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Supersolvable Frame-matroid and Graphic-lift Lattices

THOMAS ZASLAVSKY

A geometric lattice is aframeif its matroid, possibly after enlargement, has a basis such that every
atom lies under a join of at most two basis elements. Examples include all subsets of a classical
root system. Using the fact that finitary frame matroids are the bias matroids of biased graphs, we
characterize modular coatoms in frames of finite rank and we describe explicitly the frames that are
supersolvable. We apply the characterizations to three kinds of example.

A geometric lattice is agraphic lift if it can be extended to contain an atom whose upper interval is
graphic. We characterize modular coatoms in and supersolvability of graphic lifts of finite rank and
we examine families analogous to the frame examples.

c© 2001 Academic Press

INTRODUCTION

One of the outstanding problems concerning arrangements of hyperplanes and finite ma-
troids is to understand when and why the characteristic polynomial of the associated geomet-
ric lattice has a complete integral factorization. A sufficient condition for such a factorization,
which even implies a simple combinatorial interpretation of the roots, is that the lattice be
supersolvable, which means that it has a complete chain of modular flats [14, Corollary 2.3].
However, it can be hard to decide whether a particular geometric lattice is supersolvable. Here
we completely settle that question for two kinds of geometric lattice which can be presented
in terms of graphs.

The first kind is a geometric lattice (of finite rank) whose matroid has a basis, or can be
extended to have one, such that each point lies on a line generated by a pair of basis elements.
We call this a (finite-rank)framematroid. The primary example is the matroid of a subset of
a classical root system; more generally, of a subgeometry of a Dowling group geometry. One
can think of a frame matroid as an abstraction of atwo-term arrangement of hyperplanes: a
finite set of homogeneous hyperplanes inFn, each of whose equations involves at most two
variables; thusxi = gxj or xk = 0. If g ∈ {±1}andF = R orC, we have a subarrangement of
B∗n = {xi = ±x j , xk = 0 : 1≤ i < j ≤ n, 1≤ k ≤ n}, the real or complex arrangement dual
to the root systemBn. By [18], a finitary frame matroid is the matroid of a graph with certain
additional structurewhich I call a ‘bias’ (to be explained in Section1); and conversely every
such ‘biasmatroid’ is a finitary frame. This representation theorem is what makes two-term
arrangements and their abstraction to frame matroids relatively tractable, since it permits one
to employ the rich theory of biased graphs to characterize modular copoints and supersolv-
ability. Since an ordinary graph can be treated as a certain kind of biased graph, our theorem
generalizes Stanley’s that the lattice of contractions of a graph is supersolvable if and only if
the graph is chordal.

The second kind of geometric lattice is one which contains, or can be extended to contain, an
atome0 whose upper interval is graphic; that is, the lattice of contractions of a graph. We call
this agraphic-lift because it is obtained from a graphic matroid by a standard lift construction
specified by a bias on the graph. Graphic lifts abstract a different kind of arrangement of
hyperplanes, which we callaffinographicbecause the defining equations have the formxi −

x j = g, whence the hyperplanes are affine flats inFn. Some types of real affinographic
arrangements have been studied in [1, 9, 15]. Again, biased graph theory helps us to treat
these arrangementsand all graphic lift matroids and in particular to determine all modular
copoints and supersolvable lattices of this kind.

0195–6698/01/010119 + 15 $35.00/0 c© 2001 AcademicPress

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82428867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


120 T. Zaslavsky

We find that very few frame-matroid or graphic-lift lattices are supersolvable. Yet we know
several families of vector sets (or dually, arrangements of hyperplanes) that correspond to
frame and graphic-lift matroids whose characteristic polynomials have integral roots but which
are on the whole not supersolvable: the root subsystems obtained fromBn by removing
some coordinate vectors, for example, and generalizations; certain bicircular matroid lat-
tices; lattices related to the semilattices of composed partitions studied in [9]; and some
lift analogs.This shows that supersolvability does not completely explain integral factor-
ization even for frame matroids. There are several broader properties of an arrangement of
hyperplanes or a matroid that guarantee integral roots, such as freeness (see [11]), factoriza-
tion [8, 16], and existence of an atom decision tree [3]. Why, then, characterize a compar-
atively weak property? The best reason is that it can be done—in considerable generality.
There is no known characterization in comparable generality of any other integrality property,
although it has been done for a few special types, notably graphic arrangements (subarrange-
ments of A∗n−1 = {xi = x j : 1 ≤ i < j ≤ n}); arrangements betweenA∗n−1 and B∗n ,
for which freeness and supersolvability are characterized in the beautiful theorem of [7], ex-
tended tofactorizability by [2];† and the projectivizations (‘cones’) of arrangements between
A∗n−1 and theShi arrangement, for which Athanasiadis characterized freeness and supersolv-
ability in [1]. In some of these types, most of the properties that guarantee integral roots turn
out to nearly coincide. That is not so in the whole class of frame matroids, but, to extend a
question raised by Bailey [2], might it be true of all subarrangements ofB∗n , i.e.,of all signed
graphs? This question is open.

After developing the general results we turn to three families of examples, looking for super-
solvability and for nonsupersolvable cases that nonetheless have integral roots. Examples 4.1
and 4.2 include the root systemDn and Dowling’s group geometries. In Example 4.3 we ob-
tain a mild generalization of Edelman and Reiner’s supersolvability theorem. In Example 4.4
we characterize the supersolvable bicircular matroids. We close with comments on algorith-
mics, chordality, and freeness and some open questions.

1. BIASED GRAPHS, MATROIDS, ETC.

We give a quick exposition of the relevant portions of biased graph theory, from definitions
through their matroids to their representations as vector sets and arrangements of hyperplanes.
The source for biased graphs is [17], especially the cryptomorphic definitions of the matroids
in TheoremsII.2.1 (that is, Theorem 2.1 of Part II) and II.3.1 and the gain-graph and matroid
invariant theory of Sections III.4 and III.5. The reader need not be acquainted with the sources
in order to read this paper.

