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Supersohable Frame-matroid and Graphic-lift Lattices

THOMAS ZASLAVSKY

A geometric lattice is &rameif its matroid, possibly after enlargement, has a basis such that every
atom lies under a join of at most two basis elements. Examples include all subsets of a classical
root system. Using the fact that finitary frame matroids are the bias matroids of biased graphs, we
characterize modular coatoms in frames of finite rank and we describe explicitly the frames that are
supersolvable. We apply the characterizations to three kinds of example.

A geometric lattice is graphic liftif it can be extended to contain an atom whose upper interval is
graphic. We characterize modular coatoms in and supersolvability of graphic lifts of finite rank and
we examine families analogous to the frame examples.

(© 2001 Academic Press
INTRODUCTION

One of the outstanding problems concerning arrangements of hyperplanes and finite ma-
troids is to understand when and why the characteristic polynomial of the associated geomet-
ric lattice has a complete integral factorization. A sufficient condition for such a factorization,
which even implies a simple combinatorial interpretation of the roots, is that the lattice be
supersolvable, which means that it has a complete chain of modular flats [14, Corollary 2.3].
However, it can be hard to decide whether a particular geometric lattice is supersolvable. Here
we completely settle that question for two kinds of geometric lattice which can be presented
in terms of graphs.

The first kind is a geometric lattice (of finite rank) whose matroid has a basis, or can be
extended to have one, such that each point lies on a line generated by a pair of basis elements.
We call this a (finite-rankjramematroid. The primary example is the matroid of a subset of
a classical root system; more generally, of a subgeometry of a Dowling group geometry. One
can think of a frame matroid as an abstraction dfva-term arrangement of hyperplanes: a
finite set of homogeneous hyperplaned-ity each of whose equations involves at most two
variables; thug; = gx; orxx = 0.1fg € {+1}andF = R or C, we have a subarrangement of
Bi ={x ==%Xj,x%=0:1<1i < j <n,1<k < n}, the real or complex arrangement dual
to the root systenB,,. By [18], a finitary frame matroid is the matroid of a graph with certain
additional structurevhich I call a ‘bias’ (to be explained in Sectid); and conversely every
such ‘biasmatroid’ is a finitary frame. This representation theorem is what makes two-term
arrangements and their abstraction to frame matroids relatively tractable, since it permits one
to employ the rich theory of biased graphs to characterize modular copoints and supersolv-
ability. Since an ordinary graph can be treated as a certain kind of biased graph, our theorem
generalizes Stanley’s that the lattice of contractions of a graph is supersolvable if and only if
the graph is chordal.

The second kind of geometric lattice is one which contains, or can be extended to contain, an
atomey whose upper interval is graphic; that is, the lattice of contractions of a graph. We call
this agraphic-lift because it is obtained from a graphic matroid by a standard lift construction
specified by a bias on the graph. Graphic lifts abstract a different kind of arrangement of
hyperplanes, which we cadlffinographicbecause the defining equations have the fgrm
Xj = g, whence the hyperplanes are affine flatsFih. Some types of real affinographic
arrangements have been studied in [1,9, 15]. Again, biased graph theory helps us to treat
these arrangemengnd all graphic lift matroids and in particular to determine all modular
copoints and supersolvable lattices of this kind.
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We find that very few frame-matroid or graphic-lift lattices are supersolvable. Yet we know
seweral families of vector sets (or dually, arrangements of hyperplanes) that correspond to
frame and graphic-lift matroids whose characteristic polynomials have integral roots but which
are on the whole not supersolvable: the root subsystems obtainedBgoby removing
some coordinate vectors, for example, and generalizations; certain bicircular matroid lat-
tices; lattices related to the semilattices of composed partitions studied;iar{d some
lift analogs. This shows that supersolvability does not completely explain integral factor-
ization even for frame matroids. There are several broader properties of an arrangement of
hyperplanes or a matroid that guarantee integral roots, such as freeness (see [11]), factoriza-
tion [8, 16], and existence of an atom decision tree [3]. Why, then, characterize a compar-
atively weak property? The best reason is that it can be done—in considerable generality.
There is no known characterization in comparable generality of any other integrality property,
although it has been done for a few special types, notably graphic arrangements (subarrange-
ments of A} ; = {xi = Xj : 1 < i < j < n}); arrangements betwee&’ , and By,
for which freeness and supersolvability are characterized in the beautiful theorem of [7], ex-
tended tdfactorizability by [2]1 and the projectivizations (‘cones’) of arrangements between
A;,_, and theShi arrangement, for which Athanasiadis characterized freeness and supersolv-
ability in [1]. In some of these types, most of the properties that guarantee integral roots turn
out to nearly coincide. That is not so in the whole class of frame matroids, but, to extend a
question raised by Bailey [2], might it be true of all subarrangemenB;of.e., of all signed
graphs? This question is open.

After developing the general results we turn to three families of examples, looking for super-
solvability and for nonsupersolvable cases that nonetheless have integral roots. Examples 4.1
and 4.2 include the root systeBy, and Dowling’s group geometries. In Example 4.3 we ob-
tain a mild generalization of Edelman and Reiner’s supersolvability theorem. In Example 4.4
we characterize the supersolvable bicircular matroids. We close with comments on algorith-
mics, chordality, and freeness and some open questions.

1. BIASED GRAPHS, MATROIDS, ETC.

We give a quick exposition of the relevant portions of biased graph theory, from definitions
through their matroids to their representations as vector sets and arrangements of hyperplanes.
The source for biased graphs is [17], especially the cryptomorphic definitions of the matroids
in Theoremdl.2.1 (that is, Theorem 2.1 of Part Il) and 11.3.1 and the gain-graph and matroid
invariant theory of Sections Ill.4 and 1I.5. The reader need not be acquainted with the sources
in order to read this paper.

