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1. Introduction

Let A, B and C be nonempty sets, S1 : A ⇒ A, S2 : A ⇒ B, T : A × B ⇒ C be set-valued mappings with nonempty values
and R(a, b, c) be a relation linking elements a ∈ A, b ∈ B and c ∈ C . In a general setting R is a subset of the product space
A × B × C . In practice, it is often given by a system of inequalities of real functions or a system of inclusions of set-valued
maps on A× B× C . The following variational relation problem was very recently introduced by Luc [1] (see also Khanh and
Luc [2], Lin andWang [3], Lin and Ansari [4], Luc et al. [5], Balaj and Lin [6] for further studies) as a model for many problems
in optimization, equilibrium theory, variational inclusions or variational inequalities:

(VR) Find ā ∈ A such that
(i) ā ∈ S1(ā);
(ii) R(ā, b, c) holds for all b ∈ S2(ā) and c ∈ T (ā, b).

In the paper [1] quoted above, a weaker problem that we describe below is mentioned, without any developments:

(WVR) Find ā ∈ A such that
(i) ā ∈ S1(ā);
(ii) R(ā, b, c) holds for all b ∈ S2(ā) and some c ∈ T (ā, b).

Let X , Y and Z be nonempty sets, let P1, P2 : X × Y ⇒ Z , Q1, Q2 : X ⇒ Y be set-valued maps and let r1(x, y, z), r2(x, y, z) be
two relations linking x ∈ X , y ∈ Y and z ∈ Z . In this paper we consider the following mixed variational relation problem
simultaneously involving r1 and r2:

(I) Find x̄ ∈ X such that
(i) r1(x̄, ȳ, z) holds for some ȳ ∈ Q1(x̄) and for all z ∈ P1(x̄, ȳ)
(ii) r2(x̄, y, z) holds for all y ∈ Q2(x̄) and z ∈ P2(x̄, y).
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Notice that problem (I) contains relations of both types (VR) and (WVR). Nevertheless it can be seen as a particular case of
problem (VR). In fact, set A = X × Y , B = Y , C = Z × Z , S1(x, y) = X × Q1(x), S2(x, y) = Q2(x), T ((x, y), y′) = P1(x, y)
× P2(x, y′) and define R as follows: R((x, y), y′, (z1, z2)) holds if and only if r1(x, y, z1) and r2(x, y′, z2) hold. Then (x̄, ȳ) is a
solution of (VR) if and only if x̄ is a solution of (I) and ȳ satisfies (i) of (I). The general scheme of [1,2] can be applied to derive
existence results as well as stability for the problem (I). However, as it was shown in [3] for many theoretical and applicative
purposes it is sometimes more convenient to split the relation R into two or more parts. Some typical examples of problem
(I) are given below.

Example 1. Let G1, G2 : X × Y ⇒ Z and the two variational relations r1 and r2 defined as follows:

r1(x, y, z) holds iff z ∈ G1(x, y), and
r2(x, y, z) holds iff z ∈ G2(x, y).

Then problem (I) becomes: Find x̄ ∈ X such that

(i) P1(x̄, ȳ) ⊆ G1(x̄, ȳ) for some ȳ ∈ Q1(x̄)
(ii) P2(x̄, y) ⊆ G2(x̄, y) for all y ∈ Q2(x̄).

Example 2. Let V be a nonempty set and F1, F2, C1, C2 : X × Y × Z ⇒ V . Consider the following variational relations:

r1,1(x, y, z) holds iff F1(x, y, z) ⊆ C1(x, y, z),
r1,2(x, y, z) holds iff F1(x, y, z) ∩ C1(x, y, z) ≠ ∅,

r2,1(x, y, z) holds iff F2(x, y, z) ⊆ C2(x, y, z),
r2,2(x, y, z) holds iff F2(x, y, z) ∩ C2(x, y, z) ≠ ∅.

Taking all possible combinations of r1 ∈ {r1,1, r1,2} and r2 ∈ {r2,1, r2,2} we obtain four systems of type (I) which may
have different practical meanings but may be mathematically treated in a similar manner. Though there is a large number
of papers in which each one or more of the corresponding problems I (i), I (ii), or particular forms thereof are studied (see
for instance [7–20], to our best knowledge there is no paper dealing with any one of the four systems above.

The paper is structured as follows. In the next section we study an auxiliary inclusion problem by using two
generalizations of KKM maps. The results of this section are then applied to establish existence criteria for Problem (I)
in Section 3. Section 4 is devoted to a particular problem described in Example 2 above for all possible combinations of
intersection and inclusion of set-valued maps. A weak version of Problem (I) is discussed in the final section.