1.1. Biased graphs.A biased graph� = (V, E,B) is a graph||�|| = (V, E), not neces-
sarily finite, together with alinear subclassB = B(�) of its polygons (or ‘circuits’, but we
reserve this term for matroid circuits): a class of polygons such that, if in a theta subgraph two
polygons belong toB, so does the third. In biased graph theory we find it helpful to have four
kinds of edges: links (two distinct endpoints), loops (two coincident endpoints), half edges
(one endpoint), and loose edges (no endpoints; this term is due to Tutte). Neither of the lat-
ter can belong to a polygon. A subgraph or edge set isbalancedif it contains no half edge
and any polygon in it belongs toB. It is contrabalancedif it contains no balanced polygon

†The presentwork, except Example 4.3, and that of Edelman, Reiner, and Bailey were originally done independently,
including Bailey’s independent discovery of Theorem2.2for signed graphs (with a longer proof). However, this report
and [2] have been revised to take account of the connections.
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or loose edge. Thus a loose edge is balanced, a half edge is not, and a loop may or may not
be. For matroidal purposes a loose edge behaves like a balanced loop and a half edge like an
unbalanced one, but for technical reasons it is helpful to allow all four types of edge.

Several special types of biased and unbiased graphs will be needed. Anordinary graphhas
only links and loops. Alink graphhas only links. Asimple graphis a link graph that contains
no digons. Astar Sk is a simple graph havingk edges (wherek ≥ 1), all incident to one vertex
(the center). Aunicycleis a connected ordinary graph having exactly one polygon. Bym0
we mean a graph0 with every edge replaced bym copies of itself. Aninduced subgraphof
0 = (V, E) is 0:W = (W, E:W) whereW ⊆ V and E:W = {e ∈ E : ∅ 6= V(e) ⊆ W},
V(e) denoting the set of endpoints ofe. For W ⊆ V and S ⊆ E we write Wc

= V \ W,
Sc
= E \ S, 0 \W = 0:Wc, and0|S= (V, S). W is stableif E:W = ∅. Theneighborhood

of v ∈ V is N(v) = {x ∈ V : x is adjacent but not equal tov}; thecomplete neighborhood
is N(v) = N(v) ∪ {v}. We denote by〈0〉 the biased graph whose underlying graph is0, in
which every polygon is balanced.

In a biased graph�, we letU (�) = {v ∈ V : v supports an unbalanced edge}.� is full
if U (�) = V . We call� simply biasedif it has no loose edges, balanced loops, balanced
digons, or pairs of unbalanced edges at the same vertex. IfW ⊆ V andS⊆ E,�(W) denotes
� with a half edge added at each vertex inW \ U (�). �:W, �|S, etc., denote subgraphs of
0 with balance of polygons the same as in�. Similarly,0(W) denotes a graph0 with a half
edge added to each vertex inW not already supporting one.

Two special unions are the disjoint union�1∪· �2 and the one-point amalgamation�1 ∪p

�2, where p is a vertex of�1 and�2 and�1 ∩ �2 = {p}. In each case the balance of a
polygon is the same as in�1 or�2, for whichever one it is that contains the polygon.

1.2. Gain graphs. In the examples we need gain graphs, which for our purposes can be
defined in the following way (simplified from [17, Section III.4]). Take a groupG. On the
vertex set[n] = {1,2, . . . ,n} construct a graph with edges(i, j ; g) for all distinct i, j ∈ [n]
andg ∈ G, but identify the edge(i, j ; g)with ( j, i ; g−1). This is the gain graphGKn. Adding
a half edge to each ofp vertices givesGK (p)

n . We callg thegain of (i, j ; g) in the direction
from i to j and we writeϕn(i, j ; g) = g. Calling a polygon{(i0, i1; g1), (i1, i2; g2), . . . ,
(ik−1, ik; gk)}, wherei0 = ik, balancedwhen g1g2 · · · gk = 1 determines a biased graph
〈GK (p)

n 〉. A gain graphϕ = (V, E, ϕ) with gain groupG and gain functionϕ is any subgraph
of GK (n)

n , ϕ being the restriction toE of ϕn; 〈ϕ〉 denotes the corresponding biased graph. We
call GKn theG-expansion of Kn andGK (n)

n the full G-expansion. Whenn ≤ 3 (but not if
n ≥ 4) the construction works for any quasigroupG.

Switchingϕ by a functionτ : V → G means changing the gain of each link or loop from
ϕ(i, j ; g) = g to ϕτ (i, j ; g) = τ(i )−1gτ( j ). Switching preserves the balance or imbalance
of polygons, hence〈ϕτ 〉 = 〈ϕ〉.

A signed graph6 is a gain graph whose group is the sign group{+,−}. We writeE+ and
E− for the sets of positive and negative edges and6+, 6− for the corresponding spanning
subgraphs.N+(v) andN−(v) denote the neighborhoods ofv in 6+ and6−. We write±Kn

for the sign-group expansion ofKn. Switchinga vertexx in 6 means reversing the sign of
every link atx. SwitchingX ⊆ V(E) means switching each vertex inX in turn. Switching
does not change〈6〉 or, consequently, any of the matroids we will define on〈6〉.

1.3. Matroids. For matroid theory and notation we mainly follow [12]. However, we write
E(M) for the point set of a matroidM , Sc for E(M) \ S if S ⊆ E(M), and M/S for the
contraction ofM by S. The rank function isr M or simply r . The lattice of closed sets is
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Lat M . Two fundamental if elementary properties of modular elements of LatM are that a
copoint A of M is modular if and only if it is not disjoint from any line, and thatM (to be
precise, LatM) is supersolvable if and only if it has a modular copointA such thatM |A is
supersolvable. (See for example [4, Corollary 3.4 and Proposition 3.5].)

1.4. Thebias matroid. A handcuffis a connected graph (or its edge set) having exactly
two polygons and no monovalent vertices (a half edge counting as a loop here); it istight if
all its edges lie in the polygons. Thebias matroid G(�) is the matroid onE whose circuits
are thebias circuits: the balanced polygons, loose edges, and contrabalanced handcuffs and
thetas. ForS⊆ E let V(S) = the set of endpoints of edges inS and letb(S) = the number
of connected components of(V(S), S) which are balanced. Then the rank ofS in G(�) is
r (S) = |V(S)| − b(S). If 0 has no loose or half edges, thenG(〈0〉) = G(0), the usual
polygon matroid of0.