1.1. Biased graphsA biased grapi2 = (V, E, B) is a graph||2|| = (V, E), not neces-
sarily finite, together with dinear subclass3 = B(R2) of its polygons (or ‘circuits’, but we
reserve this term for matroid circuits): a class of polygons such that, if in a theta subgraph two
polygons belong td, so does the third. In biased graph theory we find it helpful to have four
kinds of edges: links (two distinct endpoints), loops (two coincident endpoints), half edges
(one endpoint), and loose edges (no endpoints; this term is due to Tutte). Neither of the lat-
ter can belong to a polygon. A subgraph or edge sbhlancedif it contains no half edge

and any polygon in it belongs 8. It is contrabalancedf it contains no balanced polygon

TThe presentvork, except Example 4.3, and that of Edelman, Reiner, and Bailey were originally done independently,
including Bailey’s independent discovery of Theor2r#for signed graphs (with a longer proof). However, this report
and P] have been revised to take account of the connections.
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or loose edge. Thus a loose edge is balanced, a half edge is not, and a loop may or may not
be. For matroidal purposes a loose edge behaves like a balanced loop and a half edge like an
unbalanced one, but for technical reasons it is helpful to allow all four types of edge.
Several special types of biased and unbiased graphs will be neededdiAary graphhas
only links and loops. Aink graphhas only links. Asimple graphis a link graph that contains
no digons. Astar & is a simple graph havinigedges (wher& > 1), all incident to one vertex
(the center). Aunicycleis a connected ordinary graph having exactly one polygonmBy
we mean a graph with every edge replaced b copies of itself. Aninduced subgraplof
I =(V,E)is":"W = (W, E:W) whereW C V andE:W ={ee E: ¥ # V(e) C W},
V (e) denoting the set of endpoints ef ForW C V andS C E we write W¢ = V \ W,
S =E\ST\W=TI:W° andl'|S= (V, S). W is stableif E:W = @. Theneighborhood
ofv e VisN(v) = {x € V : x is adjacent but not equal tg; the complete neighborhood
is N(v) = N(v) U {v}. We denote byI') the biased graph whose underlying grapljsn
which every polygon is balanced.
In a biased grapk2, we letU () = {v € V : v supports an unbalanced edgg}is full
if U(R) = V. We call 2 simply biasedf it has no loose edges, balanced loops, balanced
digons, or pairs of unbalanced edges at the same vertéxdfV andS c E, Q™) denotes
Q with a half edge added at each vertexfin\ U (Q2). Q:W, Q|S, etc., denote subgraphs of
I" with balance of polygons the same asinSimilarly, W) denotes a graph with a half
edge added to each vertex\ivh not already supporting one.
Two special unions are the disjoint unién W2, and the one-point amalgamatién Up
Qo, wherep is a vertex of2; and 2, and Q1 N Q2 = {p}. In each case the balance of a
polygon is the same as R or Q», for whichever one it is that contains the polygon.

1.2. Gain graphs.In the examples we need gain graphs, which for our purposes can be
defined in the following way (simplified from [17, Section 111.4]). Take a graipOn the
vertex sefn] = {1, 2, ..., n} construct a graph with edgés j; g) for all distincti, j € [n]
andg € &, but identify the edgé, j; g) with (j,i; g1). This is the gain grapts K ,. Adding
a half edge to each gf vertices givesb K,gp). We callg thegainof (i, j; g) in the direction
fromi to j and we writepn(i, j; 9) = g. Calling a polygon{(io, i1; 01), (i1,i2; 92), - ..,
(ik—1,ik; Ok}, whereig = ik, balancedwhengigo--- gk = 1 determines a biased graph
(& K,ﬁp)). A gain graphg = (V, E, ¢) with gain group® and gain functiop is any subgraph
of K, ¢ being the restriction t& of ¢; () denotes the corresponding biased graph. We
call 8K, the -expansion of K andQﬁK,ﬁ”) the full -expansion. Whem < 3 (but not if
n > 4) the construction works for any quasigroép

Switchinge by a functiont : V — & means changing the gain of each link or loop from
¢(,j:9) =gtoe’, ;9 = t()"tgr(j). Switching preserves the balance or imbalance
of polygons, hencép™) = (¢).

A signed graphX is a gain graph whose group is the sign gréup —}. We write E, and
E_ for the sets of positive and negative edges and X_ for the corresponding spanning
subgraphsN. (v) and N_(v) denote the neighborhoods ofn ¥, andX_. We write £K,,
for the sign-group expansion &f,. Switchinga vertexx in ¥ means reversing the sign of
every link atx. SwitchingX € V(E) means switching each vertex Xin turn. Switching
does not changg:) or, consequently, any of the matroids we will define(ar).

1.3. Matroids. For matroid theory and notation we mainly follow [12]. However, we write
E(M) for the point set of a matroidM, S* for E(M) \ Sif S € E(M), andM/S for the
contraction ofM by S. The rank function ig\ or simplyr. The lattice of closed sets is
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LatM. Two fundamental if elementary properties of modular elements oM_atethat a
copoint A of M is modular if and only if it is not disjoint from any line, and thist (to be
precise, LaMM) is supersolvable if and only if it has a modular copafnsuch thatM| A is
supersolvable. (See for example [4, Corollary 3.4 and Proposition 3.5].)

