term of erosive and destructive power to cause soil 
particle detachment and movement from soil surface (Zachar, 1982). Rain-impacted soil detachment 
and flow are mutually responsible for sheet and interrill erosion areas. The size distributions of 
primary particles discharged by rain-impacted flows have been observed to be finer (including nutrient 
and chemical particles) than those in the soil matrix (Kinnell, 2009). Therefore, the soil erosion and 
removal of the fine particles affect farming productivities and water quality of the receiving aquatic 
environments. 
   Rainfall-induced soil erosion (RISE) for a bare soil is a complex energy-dependent process resulting 
from the combined effect of raindrop properties, soil components and soil-water interaction. Impact of 
raindrop is associated with the raindrop kinetic energy and has been widely studied to characterize soil 
resistance to impacting rainfall and runoff flow or soil erodibility (Hinkle, 1989; Nearing & Bradford,  
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1984; Sharma & Gupta, 1989). The drop impact also attributes to the onset of particle movement 
through coupling soil detachment and sediment transport (Fig. 1).  
    Soil erodibility or susceptibility of a soil against erosive forces or erosion is a dynamic parameter of 
a soil that depends on hydraulics of raindrop and surface flow.  Soil erodibility is temporally and 
spatially influenced by soil type, organic matter content, soil structure and permeability (Wischmeier 
& Smith, 1978). Antecedent soil conditions also influence soil erodibility and produce hysteresis in 
characteristics of soil loss and sizes of sediment discharged (Vilayvong et al. 2014). For example, 
cycles of wetting and drying of soils, which are partially underpinned by temporal variation of suction 
and soil moisture. Unsaturated soils with varying contents of air and water possess a negative pore 
water pressure or soil suction. Dry soils with high soil suction increases aggregate stability and shear 
strength of the surface soil. However, high soil moisture might increase aggregate slaking and 
breakdown during rainfall due to rapid wetting which is exacerbated by soil detachment and transport 
induced by rainfall and surface flow (Le Bissonais et al. 1989). 
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Fig. 1. Mechanism of soil erosion due to impact of rainfall and flow (Kinnell, 2009) 
 

Nomenclature 

Ec = critical raindrop energy to cause detachment. 
c(loose) = critical flow shear stress required to transport loose (pre-detached) soil particles. 
c(bound) = critical shear stress required to detach particles bound within the soil surface (held by 

cohesion and inter-particle friction). 
RD–ST = raindrop detachment and splash transport. 
RD–RIR = raindrop detachment and raindrop induced rolling. 
RD–RIS/RIR = raindrop detachment and raindrop induced saltation or rolling. 
RD–FDS/FDR = raindrop detachment and flow driven saltation or flow driven rolling. 
RD–FS = raindrop detachment and flow suspension. 
FD–FS/FDS/FDR = flow detachment and flow suspension or flow driven saltation or flow driven 
rolling 
     
    Many process-based soil erosion models such as WEPP (Flanagan & Nearing 1995) consider the 
effect of runoff on erosion explicitly and require the rainfall properties (the drop size distribution, 
velocity, kinetic energy and intensity) and soil properties (soil moisture, soil suction, and permeability) 
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to be addressed. Measurement of soil erosion and the discharged sediment sizes pertaining to raindrop 
impact and soil conditions is a challenge in practice and measurement data are scarily limited.  
Therefore, it is viable that determination procedure and method need be developed. The objectives of 
this study are (a) to conduct a preliminary study for continuous determination of impact force or 
kinetic energy of a falling waterdrop for soil erodibility study and (b) to investigate the grain size 
distribution of discharged particles from laboratory rainfall-impacted soil erosion using a residual soil, 
heavy rainfall intensity of 70 mm/h, and impact force of the falling waterdrop under controlled initial 
soil suctions. 
 
2. Materials and Method 

2.1. Determination of impact force from a falling waterdrop test 

    Impact force of a simulated waterdrop was measured by using a strain gauge-based cantilever strip. 
The copper alloy strip of 50 mm (length), 4.0 mm (width) and 0.2 mm (thickness) was mounted with a 
miniature strain gauge sensor (Fig. 2a). A light circular aluminum pad was placed on the tip of the 
strip vertically by a frictionless pin. When a raindrop strikes the surface of the pad, the cantilever strip 
experienced deflection and the strain gauge sensor picked up the surface displacement signal. The 
sensor was first calibrated against vertical displacement. The output signal was acquired using a 
dynamic strain recorder. The displacement and output signal were then converted by equation (1) to 
obtain the impact force. Fig. 2b shows the results of calibration of displacement, output signal and 
impact force using material properties of the copper (modulus of elasticity, E = 117 GPa).  
 