Bias matroids are just a graph-theoretic way of presenting finitary frame matroids. In par-
ticular, supposeϕ ⊆ GK (n)

n is a gain graph whose gain group is a subgroup ofF∗, the
multiplicative group of a field (or skew field)F . ThenG(ϕ) (i.e., G(〈ϕ〉), but we omit the
angle brackets) has a standard vector representation overF : the vector space isFn with stan-
dard basisb1, . . . ,bn and an edgee = (i, j ; g) is represented byx(e) = bi − gbj . (Thus
x(e−1) = b j − g−1bi = −g−1x(e). Either of these vectors serves equally well in represent-
ing the matroid.) Ife is a loose edge we definex(e) = 0; for a half edge at vertexi , x(e) = bi .
The linear dependence matroid ofx(ϕ) = {x(e) : e∈ E} equalsG(ϕ) [17, Theorem IV.2.1].

Let x∗(e) be thedual hyperplane tox(e) in Fn, sox∗(ϕ) is an arrangement of hyperplanes.
Each hyperplane equation has the formxi = gxj (wherei 6= j , g 6= 0) or xi = 0. It is these
two-term arrangementsof hyperplanes that are represented by bias matroids of gain graphs
and abstracted by frame matroids and biased graphs. For example, letG = {+,−} andF = R
or C. Thenx(ϕ) = Bn, the root system, if we takeϕ = ±K (n)

n , or Dn if ϕ = ±Kn, or an
arbitrary subset ofBn if we take a suitableϕ ⊆ ±K (n)

n . Hence we have, in Theorem2.2below
with � = 〈ϕ〉 ⊆ 〈±K (n)

n 〉, a graphical characterization of the supersolvable subsets ofBn and
dually of those of the hyperplane arrangementB∗n .

Scalingan arrangement inFn means replacing each coordinate variablexi by a nonzero
scalar multipleτ(i )xi , or equivalently, transformingFn by an invertible diagonal matrix. Scal-
ing a two-term arrangementx∗(ϕ) is equivalent to switchingϕ by 1/τ.

If A1 andA2 are homogeneous arrangements inFn and codim
⋂
(A1∪A2) = codim

⋂
A1

+ codim
⋂
A2, we sayA1 ∪A2 is thedirect sumof A1 andA2.

1.5. The lift matroids.A broken handcuffis the union of two vertex-disjoint polygons. (It
is not a handcuff. Again, a half edge counts as a loop.) Theextended lift matroid L0(�) is the
matroid onE0 = E ∪ e0, wheree0 is a new element called theextra point, whose circuits are
the lift circuits: balanced polygons, loose edges, contrabalanced tight and broken handcuffs
and thetas, and setsC ∪ e0 whereC is an unbalanced polygon or a half edge. Thelift matroid
L(�) is L0(�) \ e0. We call S ⊆ E0 balancedif S is a balanced edge set. Lettingc(S)
be the number of connected components of(V(S\ e0), S\ e0), the rank function in the lift
and extended lift isr0(S) = |V(S\ e0)| − c(S) + ε(S) whereε(S) = 0 if S is balanced, 1
otherwise. If0 has no loose or half edges,L(〈0〉) = G(〈0〉) = G(0), the polygon matroid.

Suppose now thatϕ ⊆ GK (n)
n whereG ⊆ F+, the additive group of a field (or skew

field). ThenL0(ϕ) has a standard representation inF1+n (with standard basisb0,b1, . . . ,bn):
an edgee = (i, j ; g) corresponds to the vectorz(e) = gb0 − bi + b j ; a half edge or the
extra pointe = e0 corresponds toz(e) = b0, and a loose edgee hasz(e) = 0. The linear
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dependence matroid ofz(ϕ) = {z(e) : e∈ E} equalsL(ϕ), and that ofz0(ϕ) = z(ϕ)∪{z(e0)}

naturally equalsL0(ϕ) [17, Theorem IV.4.1].
Dually,we regardz∗(ϕ) andz∗0(ϕ) as affine hyperplane arrangements inFn. Thenz∗(e) has

equationxi − x j = g if e= (i, j ; g), while a half edge or the extra point corresponds to the
infinite hyperplaneH∞ and therefore does not appear in the affine hyperplane representation
A. However, we cannot ignore it entirely. Theprojectivizationof A is the arrangementAP =
A ∪ {H∞} in Pn(F). Note that switching the associated gain graph byτ corresponds to a
translation, replacingxi by xi + τ(i ).

An affine arrangementA1∪A2 is thedirect sumofA1 andA2 if r (A1)+ r (A2) = r (A1∪

A2), wherer (A) = max{codimS : S is a nonempty intersection flat of hyperplanes ofA}.
For homogeneous arrangements this specializes to the definition in Section1.4. It entails that
A1 andA2 are disjoint.

1.6. Coloring and polynomials.A 1-coloring of ϕ is a mappingc : V → G ∪ {0̂} where
0̂ 6∈ G. It is proper if c−1(0̂) is stable and for all edges(i, j ; g) ∈ E with i, j 6∈ c−1(0̂)
we havec( j ) 6= c(i )g. If ϕ andG are finite there is a polynomialχ(λ) associated withϕ,
called thechromatic polynomial, which has the property thatχ(|G| + 1) is the number of
proper 1-colorings ofϕ. Furthermore,λ−b(E)χ(λ) = pG(λ), the characteristic polynomial of
G(ϕ) [17, Theorem III.5.1]. For thezero-free chromatic polynomialχ∗(λ), χ∗(|G|) equals
the number of proper 1-colorings not using the color0̂. (If G ⊆ F+, χ∗ is the characteristic
polynomial of the affinographic arrangementz(ϕ) [17, Theorem III.5.3 and Section IV.4].) If
ϕ is full, thenχ∗(λ) = χ(λ+ 1)= pG(λ+ 1); and more generally,

pG(λ+ 1)= χϕ(λ+ 1)=
∑
X⊆V
stable

χ∗ϕ\X(λ) (1.1)

[17, Theorem III.6.1]. For an arbitrary finite biased graph there are algebraic definitions ofχ

andχ∗ which yield the same identities; see especially [17, Sections III.3 and III.6] but there
is noeasy way to evaluate the polynomials without coloring theory.