2. Variational inclusions

In order to establish existence of solutions to problem (I), we consider the following auxiliary variational inclusion
problem. Let X and Y be topological spaces and let Q1, Q2, U : X ⇒ Y andW : Y ⇒ X be set-valued maps.

(VI) Find x̄ ∈ X such that
(i) x̄ ∈ W ◦ Q1(x̄)
(ii) Q2(x̄) ⊆ U(x̄).

This problem corresponds to a variational relation problem (VR) in which A = X , B = Y , S1 is replaced by W ◦ Q1, S2 = Q2,
T is absent, and for (x, y) ∈ X × Y the relation R(x, y) holds if and only if y ∈ U(x).

In [1,5] it has been shown that under a certain closedness hypothesis on the data, (VI) has a solution if and only if it is
finitely solvable, which means that for every finite subset D of Y , there is a point xD ∈ X such that for every y ∈ D, either
y ∉ Q2(xD), or xD is a fixed point of Q1 and y ∈ U(xD) (see Proposition 3.1 [1] and Theorem 3.1 [5]). In its turn, the finite
solvability of (VI) is closely related to the finite intersection property of the following map P : Y ⇒ X:

P(y) =

X \ Q−1

2 (y)

∪

Fix(W ◦ Q1) ∩ U−1(y)


, (1)

where Fix(W ◦ Q1) denotes the set of all fixed points of the map W ◦ Q1 on X and Q−1
2 (y) is the fiber of Q2 on y, that is

Q−1
2 (y) = {x ∈ X : y ∈ Q2(x)}. On the other hand the finite intersection property is guaranteed by a property of the

so-called KKM-maps.
In the classical sense a set-valued map Γ : Y ⇒ Y , where Y is a convex set in a topological vector space, is called KKM if

for every finite subset D of Y , its convex hull co(D) is contained in the image Γ (D). When Γ : Y ⇒ X , in which X and Y are
taken from spaces with different structure, a generalized KKM property comes in force and yields also the finite intersection
property of the family {cl(Γ (y)) : y ∈ Y } (here ‘‘cl’’ denotes the closure). Belowwe exploit two generalizations of KKMmaps
to derive existence of solutions to (VI), the first one belongs to Park [21] (see also [22,23]) and the second one seems to be
new and generalizes the concept of KKMmaps by Chang and Zhang [24].

Definition 1. Let Γ , W : Y ⇒ X be set valued maps. We say that
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(a) Γ is KKM with respect to W in the sense of Park (or W -KKM(a) for short) if for every finite subset D of Y , one has
W (co(D)) ⊆ Γ (D), in which case Y is assumed convex.

(b) Γ isW -KKM(b) if for every finite set {y1, . . . , yn} ⊆ Y , there exist xi ∈ W (yi) such that for every index set I ⊆ {1, . . . , n},
one has co{xi : i ∈ I} ⊆ Γ ({yi : i ∈ I}), in which case X is assumed convex.

We notice when X and Y coincide, KKM(a) maps with respect to the identity map are exactly KKM maps in the classical
sense. In a general setting when X and Y are distinct, the finite intersection property of the family {cl(Γ (y)) : y ∈ Y } is valid
(assuming Y topological space) provided that Γ isW -KKM(a) and thatW has certain additional properties. The mapW that
makes the family {cl(Γ (y)) : y ∈ Y } to have the finite intersection property whenever Γ is KKM(a) with respect to W is
said to have the KKM property.

On the other hand the generalized KKMmaps introduced by Chang and Zhang [24] correspond to the case (b) whenW is
the constant mapW (y) = X for every y ∈ Y . When X and Y coincide, every KKMmap in the classical sense isW -KKM in the
sense of (b) abovewithW being the identitymap on X . It is clear that whenW ′ is a submap ofW , then everyW ′-KKMmap is
W -KKM. Hence the concept of generalized KKMmaps by Chang and Zhang is the weakest. One of the remarkable properties
of generalized KKMmaps by Chang and Zhang is that when the intersections of Γ (y), y ∈ Y with finite dimensional spaces
are closed, a map is generalized KKM in the sense of Chang and Zhang if and only if the family {Γ (y) : y ∈ Y } has the finite
intersection property (Theorem3.1 [24]). For application purposes checkable sufficient conditions ofW -KKMmaps aremore
desired than the finite intersection property. Therefore,W -KKMmaps with specific mapsW such as listed in Proposition 4
will be of particular attention.