    (1) 

 
    Where F: force, L: length of cantilever, E: modulus of electricity of material, I: moment of inertia, 
EI: stiffness of the strip and : deflection at the tip of cantilever. 
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Fig. 2. Impact force device: (a) strain gauge for impact force, (b) calibration of impact force 

2.2. Soil sample and soil preparation for rainfall-induced soil erosion (RISE) study 

    Shino et al. (2013) reported that change in rainfall erosivity for soil erosion of farmlands in Japan 
due to potential impact of future climate. Their results suggested that rainfall erosivity will increase in 
many parts of farmland areas and soil erosion of farmlands will be elevated on an average rate of more 
than 20%. Rainfall intensity of more than 20 mm/h is classified as heavy rain in Japan. The number of 
days with rainfall of 1.0 mm or more is descending and the number of days with rainfall intensity of 
100 mm or more is on the rise and the frequency of hourly heavy rains of 50 mm or more is highly 
likely occurred (JMA, 2012). The most frequent occurence of the events  was observed in the southern 
part of Japan, the highest is in Okinawa island, followed by Kyushu island (JMA, 2013).  

(a) 
(b) 
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1. Impact force pad 
2. Strain gauge recorder 
3. Copper strip with strain gauge  
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    A residual soil derived from weathered and decomposed granitic rocks was used as a soil sample. 
Masa soils (by local name in Japan) are residual soils which are widely distributed in the southern part 
of Japan. In general, Masa soils are susceptible to erosion by water because composition of the soil are 
coarse-grained soils with low soil cohesion and little organic matter content (Egashira et al. 1984). 
Basic index properties of the soil are listed in Table 1. Air-dried soil sample passing 2.0 mm sieve was 
used and the grain size distribution curve of the soil depicted in Fig. 8c. 
 

Fig. 3. Schematic diagram of the rainfall experiment setup 
 
    Table 1. Basic properties of the Masa soil 
Properties        Masa soil 
Soil classification (USCS)     SGP 
Specific gravity, Gs       2.74 
Bulk density before saturation (Mg/m3)    1.22 
Atterberge’s limit test 
   Liquid limit (%)      30.23 
   Plastic limit (%)      24.96 
   Plasticity index (%)      5.27 
Organic matter content (OMC) (%)    2.78 
Saturated permeability (m/s)     2.19 x 10-5 
 
    The sample soil is classified as a poorly-graded soil with a percentage of sand (JIS A 1204/JGS 
0131) of 96%, of which 32%, 30%, and 34% are coarse-grained sand (0.850-2.0 mm), medium-
grained sand (0.25-0.850 mm) and fine grained sand (0.075-0.250 mm), respectively. Silt (0.005-
0.075mm) and clay (<0.005 mm) are accounted for 3% and 1%, respectively. Coefficient of 
uniformity (Cu) and coefficient of curvature (Cc) are 8.75 and 0.25, respectively. Air-dried soil sample 
was compacted by self-consolidation from water drain by gravity after saturation. Saturation was 
carried out by gravity-fed water supply using a tap water through a tube connecting the bottom of the 
soil box with 10 cm height of pore water level to enhance moisture distribution and bonding of soil. 
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2.3. Rainfall-induced soil erosion (RISE) experiments 