If � is a finite, connected biased graph, the characteristic polynomial ofL0(�) is

pL0(λ) = λ
−1(λ− 1)χ∗(λ) = λ−1(λ− 1)pG(�(V))(λ+ 1). (1.2)

We see that the roots ofpL0(�)(λ) are those ofpG(�(V))(λ) decreased by one, except that
the root 1 remains unchanged. If� is also a link graph and is unbalanced, the characteristic
polynomial ofL(�) is (from [17, Theorem III.5.2]);

pL(�) = pL0(λ)+ λ
−1χ||�||(λ). (1.3)

2. FRAMES

In a biased graph� a vertexv is bias simplicialif:

(s1) for each pair of edges,eand f , fromv to distinct neighborsx andy, there is anxy edge
which completes a balanced triangle;

(s2) for each unbalanced digon atv, theother endpoint is inU (�); and
(s3) if v is in U (�) thenevery neighbor is inU (�).

We callv link simplicial if it satisfies (s1) andsimplicial if it is link simplicial and the setE(v)
of edges incident withv is balanced (that is, there is no unbalanced digon atv, andv 6∈ U (�)).
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In a balanced graph〈0〉 a simplicialor link- or bias-simplicial vertex (in the biased sense) is
the same as a simplicial vertex of0 (in the ordinary sense).

We restate the conditions to apply to a gain graphϕ: (s1′) whenever there are edgese =
(v, x; g) and f (v, y; h) with x 6= y, there is an edge(x, y; g−1h); (s2′) whenever there are
edges(v, x; g) and(v, x; h) with g 6= h, there is an unbalanced loop or half edge atx; (s3′)
if v supports an unbalanced loop or half edge, so does every neighbor.

THEOREM 2.1. Let� be a connected, simply biased graph. A subset A⊆ E is a modular
copoint of G(�) if and only if� and A are of one of the following types.

(1) � is a one-point amalgamation�1 ∪v �2, where�2 is balanced andv is a bias-
simplicial vertex in�1; and A= (E1:{v}

c) ∪ E2.
(2) � = 〈0〉(U ) where0 is connected and U is a nonempty clique in0; and A= E(0).
(3) � = 〈0〉 ∪ (mK2,∅)

(U ) where0 is connected, m≥ 2, U ⊆ V(K2), and one link of the
mK2 is in 0; and A= E(0).

(4) � = 〈6〉 where 6 is a connected signed link graph, E− is a triangle parallel to a
triangle of positive edges; and A= E+.

(5) � = 〈6〉 where6 is a connected signed link graph, E− is a star of one or more edges
centered at a vertexv, N−(v) is a clique; and A= E+.

(6) � = 〈6〉(v) where6 and A are as in (5) and furthermore N−(v) ⊆ N+(v).

I regard the first kind of modular copoint as the normal one; the others are exceptional cases.
Note that�2 may equal{V}.

PROOF. We may assumeG(�) is unbalanced.(The balanced case is known from [13, The-
orem 3].)

First, we need a catalog of all types of line3 in G(�). It is easy to produce one because
b(3) ≤ 2.

(a) Contrabalanced, order2.3 = E:{x, y}, where|E:{x, y}| ≥ 2. This line is(mK2,∅)
(U )

with m+ |U | ≥ 2.
(b) Partly balanced, order3.3 = M11

2
:= E(K2 ∪· K

(v)
1 ); that is, a link and an unbalanced

edge at a third vertex.
(c) Balanced, order3 or 4. Herethere are three kinds of3. (i) 〈C3〉, a balanced triangle.

(ii) A proper angle A2 := two links having one common vertex and not contained in a
〈C3〉. (iii) M2 := E(K2 ∪· K2), a two-edge matching.

Next, we need the description of copoints in [17, Theorem II.2.1(h)]. There are two kinds
of copoints:a maximal balanced edge setA, and an unbalanced edge set of the formA =
E:Yc

∪ AY where∅ ⊂ Y ⊂ V , b(�:Yc) = 0, (Y, AY) is connected, andAY is a maximal
balanced edge set in�:Y.

In the former case we see from lines of typesM2 and M11
2

that Ac can containno two
vertex-disjoint edges except a pair of unbalanced edges, which, due to lines of order 2, must
be at vertices which are adjacent inA. If Ac contains no links,A has type (3). OtherwiseA
has type (4), (5), or (6). The details are routine.

Suppose now thatA is the second kind of copoint. Since the setD of edges betweenY
andYc can contain noM2, we have|Y| = 1 or� = �1 ∪p �2 where�1 and�2 ⊂ �,
Y ⊆ V(�1), Yc

⊆ V(�2), and any unbalanced edge atp is in �2. It is easy to see that, if
|Y| = 1, sayY = {y} (so A = E:{y}c), theny is bias simplicial. We show that|Y| > 1 is
impossible.
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We show first that when a pointp exists,�1 is balanced. Takep ∈ Y if possible. (Note that
p is not uniquely determined ifD is incident with only two vertices.) Lete ∈ D. If p 6∈ Y,
let f ∈ D, not parallel toe. Then M11

2
showsthat no vertex ofY \ V(e) (or Y \ V( f ), if

p 6∈ Y) can support an unbalanced edge. Thus�1 has no unbalanced edges. SupposeAc
:Y

contained a linkg. Theneg would be anM2 or A2 or elsep 6∈ Y andeg would be in a〈C3〉

at p, so we would have a line disjoint fromA, which contradicts the hypothesis. We conclude
that E(�1) = AY, whence�1 is balanced.