1.4. Thebias matroid. A handcuffis a connected graph (or its edge set) having exactly
two polygons and no monovalent vertices (a half edge counting as a loop herdiglitt i

all its edges lie in the polygons. Theas matroid G<2) is the matroid orE whose circuits

are thebias circuits: the balanced polygons, loose edges, and contrabalanced handcuffs and
thetas. FoIS C E let V(S) = the set of endpoints of edges $and letb(S) = the number

of connected components 0¥ (S), S) which are balanced. Then the rank ®in G(Q) is

r(S = V(9| — b(S). If T has no loose or half edges, th&((I')) = G(I"), the usual
polygon matroid of".

Bias matroids are just a graph-theoretic way of presenting finitary frame matroids. In par-
ticular, supposer C ek is a gain graph whose gain group is a subgroug-6f the
multiplicative group of a field (or skew fieldy. ThenG(gp) (i.e., G({¢)), but we omit the
angle brackets) has a standard vector representatiorFovke vector space iE" with stan-
dard basidy, ..., by, and an edge = (i, j; g) is represented byx(e) = by — gbj. (Thus
x(e™1) = b; — g~lbi = —g~x(e). Either of these vectors serves equally well in represent-
ing the matroid.) I is a loose edge we defixge) = O; for a half edge at vertex x(e) = by;.

The linear dependence matroidxaiy) = {x(e) : e € E} equalsG(¢) [17, Theorem IV.2.1].

Let x*(e) be thedual hyperplane ta(e) in F", sox*(¢) is an arrangement of hyperplanes.
Each hyperplane equation has the fotm= gx; (wherei # j, g # 0) orx; = 0. It is these
two-term arrangementsf hyperplanes that are represented by bias matroids of gain graphs
and abstracted by frame matroids and biased graphs. For examglesl¢t, —} andF = R
or C. Thenx(¢) = By, the root system, if we take = iKrﬁ”), or Dy if ¢ = £K,, or an
arbitrary subset oB;, if we take a suitable C :I:Kr(,”). Hence we have, in Theore?2a2 below
with @ = {¢) C (+ K,ﬁn)), a graphical characterization of the supersolvable subs&g afd
dually of those of the hyperplane arrangemBjjt

Scalingan arrangement iff" means replacing each coordinate variakldy a nonzero
scalar multipler (i)x;, or equivalently, transforming" by an invertible diagonal matrix. Scal-
ing a two-term arrangement (¢) is equivalent to switching by 1/z.

If A; and.A; are homogeneous arrangementt frand codim()(A41U.A2) = codim () A1
+ codim ) A2, we say.4;1 U A is thedirect sumof A; and.A».

1.5. The lift matroids. A broken handcuffs the union of two vertex-disjoint polygons. (It
is not a handcuff. Again, a half edge counts as a loop.)edtended lift matroid b(2) is the
matroid onEg = E U ey, wheregyp is a new element called thextra point, whose circuits are
thelift circuits: balanced polygons, loose edges, contrabalanced tight and broken handcuffs
and thetas, and sefsU gy whereC is an unbalanced polygon or a half edge. Tiftenatroid
L(Q) is Lo(R2) \ e. We call S € Eg balancedif Sis a balanced edge set. LettingS)
be the number of connected component§\bfS \ ep), S\ &), the rank function in the lift
and extended lift iso(S) = |V (S\ ey)| — c(S) + €(S) wheree(S) = 0 if Sis balanced, 1
otherwise. Ifl" has no loose or half edgds((I")) = G((I")) = G(I"), the polygon matroid.
Suppose now thap C &K where® < F*, the additive group of a field (or skew
field). ThenLo(¢) has a standard representatiorFiti™™ (with standard basis, by, ... , by):
an edgee = (i, j; g) corresponds to the vectate) = ghp — bj + bj; a half edge or the
extra pointe = ey corresponds ta(e) = bp, and a loose edge hasz(e) = 0. The linear
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dependence matroid afyp) = {z(e) : e € E} equalsL (¢), and that ofzp(¢) = z(¢) U{z(ep)}
naturally equald.o(¢) [17, Theorem IV.4.1].

Dually, we regardz*(¢) andz(¢) as affine hyperplane arrangement&th Thenz*(e) has
equationx; — xj = gif e = (i, j; ), while a half edge or the extra point corresponds to the
infinite hyperplaneH., and therefore does not appear in the affine hyperplane representation
A. However, we cannot ignore it entirely. Theojectivizationof A is the arrangememp =
A U {Hs} in P"(F). Note that switching the associated gain graphrlgorresponds to a
translation, replacing; by x; + = (i).

An affine arrangementi; U A5 is thedirect sumof A; and. A2 if r (A1) +r(A2) =r (AU
Az), wherer (A) = max{codimS : Sis a nonempty intersection flat of hyperplanes4jt
For homogeneous arrangements this specializes to the definition in Skdtidnentails that
A1 and A5 are disjoint.

1.6. Coloring and polynomials.A 1-coloring of ¢ is a mapping : V — & U {0} where
0 ¢ &. Itis properif c=1(0) is stable and for all edges, j; g) € E with i, j ¢ ¢ 1(0)
we havec(j) # c(i)g. If ¢ and® are finite there is a polynomigl(,) associated withy,
called thechromatic polynomialwhich has the property that(|&| + 1) is the number of
proper 1-colorings of. Furthermorer—"® x (1) = ps (1), the characteristic polynomial of
G(p) [17, Theorem II1.5.1]. For theero-fiee chromatic polynomiaf *(1), x*(|®&|) equals
the number of proper 1-colorings not using the cdlofif & € F*, x* is the characteristic
polynomial of the affinographic arrangemeaip) [17, Theorem 111.5.3 and Section 1V.4].) If
@ is full, thenx*(A) = x (A + 1) = pc(x + 1); and more generally,

