A prospective trial correlating clinical outcomes with ADAMTS-13 activity levels will clarify the role of replenishing ADAMTS-13 and/or removing inhibitors in determining TMA response to plasma therapy.

Piero Ruggenenti
Bergamo, Italy

Correspondence to Piero Ruggenenti, M.D., Mario Negri Institute for Pharmacological Research - Negri Bergamo Laboratories, Clinical Research Center for Rare Diseases “Aldo e Cele Daccò” and Azienda Ospedaliera Ospedali Riuniti di Bergamo, Italy.
E-mail: ruggenenti@marionegri.it

REFERENCES

Endothelial chimerism in association with vascular rejection in patients after kidney transplantation

To the Editor: Cell migration from the host to the transplanted organ results in chimerism in the organ [1]. Chimerism may be detected after gender-mismatched organ transplantation with use of fluorescence in situ hybridization [2]. To verify the endothelial chimerism, we studied kidney grafts with immunohistochemistry for ABO blood-group antigens and in situ hybridization for Y chromosome.

Four male recipients had received living kidney transplants from female donors. The blood type of the recipients was type A in all cases, and that of donors were type O in two cases and type B in two cases. Needle biopsies were performed from 2 to 5 months after kidney transplantation and diagnosed as vascular rejection. Endothelial cells stained with CD34 were positive for Y chromosomes, indicating the presence of recipient-type male cells. These endothelial cells were positively stained for recipient-type blood group A. The patients in the present study have shown that replacement of donor endothelium by recipient cells does occur in vascular rejection after kidney transplantation.

Lagaaij et al [3] have recently reported that grafts in which the endothelial cells are damaged by vascular rejection may incorporate host endothelium as part of the repair process. They speculate that host endothelial cells may be recruited from endothelial stem cells in the circulation. Further studies are required to clarify the mechanism of endothelial chimerism in association with vascular rejection after kidney transplantation.

Shigeru Horita, Kosaku Nitta, Kazunari Tanabe, Hiroshi Nihei, Hiroshi Toma, and Yutaka Yamaguchi
Tokyo and Kashiwa-city, Japan

Correspondence to Kosaku Nitta, M.D., Department of Medicine, Kidney Center, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
E-mail: nitta@kc.twmu.ac.jp

REFERENCES

Risk factors for late kidney allograft failure

To the Editor: We congratulate Ponticelli et al [1] for an excellent paper regarding the evaluation of risk factors for late kidney allograft failure that recently appeared in Kidney International. However, we would like to suggest to the authors to see for the effect of nephron transplantation with use of fluorescence in situ hybridization [2]. To verify the endothelial chimerism, we studied kidney grafts with immunohistochemistry for ABO blood-group antigens and in situ hybridization for Y chromosome.

Four male recipients had received living kidney transplants from female donors. The blood type of the recipients was type A in all cases, and that of donors were type O in two cases and type B in two cases. Needle biopsies were performed from 2 to 5 months after kidney transplantation and diagnosed as vascular rejection. Endothelial cells stained with CD34 were positive for Y chromosomes, indicating the presence of recipient-type male cells. These endothelial cells were positively stained for recipient-type blood group A. The patients in the present study have shown that replacement of donor endothelium by recipient cells does occur in vascular rejection after kidney transplantation.

Navalkishor Udgiri, Randeep Kashyap, and Mukut Minz
Chandigarh, India