To proceed further we recall some continuity properties of set-valuedmaps. Assume that X and Y are topological spaces.
A set-valuedmapping Q : X ⇒ Y is said to be upper semicontinuous (respectively, lower semicontinuous) if for every x ∈ X
and for every open set B of Y with Q (x) ⊆ B (respectively, Q (x) ∩ B ≠ ∅) there is a neighborhood N of x such that Q (x′) ⊆ B
(respectively Q (x′) ∩ B ≠ ∅) for all x′

∈ N; and it is said to be closed if its graph is a closed subset of X × Y .
The following facts are known (see for instance [25]):

(i) If Q has compact values, then Q is upper semicontinuous if and only if for every net {xt} in X converging to x ∈ X and
for any net {yt} with yt ∈ Q (xt) there exist y ∈ Q (x) and a subnet {ytα } of {yt} converging to y.

(ii) Q is lower semicontinuous if and only if for any net {xt} in X converging to x ∈ X and each y ∈ Q (x) there exist a subnet
{xtα } of {xt} and a net {ytα } converging to ywith ytα ∈ Q (xtα ) for all α.

Let us present some conditions for Γ to be KKM with respect toW .

Proposition 3. The map Γ is W-KKM(a) if and only if for every x ∈ X, one has inclusion

co(Y \ Γ −1(x)) ⊆ Y \ W−1(x).

In particular, each of the following conditions is sufficient for Γ to be W-KKM(a):

(i) The map x → Y \ Γ −1(x) has convex values and W is a submap of Γ , that is, W (y) ⊆ Γ (y) for every y ∈ Y .
(ii) The map x → Y \ W−1(x) has convex values and W is a submap of Γ .

Proof. Assume that Γ is W -KKM. Let x ∈ X and y ∈ co(Y \ Γ −1(x)). There are y1, . . . , yn ∉ Γ −1(x) such that
y ∈ co{y1, . . . , yn}. Then x ∉

n
i=1 Γ (yi) and by the hypothesis, x does not belong to W (co{y1, . . . , yn}). In particular x

does not belong toW (y), and hence y ∈ Y \ W−1(x).
Conversely, assume co(Y \ Γ −1(x)) ⊆ Y \W−1(x) for all x ∈ X . Let y1, . . . , yn ∈ Y and y ∈ co{y1, . . . , yn}. Let x ∈ W (y).

We have to show that x belongs to Γ ({y1, . . . , yn}). Suppose to the contrary that this is not true. Then, for each index i,
x ∉ Γ (yi) which yields yi ∈ Y \ Γ −1(x). By the hypothesis y ∈ Y \ W−1(x), i.e. x ∉ W (y); a contradiction.

Further, under (i), for every x ∈ X one has W−1(x) ⊆ Γ −1(x), and therefore co(Y \ Γ −1(x)) = Y \ Γ −1
⊆ Y \ W−1(x).

By the first part, Γ is W -KKM. Under (ii) one has co(Y \ Γ −1(x)) ⊆ co(Y \ W−1(x)) = Y \ W−1(x) and yields the same
conclusion. �

Note that the conclusion under (i) was already presented in [26]. Regarding the KKM property let us summarize some
known sufficient conditions in the next proposition.

Proposition 4. Let X and Y be convex sets in topological vector spaces and let W : Y ⇒ X be a set-valued map with nonempty
values. Each of the following conditions is sufficient for W to have the KKM property:

(i) The closure of the image of every convex subset of Y under W is convex;
(ii) W has convex values and open fibers;
(iii) W is upper semicontinuous and has convex, compact values.

Proof. Sufficient condition (i) is Theorem 2.2 of [23]. The other conditions are found in [21]. �

The interested readers are referred to [21–23] for more details on the KKM property.
Now we are able to establish sufficient conditions for existence of solutions to (VI).



M. Balaj, D.T. Luc / Computers and Mathematics with Applications 60 (2010) 2712–2722 2715

Theorem 5. Assume that X is a topological space, Y is a nonempty convex subset of a topological vector space, and that the
following conditions hold:

(i) Fix(W ◦ Q1) is a compact set;
(ii) Q2 has nonempty values and open fibers, and X \ Q−1

2 (y) is compact for at least one y ∈ Y ;
(iii) co(Q2(x)) ⊆ Q1(x), for each x ∈ X;
(iv) U−1 is W-KKM(a) and its values are closed in X;
(v) W has the KKM property.

Then (VI) has solutions.