P+ D =xA+D =) xix® (1.1)
Siable
[17, Theorem 111.6.1]. For an arbitrary finite biased graph there are algebraic definitigns of
and x * which yieldthe same identities; see especially [17, Sections 1.3 and II1.6] but there
is noeasy way to evaluate the polynomials without coloring theory.
If Q is a finite, connected biased graph, the characteristic polynomiaj(@t) is

PLo) =27T — Dx*(W) = 27 — Dpgqun (A + 1). (1.2)

We see that the roots qi ) (1) are those opr(Q(v>)(A) decreased by one, except that
the root 1 remains unchanged £fis also a link graph and is unbalanced, the characteristic
polynomial ofL (R2) is (from [17, Theorem II1.5.2]);

PL(R) = PLo() + 2 Lxy e (). (1.3)

2. FRAMES

In a biased grapke a vertexv is bias simplicialif:

(s1) for each pair of edgesand f, from v to distinct neighbors andy, there is arxy edge
which completes a balanced triangle;

(s2) for each unbalanced digomattheother endpoint is itJ (2); and

(s3) ifvisinU () thenevery neighbor is itJ ().

We callv link simplicialif it satisfies (s1) angdimplicialif it is link simplicial and the seE (v)
of edges incident with is balanced (that is, there is no unbalanced diganandv ¢ U (2)).
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In a balanced grapti") a simplicialor link- or bias-simplicial vertex (in the biased sense) is
the same as a simplicial vertex Bf(in the ordinary sense).

We restate the conditions to apply to a gain graplisl) whenever there are edges=
(v, x; g) and f (v, y; h) with x # y, there is an edgéx, y; g—th); (s2) whenever there are
edges(v, x; g) and (v, x; h) with g # h, there is an unbalanced loop or half edgeafs3)
if v supports an unbalanced loop or half edge, so does every neighbor.

THEOREM2.1. Let 2 be a connected, simply biased graph. A subset B is a modular
copoint of G€2) if and only if2 and A are of one of the following types.

(1) Q is a one-point amalgamatiot, U, 22, where Q22 is balanced and is a bias-
simplicial vertex inQ23; and A= (E1:{v}°) U E>.

(2) @ = ('Y wheeT is connected and U is a nonempty cliqudipand A= E(I).

(3) Q@ = (I UMKy, %)) wherel is connected, i 2, U C V(K32), and one link of the
mKyisinT;and A= E(I").

(4) @ = (X) whee X is a connected signed link graph,_Hs a triangle parallel to a

triangle of positive edges; and A E,..
(5) @ = (X) whee X is a connected signed link graph,_Es a star of one or more edges

centered at a vertex, N_(v) is a clique; and A= E...
(6) Q@ = (=)™ whereX and A are as in (5) and furthermore_Nv) € N, (v).
| regard the first kind of modular copoint as the normal one; the others are exceptional cases.
Note that22 may equakV}.
PrROOFE We may assum&(£2) is unbalancedThe balanced case is known from [13, The-
orem 3].)
First, we need a catalog of all types of limein G(Q). It is easy to produce one because
b(A) < 2.
(a) Contrabalanced, orde2. A = E:{x, y}, where|E:{x, y}| > 2. This line is(m Kz, %)Y
withm+ [U| > 2.
(b) Partly balanced, ordeB. A = Ml% = E(K2 UK{”)); thatis, a link and an unbalanced

edge at a third vertex.
(c) Balanced, ordeB or 4. Herethere are three kinds af. (i) (C3), a balanced triangle.

(ii) A proper angle A := two links having one common vertex and not contained in a
(Cg). (iii) M2 := E(K2 WUK>), a two-edge matching.

Next, we need the description of copoints in [17, Theorem 11.2.1(h)]. There are two kinds
of copoints:a maximal balanced edge s&t and an unbalanced edge set of the fodm=
E:YCU Ay where@d C Y C V, b(Q:Y®) = 0, (Y, Ay) is connected, andy is a maximal
balanced edge setin:Y.

In the former case we see from lines of tydds and M, 1 that A° can containmo two
vertex-disjoint edges except a pair of unbalanced edges, which, due to lines of order 2, must
be at vertices which are adjacentAn If A® contains no linksA has type (3). Otherwis@
has type (4), (5), or (6). The details are routine.

Suppose now thah is the second kind of copoint. Since the §etof edges betweel
and Y€ can contain naMl2, we have|Y| = 1 or @ = Q1 Up Q2 whereQ; andQz C €,

Y € V(R1), Y¢ C V(Q2), and any unbalanced edgeats in . It is easy to see that, if
Y] = 1, sayY = {y} (so A = E:{y}°), theny is bias simplicial. We show tha¥| > 1 is
impossible.
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We show first that when a poimt exists,21 is balanced. Tak@ € Y if possible. (Note that
p is not uniquely determined B is incident with only two vertices.) Let € D. If p € Y,
let f € D, not parallel toe. Then Mll showsthat no vertex ofy \ V(e) (or Y \ V(f), if
p € Y) can support an unbalanced edge Tkyshas no unbalanced edges. Suppasey
contained a linkg. Thenegwould be anM or A; or elsep ¢ Y andegwould be in a(Cs)
at p, so we would have a line disjoint fromy, which contradicts the hypothesis. We conclude
that E(21) = Ay, whence2, is balanced.