But thenG(�) is the direct sum ofG(�1) andG(�2), contrary to the assumption. 2

Now we can characterize supersolvable frame matroids of finite rank. Abias-simplicial
vertex ordering(briefly, b.s.v.o.) of a biased graph� of finite order is a linear ordering of
the vertices, say(v1, v2, . . . , vn), such that eachvi is bias simplicial in�:{v1, . . . , vi }. A
link-simplicial vertex ordering(l.s.v.o.) is similar. If� is balanced we call this asimplicial
vertex ordering(s.v.o.); in reverse order it is a perfect vertex elimination scheme of||�|| [10,
Section 4.2].We call� a simplicial (or bias- or link-simplicial) extensionof �0 if �0 is an
induced subgraph of� andV(�0)

c can be linearly ordered, say(w1, . . . , wk), so that each
wi is simplicial (or bias- or link-simplicial) in�:(V(�0) ∪ {w1, . . . , wi }). Incidentally, in a
b.s.v.o any vertexv 6∈ U (�)must follow all its neighbors that are inU (�). Consequently, any
b.s.v.o can be rearranged so thatU (�) is an initial segment.

For an ordinary graph0 Stanley [14, Proposition 2.8] proved that LatG(0) is supersolvable
if and only if0 is a chordal (‘triangulated’, ‘rigid-circuit’) graph. A good reference for chordal
graphs is [10, Section 4.2]. We mention, in particular, Dirac’s lemma (see [10, Lemma 4.2])
that achordal graph is complete or has a pair of nonadjacent simplicial vertices and the con-
sequence that a graph is chordal if and only if it has a simplicial vertex ordering (from which
Stanley’s theorem follows easily).

THEOREM 2.2. Let� be a simply biased graph of finite order. G(�) is supersolvable if
and only if each connected component of� either:

(i) has a bias-simplicial vertex ordering; or
(ii) is a simplicial extension of one of

(a) (mK2,∅), where m≥ 2, or
(b) 〈±K3〉, or
(c) 〈6〉 for 6 = +0 ∪−Sk, where0 is a chordal simple graph of finite order, Sk is a

k-edge star whose vertex set lies in V(0), and the noncentral vertices of Sk are a
clique in0.

Furthermore, the bias-simplicial vertex ordering (or simplicial extension) can be chosen so
that any desired bias-simplicial (or simplicial) vertex is the last vertex.

An alternate description of6 in (ii)(c) is as(+00∪−e)/(−e) where00 is a chordal simple
graph of finite order ande is a link whose endpoints are not adjacent in00.

If we have a gain graphϕ ⊆ GK (n)
n instead of an abstract biased graph�, we can restate

some of Theorem2.2. Part (ii)(b) becomes: a gain subgraph ofGK3 obtained byswitching
{1,g}K3 whereg is an involution inG. Part (ii)(c) becomes: a gain graph with gain groupG
obtained by switching from 10∪ gSk, whereg ∈ G, g 6= 1, gSk denotesSk with every edge
given gaing in the orientation away from the central vertex, and0 andSk are as before.

PROOF. Sufficiency is clear by Theorem2.1 and the properties of modular flats cited in
Section1.3.
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For necessity we have only to clear up some technicalities. We may assume� is connected
andunbalanced. We proceed by induction on the order. A supersolvableG(�) has a modular
copoint A such thatG(�)|A is supersolvable. Consequently,� and the modular copointA
are as described in Theorem2.1.

Let us first take up the exceptional cases (2)–(6). Here0 = (V, A) is balanced, hence
chordal by Stanley’s theorem. By Dirac’s lemma0 is Kn or has two nonadjacent simplicial
vertices. It is easy to deduce that� has a b.s.v.o in cases (2), (3) whenU 6= ∅, and (6). In
cases (3) withU = ϕ and (4), if� 6= �0 := (mK2, ϕ) or 〈±K3〉, respectively, then0 has
a simplicial vertexv 6∈ V(�0). Thenv is clearly simplicial in�, so it can be eliminated; by
induction,� is a simplicial extension of�0. As for case (5), here� is as in case (ii)(c).

Now consider case (1). HereG(�) = G(�1) ⊕ G(�2); thus G(�) is supersolvable if
and only if G(�1) andG(�2) are so.�2, being balanced, has a simplicial vertex ordering,
in which one can choose the first vertex to bev (because a chordal graph has at least two
simplicial vertices; see [10, p. 82]).�1 is abias-simplicial extension of�1:{v}

c. Thus� itself
is a bias-simplicial extension of�1:{v}

c. By successively eliminating bias-simplicial vertices
we will either find a b.s.v.o or express� as a bias-simplicial extension of a supersolvable�0
which has no bias-simplicial vertex. But then by induction�0 is one of(mK2, ϕ), 〈±K3〉, or
〈+0 ∪ −Sk〉 where0 is chordal. It is easy to see that a bias-simplicial extension of such an
�0 is a simplicial extension. Therefore the theorem is proved. 2

Clearly, if G(�) is supersolvable, then so isG(||�||) unless� is as in (ii)(c). However, we
can say more. Let||�||0 be the graph obtained from� through replacing unbalanced loops
and half edges by links to a new vertexv0, then taking the underlying unbiased graph and
eliminating loops and multiple edges.

COROLLARY 2.3. If G(�) is supersolvable, then||�||0 is chordal or� falls under case
(ii) (c) of Theorem2.2.

Now, the geometry of Theorem2.2. LetA be a two-term arrangement of hyperplanes inFn

andU theset of coordinatesi for which xi = 0 is inA. Call a coordinatei transitive if: (i)
whenever it participates in hyperplanesxi = gxj andxk = hxi (wherei , j , k are distinct,
and we always tacitly assumeg, h 6= 0), thenA has a hyperplanexk = hgxj ; (ii) the same if
k = j 6= i andhg 6= 1 (whencexk = hgxj is the coordinate hyperplanex j = 0); and (iii)
if A containsxi = 0 andxi = gxj , then it containsx j = 0. Call i strictly transitive if it is
transitive,xi = 0 is not inA, and for eachj 6= i , there is at most one hyperplane equation
involving bothxi andx j . LetA(i ) = {H ∈ A : the equation ofH involves onlyx1, . . . , xi , at
most}.