Proof. Consider the map P : Y ⇒ X defined by (1). We show that P is a W -KKM(a) map. Let {y1, . . . , yn} be a finite subset
of Y and x ∈ W (co{y1, . . . , yn}). If x ∈ Fix(W ◦ Q1), then since U−1 isW -KKM(a), one has

x ∈ Fix (W ◦ Q1) ∩


n

i=1

U−1(yi)


=

n
i=1


Fix(W ◦ Q1) ∩ U−1(yi)


⊆

n
i=1

P(yi).

If x ∈

X \ Fix(W ◦Q1)


∩Q−1

2 (yi), for all i ∈ {1, . . . , n}, then yi ∈ Q2(x) and by (iii), co{y1, . . . , yn} ⊆ co(Q2(x)) ⊆ Q1(x).
Thus, x ∈ W (co{y1, . . . , yn}) ⊆ W (Q1(x)); a contradiction. Hence P is a W -KKM(a) map. In view of (v), the family
{P(y) : y ∈ Y } has the finite intersection property. Since P has closed values and P(y) is compact for at least one y ∈ Y , by
(v), there exists x̄ ∈


y∈Y P(y). If x̄ ∉ Fix(W ◦Q1) it follows that x̄ ∈ X \Q−1

2 (y) for all y ∈ Y , which implies the contradiction
Q2(x̄) = ∅ (see (ii)). Hence x̄ ∈ Fix(W ◦ Q1). For each y ∈ Q2(x̄), i.e. x̄ ∉ X \ Q−

2 (y), since x̄ ∈ P(y), we have x̄ ∈ U−1(y), that
is y ∈ U(x̄). Thus Q2(x̄) ⊆ U(x̄). �

Remark 1. The compactness of the set Fix(W ◦ Q1) (condition (i) of the above theorem) is assured in each of the following
situations:

(i) X is compact, Q1 is upper semicontinuous with compact values andW is closed;
(ii) Y is compact, one of the mapsW and Q−1

1 is closed and the other is upper semicontinuous with compact values.

Proof. (i) Let {xt} be a net in Fix(W ◦Q1) converging to a point x. Then, there exists a net {yt} in Y such that yt ∈ Q1(xt) and
xt ∈ W (yt), for all t . Since Q1 is upper semicontinuous with compact values, there there exist y ∈ Q1(x) and a subnet
{ytα } of {yt} converging to y. W is closed, and so x ∈ W (y) ⊆ W (Q1(x)). Thus, Fix(W ◦ Q1) is a closed subset of the
compact X , hence it is compact too.

(ii) It is easy to see that the fixed point set of the map W ◦ Q1 coincides with the range of the map W ∩ Q−1
1 . Under the

given conditions the mapW ∩ Q−1
1 is upper semicontinuous with compact values (see [25, p.567]). Since Y is compact,

(W ∩ Q−1
1 )(Y ) is a compact set. �

When Y is not a convex set, using the concept ofW -KKM(b) maps, we may also establish existence of solutions to (VI).

Theorem 6. Assume that X is a nonempty convex subset of a topological vector space, Y is a topological space, and that the
following conditions hold:

(i) Fix(W ◦ Q1) is compact;
(ii) Q2 has nonempty values and open fibers, and X \ Q−1

2 (y) is compact for at least one y ∈ Y ;
(iii) co(W ◦ Q2(x)) ⊆ WQ1(x) for every x ∈ X;
(iv) U−1 is W-KKM(b) and has closed values.

Then (VI) has solutions.

Proof. We wish to show first that the map P defined by (1) is W -KKM(b). Let {y1, . . . , yn} be a finite set in Y . By (iv) there
are xi ∈ W (yi) such that for each subset of indices I ⊆ {1, . . . , n},

co{xi : i ∈ I} ⊆


i∈I

U−(yi). (2)

Let x be a point from the convex hull of {xi : i ∈ I}. We prove that (2) implies

x ∈


i∈I

P(yi). (3)

By (1) and (2) it follows that (3) holds when x ∈ Fix(W ◦Q1). If x ∈

X \Fix(W ◦Q1)


∩Q−1

2 (yi), for all i ∈ {1, . . . , n}, then
yi ∈ Q2(x) and by (iii), x ∈ co{xi : i ∈ I} ⊆ co(W ◦ Q2(x)) ⊆ WQ1(x); a contradiction. Thus P is W -KKM(b) and KKM in the
sense of Chang and Zhang as well. Consequently the family {P(y) : y ∈ Y } has the finite intersection property. Moreover, it
follows from the hypothesis that P has closed values and at least one compact value. Hence the family {P(y) : y ∈ Y } has
some point x̄ in common. Using the argument of proof of Theorem 5 we conclude that x̄ is a solution of (VI). �
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We close up this section by the remark that if X is a convex subset of a locally convex space, Theorems 5 and 6 remain
true if the hypothesis on open fibers of Q2 is replaced by its lower semi-continuity. The proof is based on the method of
enlargement given in Corollary 4.1 of [1].Moreover, conditions that assure the closedness of the values P(y) can beweakened
to the so-called intersectional closedness recently developed in [5]. To keep the presentation as clear as possible we skip
these details from our consideration.