But thenG(2) is the direct sum o65(21) andG(£22), contrary to the assumption. O

Now we can characterize supersolvable frame matroids of finite rartkag-simplicial
vertex ordering(briefly, b.s.v.0.) of a biased graph of finite order is a linear ordering of
the vertices, sayvi, vy, ..., vp), such that each; is bias simplicial inQ:{v1, ..., vi}. A
link-simplicial vertex orderingl.s.v.0.) is similar. IfQ is balanced we call this simplicial
vertex ordering(s.v.0.); in reverse order it is a perfect vertex elimination schengf [10,
Section 4.2]We call 2 a simplicial (or bias- orlink-simplicial) extensiorof Qg if Qg is an
induced subgraph dR andV (220)° can be linearly ordered, saws, ..., wk), so that each
wj is simplicial (or bias- or link-simplicial) ir2:(V (R20) U {w1, ..., wi}). Incidentally, in a
b.s.v.0 any vertex ¢ U (22) must follow all its neighbors that are (). Consequently, any
b.s.v.0 can be rearranged so thak2) is an initial segment.

For an ordinary graph Stanley [14, Proposition 2.8] proved that IG(¢I") is supersolvable
if and only if T" is a chordal (‘triangulated’, ‘rigid-circuit’) graph. A good reference for chordal
graphs is [10, Section 4.2]. We mention, in particular, Dirac’s lemma (see [10, Lemma 4.2])
that achordal graph is complete or has a pair of nonadjacent simplicial vertices and the con-
sequence that a graph is chordal if and only if it has a simplicial vertex ordering (from which
Stanley’s theorem follows easily).

THEOREM2.2. Let Q be a simply biased graph of finite order(Q) is supersolvable if
and only if each connected componenfxéither:
(i) has a bias-simplicial vertex ordering; or
(ii) is a simplicial extension of one of
(a) (mKoy, (/)), where m> 2, or
(b) (£Ks3),
(c) ¢ for E +TI" U —&, whererl is a chordal simple graph of finite order & a
k edge star whose vertex set lies iillyf, and the noncentral vertices of @re a
cliqgueinT.
Furthermore, the bias-simplicial vertex ordering (or simplicial extension) can be chosen so
that any desired bias-simplicial (or simplicial) vertex is the last vertex.

An alternate description & in (ii)(c) is as(+T'oU —e)/(—e) wherelg is a chordal simple
graph of finite order and s a link whose endpoints are not adjacenfin

If we have a gain graph C QﬁK,ﬂ”) instead of an abstract biased graphwe can restate
some of Theoren2.2. Part (ii)(b) becomes: a gain subgraphsdf; obtained byswitching
{1, g}K3 whereg is an involution in&. Part (ii)(c) becomes: a gain graph with gain grasip
obtained by switching from 1D g &, whereg € &, g # 1, g& denotesS, with every edge
given gaing in the orientation away from the central vertex, dhdnd S are as before.

PrRooF Sufficiency is clear by Theorer@.1 and the properties of modular flats cited in
Sectionl.3.
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For necessity we have only to clear up some technicalities. We may assisro®nnected
andunbalanced. We proceed by induction on the order. A supersol@(ste has a modular
copoint A such thatG(2)| A is supersolvable. Consequently,and the modular copoinh
are as described in Theorezri.

Let usfirst take up the exceptional cases (2)—(6). HEre= (V, A) is balanced, hence
chordal by Stanley’s theorem. By Dirac’s lemmias K, or has two nonadjacent simplicial
vertices. It is easy to deduce th@thas a b.s.v.0 in cases (2), (3) whdn#£ @, and (6). In
cases (3) withd = ¢ and (4), iIfQ # Qg := (MK, ¢) or (+K3), respectively, themr has
a simplicial vertexv ¢ V (20). Thenu is clearly simplicial in2, so it can be eliminated; by
induction,2 is a simplicial extension a2q. As for case (5), her® is as in case (ii)(c).

Now consider case (1). Hei@(2) = G(R21) ® G(R22); thus G(R) is supersolvable if
and only if G(21) and G(22) are s0.Q22, being balanced, has a simplicial vertex ordering,
in which one can choose the first vertex to bb¢because a chordal graph has at least two
simplicial vertices; see [10, p. 821, is abias-simplicial extension a®1:{v}¢. Thus< itself
is a bias-simplicial extension &t1:{v}°. By successively eliminating bias-simplicial vertices
we will either find a b.s.v.0 or expressas a bias-simplicial extension of a supersolvabie
which has no bias-simplicial vertex. But then by inductiegis one of(mKoy, ¢), (+Ks), or
(+T' U —&) whereTl is chordal. It is easy to see that a bias-simplicial extension of such an
Qo is a simplicial extension. Therefore the theorem is proved. O

Clearly, if G(R2) is supersolvable, then so@(||2]|) unless2 is as in (ii)(c). However, we
can say more. LefiQ2||o be the graph obtained frof through replacing unbalanced loops
and half edges by links to a new vertey, then taking the underlying unbiased graph and
eliminating loops and multiple edges.

COROLLARY 2.3. If G() is supersolvable, theli2||g is chordal or2 falls under case
(ii) (c) of TheorenR.2.

Now, the geometry of Theoreth2. LetA be a two-term arrangement of hyperplanefth
andU theset of coordinates for which x; = 0 is in.A. Call a coordinate transitiveif: (i)
whenever it participates in hyperplangs= gx; andxx = hx (wherei, j, k are distinct,
and we always tacitly assunggh # 0), then4 has a hyperplang = hgx;; (ii) the same if
k =] #iandhg # 1 (whencexx = hgx; is the coordinate hyperplang = 0); and (iii)
if A containsx; = 0 andx; = gxj, then it contains; = 0. Calli strictly transitiveif it is
transitive,x; = 0 is not in.A, and for each # i, there is at most one hyperplane equation
involving bothx; andx;. Let Ay = {H € A : the equation oH involves onlyxy, ..., i, at
most}.