    Rainfall-induced soil erosion (RISE) experiment consists of a rainfall simulator, a soil box, and a 
support frame. Rainfall simulators are widely used device to investigate the process of soil erosion and 
surface hydrology. In this study, a dripping-type rainfall simulator capable of forming a uniform 
waterdrop size was used. The simulator consists of 396 numbers of hypodermic needles with inner 
diameter 1.0 mm, spacing at 30 mm and maximum drop size of 3.00 mm in diameter. Artificial rain 
using tap water was dropped at a height of 1.40 m above the soil surface. A soil box of size of 100 cm 
length, 50 cm width and 15 cm thickness with a perforated base was tilted at 5 degrees (9% slope). 
The set-up of the RISE experiments is shown in Fig. 3. 
    Runoff was collected at 1-minute interval for the duration of 60 minutes. Aluminum containers 
derived from discarded soft drink cans were used as sampling collectors. The collected runoff was 
oven dried at 105ºC for measuring amount of soil solid. Eight numbers of small tensiometer (UNSUC 
model from Sankei Rika Company) were installed below soil surface for measuring soil suction at 
depths of 4 cm, 8 cm and 12 cm. The tensiometers were wired to a data logger (TDS-302 model from 
Tokyo Sooki Kenkyujo Company) for recording and monitoring soil suction over time. Nine numbers 
of volumetric water content sensors (EC5 moisture sensor from Decagon Company) were installed at 
the opposite side of the soil box with the same depths and locations as those of the tensiometers. The 
moisture sensors were connected to a mini A3 battery-powered data logger for storing data. 
 
 
2.4. Determination of soil hydro-mechanical properties 

    Soil water retention curve (SWRC) of a soil or a material represents the amount of water holding in 
its pores under stress conditions (e.g. soil suction). Determining SWRC is a cumbersome process and 
requires tedious handling, high cost equipment, quality technicality and monitoring. Fine soils with 
high contents of silt and clay exhibits a high suction range that requires a special apparatus for 
measuring the high suction. A compact high speed refrigerated centrifuge (6500 model from Kubota 
corp.) was used in this study because the SWRC is obtained with short time operation. The device is 
capable of inducing suction in the soil specimen up to 2000 kPa. Suction conversion in centrifuge 
device was obtained by the equation from Gardner (Gardner, 1937) (2). The equation from van 
Genuchten (1980) (3) was used to predict SWRC beyond measured data. 

2
2 2

2 12
r r

g
(2)

Where  is suction (kPa), r1 is radial distance to the free water surface (cm), r2 is radial distance to the 
midpoint of the soil specimen (cm),  is angular velocity (rad/s),   is density of the pore fluid (g/cm3), 
g is a gravitational acceleration (981 cm/s2) 

1
mn

r s r h (3) 

    Where  is the volumetric water content, h is the water pressure (kPa), s and r are the saturated 
and the residual volumetric water contents, , n and m are empirical parameters.  
    In general, permeability function of unsaturated soils can be estimated from empirical equations, 
macroscopic models and statistical models (Leong & Rahardjo, 1997). Due to rigorous mathematical 
derivation, statistical models perform the best when no database for permeability function of a local 
soil is available, otherwise, the empirical equations are recommended. Permeability function of the 
Masa soil was indirectly derived from the statistical model proposed by Childs & Collis-George 
(1950). The model was selected because only data from SWRC and saturated permeability, ks, can be 
incorporated to correlate the coefficient of permeability and soil suction. The model has been 
employed successfully with high accuracy to obtain the permeability function of natural soils. The 
technique for obtaining the permeability functions of unsaturated soils using the model is described by 
Fredlund & Rahardjo (1993). 
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    Soil suction contributes to soil resistance against raindrop impact and shear stress of flow by 
altering shear strength, soil stability, cohesion, permeability, soil structure, and infiltration.  Fig. 5a 
and Fig. 5b show the responses of soil moisture and suction, respectively, at different depths at 4 cm, 8 
cm and 12 cm at the center section of soil slope. Results showed good response between the changes 
in soil moisture and soil suction. Increase in dryness reduced volumetric water content (VWC) and 
increased soil suction. The influx of soil moisture at the surface at a wet rate of 70 mm/h rainfall can 
be observed through the change in VWC. The results also indicate that it took about 5 minutes to 
cause the soil suction to disappear under the applied rainfall intensity. The difference in the profiles of 
VWC and soil suction with depths was due to the nonhomogeneous distribution of factors affecting 
them such as the permeability function (Fig. 6b). In addition, the response time of the volumetric 
water content for the 4 cm depth changed slightly and the elapsed time from tensiometer responded 
around 3-5 minutes. It was noted that the saturated volumetric water content (0.417 m3/m3) could not 
be fully reached during 60 minutes of the rainfall event. Therefore, it was clear that the soil surface 
was still in transition from unsaturated to saturated conditions. 
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Fig. 5. Unsaturated state of soil under rainfall intensity of 70 mm/h: (a) variation of soil moisture, (b) variation of 
soil suction 