3. Existence of solutions to simultaneous variational relations

In this section we wish to apply the existence conditions of solutions of variational inclusion problems to the model (I).
To this end we need some concepts of convexity and closedness for variational relations.

Let r be a relation linking elements x ∈ X , y ∈ Y and z ∈ Z . When X , Y and Z are convex sets from vector spaces,
the relation r is said to be convex if whenever r(xi, yi, zi) holds for xi ∈ X , yi ∈ Y and zi ∈ Z , i = 1, 2, the relation
r(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2, λz1 + (1 − λ)z2) is satisfied for all λ ∈ [0, 1]. In other words, r is convex if the set
determining it is convex in the product space X × Y × Z .

When X , Y and Z are topological spaces, r is said to be closed if the set determining it is closed in the product space
X × Y × Z; and it is said to be closed in the variables x, z if for every y ∈ Y fixed, r(x, y, z) holds whenever r(xt , y, zt) holds
for all t with (xt , zt) converging to (x, z). The complement of r is denoted by rc , that is rc(x, y, z) holds if and only if r(x, y, z)
does not hold.

The concept of KKMmaps with respect to a set-valued map can be defined for relations as follows.

Definition 2. Let X be a nonempty set, Y and Z convex sets in vector spaces. Let r1 and r2 be two relations linking elements
x ∈ X , y ∈ Y and z ∈ Z . We say that r2 is r1-KKM in the variables y, z if for every x ∈ X and each nonempty finite subset
A = {(y1, z1), . . . , (yn, zn)} of Y × Z the following implication holds:

(y, z) ∈ coA and r1(x, y, z) holds H⇒ r2(x, yi, zi) holds for some (yi, zi) ∈ A.

It can be seen that r2 is r1-KKM if and only if the map F2 is F1-KKM(a), where F1, F2 : Y × Z ⇒ X are defined by

F1(y, z) = {x ∈ X : r1(x, y, z) holds}
F2(y, z) = {x ∈ X : r2(x, y, z) holds}.

A generalization of convexity will also be needed in our study.

Definition 3. Let Y and Z be convex sets in two vector spaces and P1, P2 : Y ⇒ Z . We say that P1 is P2-convex if for any finite
subset {y1, . . . yn} of Y and λ1, . . . , λn > 0 with

∑n
i=1 λi = 1 one has

n−
i=1

λiP2(yi) ⊆ P1


n−

i=1

λiyi


.

When the inclusion ‘‘⊆’’ is replaced by the containment ‘‘⊇’’, the set-valued mapping P1 is said to be P2-concave.

It is clear that when P1 = P2 the two concepts above reduce to the well-known convex and concave set-valued maps.
Moreover, a necessary condition for P1 to be P2-convex is evidently that

P2(y) ⊆ P1(y) for all y ∈ Y .

Here is a sufficient condition. Assume that there is a convex set-valued map P : Y ⇒ Z such that

P2(y) ⊆ P(y) ⊆ P1(y) for all y ∈ Y .

Then P1 is P2-convex. Definition 3 itself is expressively for set-valued maps. It is not interesting for single-valued maps
because inclusion becomes equality. But for them associated set-valuedmaps by epigraph do deserve attention. For instance
when Z = R and f is a real function onY , its associated set-valuedmap is defined by F(y) = f (y)+R+, whose graph coincides
with the epigraph of f . Then the map F is F-convex in the sense of Definition 3 if and only if f is convex in the usual sense.

To formulate and prove the main results of this section we define the set-valued maps U : X ⇒ Y and W : Y ⇒ X by

U(y) = {y ∈ Y : r2(x, y, z) holds for all z ∈ P2(x, y)}
W (y) = {x ∈ X : r1(x, y, z) holds for all z ∈ P1(x, y)}.

In the lemma below we present sufficient conditions for the mapW to have the KKM property.

Lemma 7. Assume that X is a convex set and that for every y ∈ Y there exists some x ∈ X such that r1(x, y, z) holds for all
z ∈ P1(x, y). Then each of the following conditions is sufficient for the map W to have the KKM property.