COROLLARY 2.4. LetA be a two-term arrangement of hyperplanes in Fn, where F is a
skew field. ThenA is supersolvable if and only if it is a direct sum of arrangementsB of any
of the following four forms (after suitably scaling and renumbering the coordinates):

(i) B is such that each i is transitive inB(i ).
(ii) Each i≥ 3 is strictly transitive inB(i ).

(iii) B consists of hyperplanes xi = ±x j for 1 ≤ i < j ≤ 3 and additional hyperplanes (if
any) so that each i≥ 4 is strictly transitive inB(i ).

(iv) There is an r such that every coordinate i> r is strictly transitive inB(i ); B(r ) =
B+ ∪ B−, whereB+ is graphic and supersolvable (i.e., its hyperplanes have equations
xi = x j and each i ≥ 3 is strictly transitive inB(i )); B− consists of hyperplanes
xm = g0xi for fixed m, fixed g0 ∈ F∗\{1}, and all i ∈ {i1, . . . , ik} (where k≥ 1 and no
i j = m); andB+ contains all hyperplanes xi j = xi l for 1≤ j < l ≤ k.
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3. GRAPHIC L IFTS

First in our treatment of graphic lifts we ought to verify that a finitary graphic lift lattice, or
matroid rather, really is the lift or extended lift of a graphic matroid. In other words we should
prove that for a finitary matroidM to have a nonloop pointe0 such thatM/e0 is graphic,
it is necessary and sufficient thatM = L0(�) for some biased graph�. This is implicit
in [6, Section 6] as amplified in [17, Section II.3 near Theorem II.3.1]. Here is how� is
constructed: ifM/e0 = G(0), then||�|| = 0; and a polygon is unbalanced when its closure
in M containse0.

To simplify the results we shall often assume that� is connected. We can do so because, if
it is not and if one identifies just enough vertices to make it connected, the lift and extended
lift matroids are not changed.

Now we state the main theorems. We leave the proofs to the reader since they are along the
same lines as those for frame matroids. We may without loss of generality take� to be a link
graph, for an unbalanced edge is parallel toe0, whence LatL(�) = Lat L0(�) if � has any
such edge.

Recall from Section2 that a vertexv is link simplicial if any two nonparallel links atv are
contained in a balanced triangle. If�1 ⊆ � andv ∈ V(�1), thenE1(v) is the set of edges of
�1 incident withv.

THEOREM 3.1. Let� be a simply biased link graph.

(A) A subset A⊆ E0 is amodular copoint in L0(�) if and only if:

(1) � has a block�1 which has a link-simplicial vertexv, and A= E0 \ E1(v); or
(2) � is balanced and A= E.

(B) A subset A⊆ E isa modular copoint of L(�) if and only if:

(1) � has a block�1 which has a simplicial vertexv, and A= E \ E1(v); or
(2) � and A are as in Theorem2.1(3, 4, or 5).

THEOREM 3.2. Let� be a simply biased, connected link graph of finite order.

(A) L0(�) is supersolvable if and only if� hasa link-simplicial vertex ordering.
(B) L(�) is supersolvable if and only if:

(i) � is balanced and||�|| is chordal; or
(ii) � is as in Theorem2.2(ii).

Furthermore, the link-simplicial vertex ordering (or simplicial extension) can be chosen so
that any desired bias-simplicial (or simplicial) vertex is last.

COROLLARY 3.3. For a simply biased link graph� of finiteorder, L0(�) is supersolvable
precisely when G(�(V)) is supersolvable.

This and the remark onpL0 in Section1.6 show that, for a biased graph�, theproperties
of supersolvability, and of positive integrality of characteristic roots, ofL0(�) parallel those
of G(�(V)).

For the geometric interpretation of Theorem3.2 consider an affinographic arrangementA
in Fn and itsprojectivizationAP in Pn(F) = Fn

∪ H∞. Call a coordinatei in Fn affinely
transitive inA if, wheneverA has hyperplanesxi − x j = g and xk − xi = h, it has a
hyperplanexk − x j = g+ h. Call i strictly affinely transitiveif, in addition, for eachj 6= i
there is at most one hyperplane of the formxi − x j = g.
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COROLLARY 3.4. LetA be an affinographic arrangement of hyperplanes in Fn, where F
is a skew field.

(A) AP is supersolvable if and only if, after suitable translation and renumbering of coor-
dinates,each coordinate i is affinely transitive inA(i ).

(B) AP \ {H∞} is supersolvable, as an arrangement inPn(F), if and only ifA is a direct
sum of (affine) arrangementsB that have any of the following forms, after translation
and renumbering coordinates:

(i) Every coordinate i≥ 3 in B is strictly affinely transitive inB(i ).
(ii) Every coordinate i≥ 4 is strictly affinely transitive inB(i ), char F = 2, andB

contains xj − xk = 0,1 for 1≤ j < k ≤ 3.
(iii) There are a fixed g0 ∈ F∗, a set{i1, . . . , ik,m} of coordinates with k≥ 1, and a

coordinate r≥ i1, . . . , ik,m, such that every coordinate i> r is strictly affinely
transitive inB(i ),

B0 = {xm = xi j + g0 : 1≤ j ≤ k} ⊆ B,

{xi j = xi l : 1≤ j < l ≤ k} ⊆ B(r ) \ B0 ⊆ {xi = x j : 1≤ i < j ≤ r },

and every coordinate i≤ r is strictly affinely transitive inB(i ) \ B0.

4. EXAMPLES

4.1. Group expansions and biased expansions.Take a simple graph0 with vertex set[n]
and a subsetU ⊆ V(0). In the definition ofGKn, include only those edges(i, j ; g) for which
i j ∈ E(0). Then one has thepartially filled G-expansionG0(U ) of 0. If G = Zγ , this gain
graph corresponds to the complex hyperplane arrangement

{xi = ω
kx j , xl = 0 : i j ∈ E(0), 0≤ k < γ, l ∈ U },

whereω is a primitiveγ th root of unity. (Of course, ifγ = 2, thenω = −1 and we can regard
this as a real arrangement.)