 

    Fig. 6 shows the result of the hydro-mechanical properties of the Masa residual soil. The measured 
data for water retention curve was obtained from the centrifuge device. The complete variation of soil 
moisture across higher suction values can be predicted by fitting the measured data using the van 
Genuchten’s equation (3). Results indicate that the soil has low capacity to retain water because water 
in the soil pore can drain at relatively low suction (i.e., 0.01 kPa). Variation of soil moisture influences 
the rate of water filtration and permeability. Decrease in the soil moisture, as described by decrease in 
the VWC or reduction in the soil suction, the coefficient of permeability was also synchronously 
decreased as shown in Fig. 6b. As the soil permeability decreased, it is expected that the soil surface 
becomes consolidated and denser, affecting impact force of rainfall, runoff and soil loss. 
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3.3. Soil loss and outflow sediment size distributions 

3.3.1. Soil loss and outflow sediment size distributions from the RISE experiments 
 
   Fig. 7 shows the results of soil erosion under rainfall intensity of 70 mm/h.  Fig. 7a show the runoff 
generation with respect to time. After a rapid rise of the runoff about 10 minutes after rainfall applied, 
there was a slight change in runoff rate. Fig. 7b shows the rate of the soil loss-runoff ratio. At the 
beginning, there is high soil loss and subsequently soil loss-runoff ratio showed a little fluctuation. Fig. 
7c shows the accumulative soil loss per unit area. After 20 minutes of applied rainfall, it was observed 
that the soil lost at constant amount, which can be observed by the degree of linearity in the graph of 
the accumulative soil loss. Fig. 7d shows the results of median sizes (D50) of the suspended sediments 
of the soil loss from the RISE experiments. The results showed that the D50 of about 0.03 mm was 
average median sizes of the suspended sediments from the downstream of the soil box. 

3.3.2. Soil loss and size distributions of the outflow sediment from the 1D waterdrop test 
 
    Fig. 8 shows the result of the grain size distribution of the detached particles due to 1D waterdrop 
test. Fig. 8a shows the total soil loss from 1D waterdrop test for 5 minutes. It found that under a single 
waterdrop test and controlled soil suction, small sized soil particles (sizes less than 0.1 mm) were 
detached from the soil surface.  Results from a laser diffraction device revealed that the median sizes 
of the detached soil under a single waterdrop test was found to be within 0.01-0.05 mm in diameter 
(Fig. 8b). There was a difference in sizes of the detached particles due to varying initial soil suctions. 
At near saturation or zero suction, fine particles of D50 size were 0.013 mm. The maximum size of 
D50 for the detached particles was 0.047 mm occurred when 5 kPa of soil suction presented before the 
waterdrop test. For the range of suction of 40-400 kPa, D50 of detached soils increases slightly with 
the increase in soil suctions (Fig. 8b). 
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5. Conclusions 
 
    This research was focused on the preliminary laboratory investigation of rainfall-induced soil 
erosion (RISE) experiments and the outflow sediment size characteristics of a Masa residual soil. A 
portable developed device is potentially an alternative for measuring the dynamic properties (kinetic 
energy, velocity, momentum, impact force) of a falling waterdrop. Small centrifuge device was 
effective to obtain the variation of soil moisture contents and suction. The device can reproduce 
uniform initial conditions in terms of soil moisture and suction for 1D waterdrop test. The use of 1D 
waterdrop with the laser diffraction device was useful method for soil erodibility study under varying 
initial soil conditions. Median sizes (D50) of suspended sediment and eroded soil from soil erosion 
experiment and 1D waterdrop test was found to be within 0.01-0.05 mm in diameter.  
    This research was focused on a single rainfall intensity or rainfall kinetic energy with a single slope 
gradient and a single soil type. Variability of rainfall kinetic energies need to be compared with natural 
rainfall kinetic energy for assessing the effect of rainfall energies to soil detachment and sediment 
outflow of different soils. The use of the RISE experiments and the 1D waterdrop tests for soil 
erodibility study will further be carried out for soil erosion hazard and mapping study, and potentially 
leading to the soil erosion prediction using physical parameters of rainfall, soils, and hydraulic flow. 
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