COROLLARY 2.4. Let A be a two-term arrangement of hyperplanes if, Fhere F is a
skew field. Thet is supersolvable if and only if it is a direct sum of arrangemeéhts any
of the following four forms (after suitably scaling and renumbering the coordinates):

(i) Bissuchthateachi is transitive ).

(i) Eachi> 3is strictly transitive inBj).

(iif) B consists of hyperplanes x +x; for 1 <i < j < 3 and additional hyperplanes (if
any) so that each & 4 s strictly transitive inB).

(iv) There is an r such that every coordinate>i r is strictly transitive inBy; B¢y =
By U B_, where3;. is graphic and supersolvable (i.e., its hyperplanes have equations
Xi = Xj and each i > 3 is strictly transitive in,); B_ consists of hyperplanes
Xm = goX; for fixed m, fixedg@e F*\{1}, and alli € {i1, ..., ik} (where k> 1and no
ij = m); andB. contains all hyperplanes x= x; for1 < j <I <k.
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3. GRAPHICLIFTS

First in our treatment of graphic lifts we ought to verify that a finitary graphic lift lattice, or
matroid rather, really is the lift or extended lift of a graphic matroid. In other words we should
prove that for a finitary matroid/ to have a nonloop poirgy such thatM /ey is graphic,
it is necessary and sufficient thist = Lo(€2) for some biased grapfe. This is implicit
in [6, Section 6] as amplified in [17, Section 1.3 near Theorem 11.3.1]. Here is foi&
constructed: iM/eg = G(I'), then||2]| = T'; and a polygon is unbalanced when its closure
in M containsey.

To simplify the results we shall often assume tfas connected. We can do so because, if
it is not and if one identifies just enough vertices to make it connected, the lift and extended
lift matroids are not changed.

Now we state the main theorems. We leave the proofs to the reader since they are along the
same lines as those for frame matroids. We may without loss of generalitf2takbe a link
graph, for an unbalanced edge is paralleddpwhence Lat () = LatLq(2) if  has any
such edge.

Recall from Sectior? that a vertex is link simplicial if any two nonparallel links at are
contained in a balanced triangle Sty € Q andv € V(Q1), thenE1(v) is the set of edges of
Q1 incident withv.

THEOREM3.1. LetQ be a simply biased link graph.

(A) A subset AC Egis amodular copoint in lg(€2) if and only if:

(1) 2 has a block21 which has a link-simplicial vertex, and A= Eg \ E1(v); or
(2) Qisbalanced and A= E.

(B) A subset AC E isa modular copoint of ) if and only if:

(1) 2 has a block?1 which has a simplicial vertex, and A= E \ E1(v); or
(2) 2and A are asin Theore2.1 (3,4, or5).

THEOREM3.2. Let 2 be a simply biased, connected link graph of finite order.

(A) Lo(£2) is supersolvable if and only §& hasa link-simplicial vertex ordering.
(B) L(2) is supersolvable if and only if:

(i) Qisbalanced and|2|| is chordal; or
(i) Qisasin Theoren2.2 (ii).

Furthermore the link-simplicial vertex ordering (or simplicial extension) can be chosen so
that any desired bias-simplicial (or simplicial) vertex is last.

COROLLARY 3.3. For a simply biased link grapk of finiteorder, Lo(2) is supersolvable
precisely when @) is supersolvable.

This and the remark opy, in Sectionl.6 show that, for a biased gragh, the properties
of supersolvability, and of positive integrality of characteristic rootd, ¢f) parallel those
of G(QM)).

For the geometric interpretation of Theoré& 2 consider an affinographic arrangemeht
in F" and itsprojectivizationAp in P"(F) = F" U He,. Call a coordinaté in F" affinely
transitive in A if, wheneverA has hyperplanes; — xj = gandxx — X = h, it has a
hyperplanexx — xj = g + h. Calli strictly affinely transitiveif, in addition, for eachj # i
there is at most one hyperplane of the foxm- xj = g.
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COROLLARY 3.4. Let.A be an affinographic arrangement of hyperplanes th Where F
is a skew field.

(A) Ap is supersolvable if and only if, after suitable translation and renumbering of coor-
dinates,each coordinate i is affinely transitive id.

(B) Ap \ {Hw} is supersolvable, as an arrangementRA(F), if and only if A is a direct
sum of (affine) arrangement$that have any of the following forms, after translation
and renumbering coordinates:

(i) Every coordinate i> 3in B is strictly affinely transitive in3).
(i) Every coordinate i> 4 is strictly affinely transitive in3), char F = 2, andB
contains ¥ —xx =0,1forl1 < j <k <3.
(iii) There are a fixed g € F*, aset{iy, ..., ik, m} of coordinates with k= 1, and a
coordinater> iy, ..., ik, m, such that every coordinates r is strictly affinely
transitive inBj),

Bo={xm=X;+0:1=<]=<k}CB,

X=X :1<j<l <Kl SBn\BoCS{Xxi=x%j:1<i<]j<r}

and every coordinate i r is strictly affinely transitive in3) \ Bo.

4. EXAMPLES

4.1. Group expansions and biased expansiofake a simple grapl with vertex setn]
and a subsdll € V (I'). In the definition o/ K, include only those edgé&g j; g) for which
ij € E(T'). Then one has theartially filled &-expansior8T'Y) of I'. If & = Z,,, this gain
graph corresponds to the complex hyperplane arrangement

{xizwkxj, x=0:ij e EI), 0<k<y, | €U},

wherew is a primitivey ™ root of unity. (Of course, ify = 2, thenw = —1 and we can regard
this as a real arrangement.)