(i) P1 is concave, r1 is convex;
(ii) P1 is concave in x and upper semi-continuous with compact values, r1 is convex in x, z and open in y, z, in the sense that

when r1(x, y, z) holds, there is a neighborhood V of (y, z) in Y × Z such that r1(x, y′, z ′) holds for all (y′, z ′) ∈ V ;
(iii) X is assumed compact, P1 is concave in x and lower semicontinuous, r1 is convex in x, z and closed.
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Proof. By hypothesis, W has nonempty values. We show that under (i) the set W (C) is convex whenever C ⊆ Y is convex.
Indeed, let x1, x2 ∈ W (C) and x = λx1 + (1 − λ)x2 for some λ ∈ [0, 1]. Let y1, y2 ∈ C such that xi ∈ W (yi), i = 1, 2, which
means that r1(xi, yi, zi) holds for all zi ∈ P1(xi, yi). Set y = λy1 + (1 − λ)y2 and consider P1(x, y). Since P1 is concave, for
every z ∈ P1(x, y) there are zi ∈ P1(xi, yi), i = 1, 2 such that z = λz1 + (1 − λ)z2. Furthermore, as r1(xi, yi, zi), i = 1, 2 are
true, by the convexity of r1, r1(x, y, z) holds too. Thus, x ∈ W (y) ⊆ W (C) as requested. By Proposition 4(i), W has the KKM
property.

Under (ii) themapW has convex values and open fibers. Under (iii) themapW has convex values and is closed. Since X is
compact, it is upper semicontinuous. In view of Proposition 4, under these conditions themapW has the KKM property. �

We are now in position to prove the main result of the present paper.

Theorem 8. Assume that X is a topological space, Y , Z are convex sets in two topological vector spaces and that the data of the
problem (I) satisfy the following conditions:

(i) P1 is P2-convex in the variable y and P2 is lower semicontinuous in x;
(ii) Q2 has nonempty values and open fibers, and X \ Q−1

2 (y) is compact for some y ∈ Y ;
(iii) co(Q2(x)) ⊆ Q1(x) for all x ∈ X;
(iv) r2(x, y, z) is r1-KKM in the variables y, z and closed in the variables x, z;
(v) W has the KKM property, which can be guaranteed by any of the conditions of Lemma 7 and the range of the mapW ∩Q−1

1
is compact.

Then the problem (I) has solutions.

Proof. We wish to apply Theorem 5 to obtain a solution of (VI) for W and U defined in this section. The first hypothesis of
this theorem is satisfied because the range of the map W ∩ Q−1

1 is exactly the fixed point set of the map W ◦ Q1. To see
that U−1 is W -KKM(a), let y1, . . . , yn ∈ Y and let x ∈ W (co{y1, . . . , yn}), say x ∈ W (y) where y =

∑n
i=1 λiyi with ti > 0

and
∑n

i=1 λi = 1. Suppose to the contrary that x ∉
n

i=1 U
−1(yi). Then for each i ∈ {1, . . . , n} there exists zi ∈ P2(x, yi)

such that r2(x, yi, zi) does not hold. Set z =
∑n

i=1 λizi. By (iv), r1(x, y, z) does not hold. Moreover, since P1 is P2-convex in y,
z ∈

∑n
i=1 λiP2(x, yi) ⊆ P1(x, y). It follows that x ∉ W (y), a contradiction.

To see that U−1 has closed values, for y ∈ Y , let {xt} be a net in U−1(y) converging to some x ∈ X . For each z ∈ P2(x, y),
since P(·, y) is lower semicontinuous there is a subnet {xtα } of {xt} and a net {ztα } converging to z such that ztα ∈ P2(xtα , y).
Since r2(xtα , y, ztα ) holds for all tα , in view of (iv), r2(x, y, z) is satisfied, hence x ∈ U−1(y). Thus U−1(y) is closed in X .

Now, by Theorem 5 there is a solution x̄ of (VI). By the definition ofW , inclusion x̄ ∈ W (Q1(x̄)) shows that r1(x̄, ȳ, z) holds
for some ȳ ∈ Q1(x̄) and for all z ∈ P1(x̄, ȳ), while the inclusion Q2(x̄) ⊆ U(x̄) shows that r1(x̄, y, z) holds for all y ∈ Q2(x̄)
and z ∈ P2(x̄, y). The proof is complete. �

When X is a compact space the condition that Q2 has open fibers implies that X \ Q−1
2 (y) is compact. In the same case,

the range of W ∩ Q−1
1 is compact whenever P1 is lower semicontinuous, Q1 is upper semicontinuous with compact values

and r1 is closed.
Theorem 6 can also be applied to deduce existence of solutions to (I).