COROLLARY 4.1. Assuming|G| ≥ 2 and0 is connected, G(G0(U )) is supersolvable if
and only if0 is chordal and Uc is a stable set of simplicial vertices in0, or G0(U ) = ±K3, or
|V(0)| ≤ 2. Furthermore, G(G0(U )) has a modular coatom if and only if0 has a simplicial
vertexv with N(v) ⊆ U, or G0(U ) = ±K3, or |V(0)| ≤ 2.

The characteristic polynomial of the bias matroid of a finiteG-expansion, providedγ =
|G| ≥ 2 orU 6= ∅, is

pG(λ) =
∑

X⊆V(0)
stable

γ n−|X|χ0\X

(
λ− 1

γ

)
, (4.1)

χ0 being thechromatic polynomial. (See [17, Examples III.3.6 and III.4.6].) In particular, if
U = V(0) wehave

pG(λ) = γ
nχ0

(
λ− 1

γ

)
, (4.2)

so in this casepG(λ) has (positive) integral roots if and only ifχ0 does. Thus if0 is non-
chordal with integral characteristic roots, thenG(G0(V)) is nonsupersolvable with integral
roots.



Supersolvable frame-matroid and graphic-lift lattices 129

Suppose that0 is chordal(i.e., thatG(0) is supersolvable); thenpG(λ) has positive integral
roots if U = V(0). More generally, letUc be a set of simplicial vertices of0. It is easy
to see thatUc is the disjoint union of cliquesW1,W2, . . . ,Wq where every element ofWi

has the same complete neighborhood, therefore the same degreedi . Thus the characteristic
polynomial of LatG(G0(U )) is given by

pG(λ) = γ
n−qχ0\Q

(
λ− 1

γ

) q∏
i=1

(λ− γdi + |Wi | − 1) (4.3)

whereQ is any set consisting of one vertex from eachWi . Letting the roots ofχ0 bed1, . . . ,
dq,dq+1, . . . ,dn, we conclude thatpG(λ) has roots

γd1+ 1− |W1|, . . . , γdq + 1− |Wq|, γdq+1+ 1, . . . , γdn + 1.

These are positive integers, of course. ButG(G0(U )) is supersolvable only when all|Wi | = 1.

Factorizability and freeness.One can show that0 and its fullG-expansion parallel each
other’s behavior in regard to properties like factorizability of the matroid or, for finite cyclic
G, freeness of a representing hyperplane arrangement. And how about a nonfull expansion
ϕ = G0(U )? I can show by calculating characteristic polynomials that, forG(ϕ) to be free
or have a factorization in the sense of [8, 16], 0 must be chordal andUc consistonly of
simplicial vertices. ThenG(ϕ) is supersolvable, hence is free and has a factorization, ifUc

is stable. (What happens whenUc is not stable I have not determined.) Thus in some sense
the supersolvable examples of this type are fundamental, while the nonsupersolvable ones
are derived by very selective deletions. Whether this observation may generalize to any other
kinds of matroids is not known.

COROLLARY 4.2. Assume0 is asimple graph of finite order and|G| ≥ 2.
(A) L0(G0) is supersolvable⇐⇒ 0 is chordal. It has a modular coatom⇐⇒ 0 has a

simplicial vertex.
(B) Assuming0 has noisolated vertices, L(G0) is supersolvable, and indeed has a modu-

lar coatom, only when|V(0)| ≤ 2 or G0 = ±K3.

The supersolvable lift examples are trivial in a sense: they satisfyL(G0) = G(G0), so
they are subsumed under Corollary4.1.

Are thereany examples with integral roots that are not supersolvable? By Section1.6, the
positivity and integrality of the roots ofL0(G0) are identical to those ofG(G0(V)).

Settingγ = |G| and assumingγ andn ≥ 2, the lift characteristic polynomial for connected
0, from [17, Example III.6.6], is

pL(λ) = λ
−1
{
(λ− 1)γn−1χ0

(
λ

γ

)
+ χ0(λ)

}
. (4.4)

Although it seems that an integral factorization ofpL(λ) could exist, if at all, only in the
rarest circumstances, I see no way to decide this except in very special cases.

4.2. Near-Dowling and Dowling lift lattices.The most interesting group expansions are
those in which0 = Kn. The near-Dowling lattice Q†

n,p(G) of a groupG (or quasigroup,
if n ≤ 3) is LatG(GK (p)

n ); it generalizes theDowling lattice Q†
n,n(G) introduced in [5]. If
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|G| = 2, Q†
n,p(G) is the lattice of subspaces generated by the root systemBn with n − p

standard basis vectors omitted, thus in particular byDn if p = 0. If G = Zγ , Q†
n,p(G) is a

complex analog.
The characteristic polynomial of a finite near-Dowling lattice follows from (4.1), since

χKl (y) = y(y − 1) · · · (y − l + 1). Evidently the roots are positive integers. Can this fact
be explained by supersolvability? Mostly not, since by Corollary4.1, if γ ≥ 2, thenQ†

n,p(G)
is supersolvable if and only ifp ≥ n− 1 or (n, p, γ ) = (3,0,2). (The supersolvability of the
Dowling lattices was proved by Dowling. Nonsupersolvability for various particular values of
n, p, andγ seems to have been noticed several times.) Notwithstanding this, there are expla-
nations of the integrality of the roots of the near-Dowling lattices: algebraically, if|G| = 2 the
corresponding arrangements are free [7]; combinatorially, the lattice has an atom decision tree
if |G| = 2 [3], while one can regard the gain-graph coloring method of [17, Example II.4.7]
as agraphical reason. On the other hand, Bailey [2] showed that if|G| = 2 the matroid does
not have a factorization in the sense of [8, 16].

The (extended)Dowling lift lattice Q§§
n (G) (or, Q§

n(G)) of G is LatL(GKn) (or, LatL0
(GKn)). Q§§

n (G) equals the near-Dowling latticeQ†
n,0(G) if n ≤ 3, andQ§

1(G) = Q†
1,1(G);

otherwise the lift, extended lift, and near-Dowling lattices are all different. From Corollary4.2
we see that allQ§

n(G) are supersolvable. On the other hand,Q§§
n (G) is supersolvable only

whenn ≤ 2 or γ = 1 or (n, γ ) = (2,3). The roots ofQ§§
n (G) are positive integers when

n = 3 because the lattice equalsQ†
3,0(G). For largern it seems impossible that they could all

be integers, but I cannot prove there are no exceptions.