COROLLARY 4.1. Assuming®| > 2 and T is connected, @G8I'Y)) is supersolvable if
and only ifl" is chordal and U is a stable set of simplicial vertices ity or 8I'Y) = £K3, or
V()| < 2. Furthermore, GBI Y)) has a modular coatom if and onlylif has a simplicial
vertexv with N(v) C U, or 8I'Y) = +K3, or V()| < 2.

The characteristic polynomial of the bias matroid of a fifteexpansion, providegt =
|&| >20rU #£ @, is

A—1
P = ) Vn_l)('Xr\x(T), (4.1)

XcV(I)
stable

xr being thechromatic polynomial. (See [17, Examples 111.3.6 and I11.4.6].) In particular, if
U = V(') wehave

pot =y () 4.2)

so inthis casepg (1) has (positive) integral roots if and only yfr does. Thus ifl" is non-
chordal with integral characteristic roots, the&g®T"V)) is nonsupersolvable with integral
roots.
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Suppose thdt is chordali.e., thatG(I") is supersolvable); thepg (1) has positive integral
roots if U = V(I'). More generally, letU® be a set of simplicial vertices df. It is easy
to see that) ¢ is the disjoint union of cliquedVy, Wa, ..., Wy where every element d\V;
has the same complete neighborhood, therefore the same dipgfidais the characteristic
polynomial of LatG (T Y)) is given by

A—1\ o
Pc(A) = anXF\Q<T> [ —yd + W -1 (4.3)
i=1
whereQ is any set consisting of one vertex from eadbh Letting the roots ofr bed;, ...,
dy, dg+1, - - . , dn, We conclude thapg (1) has roots

ydi+1—Wil,...,ydg +1—|Wy|, ydgr1+1,..., ydn + 1.
These are positive integers, of course. BT (V)) is supersolvable only when daWV | = 1.

Factorizability and freenessOne can show thdt and its full &-expansion parallel each
other’s behavior in regard to properties like factorizability of the matroid or, for finite cyclic
&, freeness of a representing hyperplane arrangement. And how about a nonfull expansion
¢ = &¢Ir'Y)?2 | can show by calculating characteristic polynomials that@ap) to be free
or have a factorization in the sense &f 16], ' must be chordal antd¢ consistonly of
simplicial vertices. TherG(¢) is supersolvable, hence is free and has a factorizatid#® if
is stable. (What happens whelf is not stable | have not determined.) Thus in some sense
the supersolvable examples of this type are fundamental, while the nonsupersolvable ones
are derived by very selective deletions. Whether this observation may generalize to any other
kinds of matroids is not known.

COROLLARY 4.2. Assumd" is asimple graph of finite order an@| > 2.
(A) Lo(&T) is supersolvable— T is chordal. It has a modular coatore=> T" has a

simplicial vertex.
(B) Assuming” has noisolated vertices, [&T") is supersolvable, and indeed has a modu-

lar coatom, only whefV (I")| < 2 or 8I' = +K3.

The supersolvable lift examples are trivial in a sense: they sdtigfl’) = G(&I'), so
they are subsumed under Corollary.

Are thereany examples with integral roots that are not supersolvable? By Sdcothe
positivity and integrality of the roots df o(®TI") are identical to those @& (&I V)).

Settingy = |&| and assuming andn > 2, the lift characteristic polynomial for connected
I, from [17, Example 111.6.6], is

A
pL(d) = ?»_1{(?» - Dy" e (;) + XF()»)}- (4.4)

Although it seems that an integral factorization pf (1) could exist, if at all, only in the
rarest circumstances, | see no way to decide this except in very special cases.

4.2. Near-Dowling and Dowling lift lattices.The most interesting group expansions are
those in whichl' = K,,. The near-Dowling lattice d\_,p(QS) of a group® (or quasigroup,
if n < 3)is LatG(& Kr(,p)); it generalizes th®owling lattice Qﬁ,n(Qi) introduced in [5]. If
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6] = 2, Qn p(®) is the lattice of subspaces generated by the root syﬁ,em\nth n—p
standard basis vectors omitted, thus in particulaDyif p = 0. If & = Z,, Qn p(®) is a
complex analog.

The characteristic polynomial of a finite near-Dowling lattice follows from (4.1), since
xk () = y(y —1)---(y — | + 1). Evidently the roots are positive integers. Can this fact
be explained by supersolvability? Mostly not, since by Corolaty, if y > 2, thenQn p(B)
is supersolvable ifand only ip > n— 1 or(n, p, y) = (3,0, 2). (The supersolvability of the
Dowling lattices was proved by Dowling. Nonsupersolvability for various particular values of
n, p, andy seems to have been noticed several times.) Notwithstanding this, there are expla-
nations of the integrality of the roots of the near-Dowling lattices: algebraically| it 2 the
corresponding arrangements are free [7]; combinatorially, the lattice has an atom decision tree
if |&| = 2[3], while one can regard the gain-graph coloring method of [17, Example 11.4.7]
as agraphical reason. On the other hand, Bailey [2] showed thdi|iE= 2 the matroid does
not have a factorization in the sense of [8, 16].

The (extendedDowllng lift lattice Qﬁ (&) (or, Qn(ei)) of & is LatL(Qﬁ Kyn) (or, LatLo
(BK). Q (QS) equals the near-Dowling Iattu@n o(®)if n <3, andQl(Qi) Ql 1(®);
otherwise the Ilft extended lift, and near-Dowling lattices are aII different. From Corellary
we see that aIQn(QE) are supersobble. On the other hanchn (®) is supersolvable only
whenn < 2ory = 1or(n,y) = (2,3). The roots onn (&) are positive integers when
n = 3 because the lattice equeﬂ%,o(@) For largem it seems impossible that they could all
be integers, but | cannot prove there are no exceptions.