Theorem 9. Assume that X, Y and Z are convex sets of topological vector spaces, and that the data of the problem (I) satisfy the
following conditions:

(i) P1 is P2-convex in y and concave, P2 is lower semicontinuous in x;
(ii) Q2 has nonempty values and open fibers, and X \ Q−1

2 (y) is compact for some y ∈ Y ;
(iii) coQ2(x) ⊆ Q1(x) for all x ∈ X;
(iv) r1 is convex, r2 is r1-KKM in the variables y, z and closed in the variables x, z;
(v) the range of the map W ∩ Q−1

1 is compact.

Then the problem (I) has solutions.

Proof. We wish apply Theorem 6 to obtain a solution to (VI). Condition (i) of Theorem 6 and the fact that U−1 has closed
values are proven by the same arguments as in the proof of Theorem 8. To see that U−1 is W -KKM(b) we suppose to the
contrary that there are some y1, . . . , yn ∈ Y such that for all xi ∈ W (yi) one can find an index set I ⊆ {1, . . . , n} and xI ∈

co{xi : i ∈ I}, say xI =
∑

i∈I λixi (λi ≥ 0 and
∑

i∈I λi = 1), with xI ∉ U−1(yi) for all i ∈ I . Since xI ∉ U−1(yi), for some
zi ∈ P2(xI , yi), r2(xI , yi, zi) does not hold. Set yI =

∑
i∈I λiyi and zI =

∑
i∈I λizi. Then, since r2 is r1-KKM, r1(xI , yI , zI) does

not hold. Notice that zI belongs to P1(xI , yI) because P1 is P2-convex in y. On the other hand, as P1 is concave, zI belongs to∑
i∈I λiP1(xi, yi), say zI =

∑
i∈I λiwi for some wi ∈ P1(xi, yi), i ∈ I . Moreover, r1(xi, yi, wi) being true one deduces from (iv)

that r1(xI , yI , zI) holds, which is a contradiction.
To see condition (iii) of Theorem 6 let x ∈ X and x′

=
∑n

i=1 λixi (λi ≥ 0,
∑n

i=1 λi = 1) with xi ∈ W (yi) and
yi ∈ Q2(x), i = 1, . . . , n. Set y =

∑n
i=1 λiyi. By (iii), y belongs to Q1(x). For every z ∈ P1(x′, y), by the concavity of P1,

there are zi ∈ P1(xi, yi) such that z =
∑n

i=1 λizi. Then for each i ∈ {1, . . . , n} r1(xi, yi, zi) holds which implies that r1(x′, y, z)
holds too. By this, x′ belongs to W ◦ Q1(x) as requested. Now we apply Theorem 6 to obtain a solution of (VI), which is also
a solution of (I) by the same argument of the proof of Theorem 8. �
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4. Particular cases

Throughout this section X , Y , Z and V are nonempty convex sets in topological vector spaces and Q1,Q2 : X ⇒ Y ,
P1, P2 : X × Y ⇒ Z , F1, F2, C1, C2 : X × Y × Z ⇒ V , are set-valued mappings. As applications of the results of Section 3, we
derive existence theorems of solutions for the problems considered in Example 2 in the first section of the paper. Theorem 8
is solicited in our proofs, but a similar application can be done with Theorem 9 as well. Example 1 is a particular case of
Example 2, and so the results established in this section are applicable to it too. It is clear that the concept of convexity
of Definition 3 can be extended to maps with several variables. For instance F1 is F2-convex in the variables y, z if for
any nonempty finite set {(y1, z1), . . . , (yn, zn)} ⊆ Y × Z and each convex combination (y, z) =

∑n
i=1 λi(yi, zi) (λi ≥ 0,∑n

i=1 λi = 1)

n−
i=1

λiF2(x, yi, zi) ⊆ F1


x,

n−
i=1

λiyi,
n−

i=1

λizi


for all x ∈ X .

When the inclusion ‘‘⊆’’ is replaced by the containment ‘‘⊇’’, the set-valued mapping F1 is said to be F2-concave in the
variables y, z.

Corollary 10. Suppose that:

(i) {x ∈ X : ∃y ∈ Q1(x) such that F1(x, y, z) ⊆ C1(x, y, z) for all z ∈ P1(x, y)} is compact;
(ii) Q2 has nonempty values and open fibers and X \ Q−1

2 (y) is compact for at least one y ∈ Y ;
(iii) coQ2(x) ⊆ Q1(x) for all x ∈ X;
(iv) for each y ∈ Y there exists x ∈ X such that F1(x, y, z) ⊆ C1(x, y, z) for all z ∈ P1(x, y);
(v) P1 is concave and P2-convex in y;
(vi) F1 is concave and F2-convex in the variables y, z;
(vii) C1 is convex and C

c

1 is C
c

2 -convex in the variables y, z (C
c

i being the map from X × Y × Z into V defined by C
c

i (x, y, z) =

V \ Ci(x, y, z));
(viii) for each y ∈ Y , P2(·, y) and F2(·, y, ·) are lower semicontinuous and C2(·, y, ·) is closed.