4.3. An extension of Edelman and Reiner’s theorem.Edelman and Reiner [7] showed that
the two-term hyperplane representationx∗(6(U )) of a signed graph6(U ), where6 has the
form+Kn ∪−1, is supersolvable if and only if1 is a threshold graph andU satisfies certain
conditions. They did so as a byproduct of their characterization of free arrangements of this
type. We can derive their supersolvability criterion and a simple generalization directly from
Theorem2.2.

First weneed some definitions. The (decreasing)degree partial orderon the vertices of
a graph1 is defined byv ≺ w if degv > degw. A degree orderon V(1) is any linear
extension of the degree partial order. A graph1 is athreshold graphif it is obtained from the
empty graph by adding one vertex at a time, each new vertex being adjacent to all or none of
the previous vertices. (For threshold graphs see [10, Chapter 10] or [20].)

COROLLARY 4.3. LetG be a group,H a proper subgroup,1 a spanning subgraph of Kn,
and U ⊆ V(Kn). Defineϕ = G1 ∪ HKn. Then G(ϕ(U )) is supersolvable if and only if one
of the following holds:

(i) 1 is a threshold graph, U is an ideal in the degree partial order, and Uc is stable in1
if |H| = 1, |Uc

| ≤ 1 if |H| > 1.
(ii) |H| = 1, U = ∅, and|E(1)| = 1.

(iii) |H| = 1, |G| = 2, U = ∅, and E(1) is either a triangle or a star.

One could apply Corollary4.2to a finite cyclic groupG ⊆ C∗. Thenthe hyperplane repre-
sentationx∗(ϕ(U )) is a mild complex generalization of the arrangements treated by Edelman
and Reiner.

COROLLARY 4.4. With notation as in Corollary4.3, L0(ϕ) is supersolvable if and only if
1 is a threshold graph. L(ϕ) is supersolvable if and only ifϕ is as in Corollary4.3 (ii)–(iii).
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4.4. Bicircular matroids. These arethe bias matroidsG(0,∅) of contrabalanced graphs
(0,∅). (Loose edges are excluded here. We also exclude loops, since they behave like half
edges. Multiple edges are, as usual, allowed.) Since(0,∅) can be embedded in〈Zγ K (n)

n 〉 for
anyγ ≥ 2|E(0)|, we obtain a representation ofG(0,∅) by complex hyperplanes of the forms
xi = ω

kx j andxl = 0, similar to those mentioned in Example 4.1.
A multitreeis a link graphT whose simplification (that is, the graph resulting from replacing

parallel sets by simple edges) is a tree. Apartially filled multitree isT (U ) whereU ⊆ V(T). A
multitreeT can be described by a treeT and a positive multiplicity functionµ : E(T)→ Z.
T (U ) can bedescribed by the pair(T

(U )
, µ). A leaf is a vertex having just one neighbor.

COROLLARY 4.5. Let0 be a graph of finite order.

(a) G(0,∅) is supersolvable if and only if each component of0 is either a partially filled
multitree T(U ) such that T:U is connected and every multiple edge is incident with
a vertex in U, or a multitree with just one multiple edge, or a link graph containing
exactly one polygon.

(b) G(0,∅) has a modular coatom if and only if0 has a leaf whose degree is one or whose
neighbor is filled, or0 = mK2 with m≥ 2, or0 is a unicycle.

The matroids of partially filled multitrees are very simple. Geometrically, they consist of
lines l i j , corresponding to the edges joining adjacent pairs of vertices, in general position in
n-space except for meeting at pointsPi (called ‘joints’ by Kahn and Kung [19]) corresponding
to vertices. A joint belongs to the matroid if and only if the corresponding vertex is inU . The
total number of points, other than joints, on eachl i j equals the multiplicity of edges joining
its two vertices. (These matroids are obviously not new: for instance, those for whichT is a
pathare the origami geometries of [19, section 8]. Our interest in them is as examples of our
biased-graphic theorems.)

Let T (U ) be a partially filled multitree of the kind in Corollary4.5(a). LetB = E(T):U .
One canshow by coloring in suitable gain groups thatG(T (U )) has characteristic polynomial

pG(λ) =
∏
e∈B

(λ− 1− µ(e))
∏
e6∈B

(λ− µ(e)), (4.5)

assumingT (U ) is not balanced. In fact one can calculate the characteristic polynomial of any
G(T (U )). It turns out that there do exist limited but still substantial numbers of these matroids
that are not supersolvable but whose characteristic roots are positive integers. The details are
complicated and mysterious, so I omit them.

We conclude with the lift analogs of bicircular matroids. Amulti-isthmusin a connected
graph is an edge or a set of parallel edges whose removal disconnects the graph.

COROLLARY 4.6. Let0 be a connected link graph of finite order.

(A) L0(0,∅) is supersolvable⇐⇒ 0 is a multitree. It has a modular copoint⇐⇒ 0 has a
multi-isthmus.

(B) L(0,∅) is supersolvable⇐⇒ 0 is a multitree with at most one multiple edge. It has a
modular copoint⇐⇒ 0 has an isthmus, or0 is a multitree with one multiple edge, or
0 is a unicycle.

5. COMMENTS AND QUESTIONS

5.1. Algorithmics. Theorems2.2 and 3.2 yield a reasonably fast algorithm for deciding
whether agiven biased or gain graph has supersolvable bias, lift, or extended lift matroid; and
thereby whether a given two-term or graphic-lift arrangement of hyperplanes is supersolvable.
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5.2. Generalized chordality.Theorem2.2 raises the tantalizing question of generalizing
criteria forchordality in graphs. For a graph0, supersolvability ofG(0) is equivalent to each
of the following: existence of a simplicial vertex ordering, chordality, and Dirac’s condition
that minimal vertex joins be cliques (see [10, Theorem 4.1]). The first property is general-
ized (withnecessary exceptions) to biased graphs by Theorem2.2 but I do not know how to
generalize theothers.
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