4.3. An extension of Edelman and Reiner’s theordbdelman and Reiner [7] showed that
the two-term hyperplane representatisf(=(Y)) of a signed grapttY), whereX has the
form +Kn U —A, is supersolvable if and only & is a threshold graph andl satisfies certain
conditions. They did so as a byproduct of their characterization of free arrangements of this
type. We can derive their supersolvability criterion and a simple generalization directly from
Theorem2.2.

First we need some definitions. The (decreasidgyree partial orderon the vertices of
a graphA is defined byv < w if degv > degw. A degree orderon V(A) is any linear
extension of the degree partial order. A grapls athreshold graphf it is obtained from the
empty graph by adding one vertex at a time, each new vertex being adjacent to all or none of
the previous vertices. (For threshold graphs see [10, Chapter 10] or [20].)

COROLLARY 4.3. Let® be a group$ a proper subgroupA a spanning subgraph of K
and U C V(Kp). Definep = 8A U HK,,. Then Gp™)) is supersolvable if and only if one
of the following holds:

(i) A is athreshold graph, U is an ideal in the degree partial order, arfdi$)stable inA
if 9] =1,/U¢| <1if |9] > 1.
(i) 19 =1,U=¢,and|E(A)| =1.
(i) |9 =1,18| =2,U =0, and E(A) is either a triangle or a star.

One could apply Corollarg.2to a finite cyclic group C C*. Thenthe hyperplane repre-
sentatiorx* (")) is a mild complex generalization of the arrangements treated by Edelman
and Reiner.

COROLLARY 4.4. With notation as in Corollary.3, Lo(p) is supersolvable if and only if
A is a threshold graph. Ly) is supersolvable if and only § is as in Corollary4.3 (ii)—(iii).
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4.4. Bicircular matroids. These arghe bias matroid<5(T", #) of contrabalanced graphs

(T, #). (Loose edges are excluded here. We also exclude loops, since they behave like half
edges. Multiple edges are, as usual, allowed.) Sificé) can be embedded {Z, K,ﬁn)) for

anyy > 2/EMI we obtain a representation 6", #) by complex hyperplanes of the forms

Xj = a)ka andx; = 0, similar to those mentioned in Example 4.1.

A multitreeis a link graphT whose simplification (that is, the graph resulting from replacing
parallel sets by simple edges) is a tregaktially filled multitree isTY) whereU < V(T). A
multitree T can be described by a tr@eand a positive multiplicity functiop : E(T) — Z.

TU) can bedescribed by the paiff ", x). A leafis a vertex having just one neighbor.

COROLLARY 4.5. LetI" be a graph of finite order.

(a) G(T', ¥) is supersolvable if and only if each component'aé either a partially filled
multitree TY) such that TU is connected and every multiple edge is incident with
a vertex in U, or a multitree with just one multiple edge, or a link graph containing
exactly one polygon.

(b) G(T', ¥) has a modular coatom if and onlylifhas a leaf whose degree is one or whose
neighbor is filled, ol" = mK, with m> 2, orI" is a unicycle.

The matroids of partially filled multitrees are very simple. Geometrically, they consist of
lineslij, corresponding to the edges joining adjacent pairs of vertices, in general position in
n-space except for meeting at poims(called ‘joints’ by Kahn and Kung [19]) corresponding
to vertices. A joint belongs to the matroid if and only if the corresponding vertexis ithe
total number of points, other than joints, on e&ghequals the multiplicity of edges joining
its two vertices. (These matroids are obviously not new: for instance, those for Whgch
pathare the origami geometries of [19, section 8]. Our interest in them is as examples of our
biased-graphic theorems.)

Let TY) be a partially filled multitree of the kind in Corolla#.5(a). LetB = E(T):U.

One carshow by coloring in suitable gain groups tt@&¢T (Y)) has characteristic polynomial

pe) =[] =1=pu@) ] - ne©, (4.5)

ecB e¢gB

assumingl (Y is not balanced. In fact one can calculate the characteristic polynomial of any
G(TW). It turns out that there do exist limited but still substantial numbers of these matroids
that are not supersolvable but whose characteristic roots are positive integers. The details are
complicated and mysterious, so | omit them.

We conclude with the lift analogs of bicircular matroids.nfulti-isthmusin a connected
graph is an edge or a set of parallel edges whose removal disconnects the graph.

COROLLARY 4.6. LetI" be a connected link graph of finite order.

(A) Lo(T, 9) is supersolvable= T is a multitree. It has a modular copoiri= T has a
multi-isthmus.

(B) L(T', ¥) is supersolvable—> T" is a multitree with at most one multiple edge. It has a
modular copoink—= T" has an isthmus, oF is a multitree with one multiple edge, or
" is a unicycle.

5. COMMENTS AND QUESTIONS

5.1. Algorithmics. Theorems2.2 and 3.2 yield a reasonably fast algorithm for deciding
whether agiven biased or gain graph has supersolvable bias, lift, or extended lift matroid; and
thereby whether a given two-term or graphic-lift arrangement of hyperplanes is supersolvable.
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5.2. Generalized chordality.Theorem2.2 raises the tantalizing question of generalizing
criteria forchordality in graphs. For a gragh supersolvability of5(I") is equivalent to each

of the following: existence of a simplicial vertex ordering, chordality, and Dirac’s condition
that minimal vertex joins be cliques (see [10, Theorem 4.1]). The first property is general-
ized (withnecessary exceptions) to biased graphs by The@c@iout | do not know how to
generalize thethers.
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