Then there exists x̄ ∈ X satisfying
(1) F1(x̄, ȳ, z̄) ⊆ C1(x̄, ȳ, z̄) for some ȳ ∈ Q1(x̄) and for all z̄ ∈ P1(x̄, ȳ)
(2) F2(x̄, y, z) ⊆ C2(x̄, y, z) for all y ∈ Q2(x̄) and z ∈ P2(x̄, y).

Proof. Apply Theorem 8 when the relations r1 and r2 are defined as follows:

r1(x, y, z) holds iff F1(x, y, z) ⊆ C1(x, y, z), and
r2(x, y, z) holds iff F2(x, y, z) ⊆ C2(x, y, z).

We show that r2 is r1-KKM in the variables y, z. If not, there exist x ∈ X , A = {(y1, z1), . . . , (yn, zn)} ⊆ Y ×Z and a convex
combination (y, z) =

∑n
i=1 λi(yi, zi) (λi ≥ 0,

∑n
i=1 λi = 1) such that r1(x, y, z) holds and r2(x, yi, zi) does not hold for all

(yi, zi) ∈ A. This means that F1(x, y, z) ⊆ C1(x, y, z) and for each i ∈ {1, . . . , n} there exists vi ∈ F2(x, yi, zi) ∩ C
c

2 (x, yi, zi).
By (vi) and (vii) we infer that

∑n
i=1 λivi ∈

∑n
i=1 λiF2(x, yi, zi)


∩
∑n

i=1 λiC
c

2 (x, yi, zi)


⊆ F1(x, y, z) ∩ C
c

1 (x, y, z); a
contradiction.

We prove that the relation r2 is closed in the variables x, z. Let y ∈ Y and {(xt , zt)} a net in X × Z converging to (x, z),
such that F2(xt , y, zt) ⊆ C2(xt , y, zt) for all t . If v ∈ F2(x, y, z), since F2(·, y, ·) is l.s.c., there exists a subnet {(xtα , ztα )} of
{(xt , zt)} and a net {vtα } converging to v such that vtα ∈ F2(xtα , y, ztα ). Then vtα ∈ C2(xtα , y, ztα ) and, since C2(·, y, ·) is
closed, v ∈ C(x, y, z). Thus F2(x, y, z) ⊆ C2(x, y, z), hence r2 is closed in the variables x, z.

If r1(xi, yi, zi) holds, that is F1(xiyi, zi) ⊆ C1(xiyi, zi) for i = 1, 2, since F1 is concave and C1 is convex, for any λ ∈ [0, 1]
we have

F1 (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2, λz1 + (1 − λ)z2)
⊆ λF1(x1, y1, z1) + (1 − λ)F1(x2, y2, z2) ⊆ λC1(x1, y1, z1) + (1 − λ)C1(x2, y2, z2)
⊆ C1(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2, λz1 + (1 − λ)z2).

Thus, r1(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2, λz1 + (1 − λ)z2) is satisfied. Hence r1 is convex and by Lemma 7(i), the
set-valued mapping W in Theorem 8 has the KKM property. Therefore, all the requirements of Theorem 8 are fulfilled and
the desired conclusion follows from this theorem. �

Example 11. Let X = Y = Z = [0, 3), V = R,
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Q1(x) = Q2(x) =


[0, x + 2) if x ∈ [0, 1),
(x − 1, 3) if x ∈ [1, 3),

F1(x, y, z) =


−∞,


2x +

y − z
3

2

+ 1

, F2(x, y, z) =


−∞, 4x +

2(y − z)
3


,

C1(x, y, z) =


−∞, 3 −


2x +

y − z
3

2
, C2(x, y, z) = (−∞, 3],

P1(x, y) = [0, y], P2(x, y) = [0,min{x, y}].

Simple calculations show that

Q−1
2 (y) =


(0, y + 1) if y ∈ [0, 2)
(y − 2, 3) if y ∈ [2, 3),

hence Q−1
2 (y) is open (in X), for each y ∈ [0, 3). Notice also that {x ∈ [0, 3) : ∃y ∈ Q1(x) such that F1(x, y, z) ⊆ C1(x, y, z)

for all z ∈ P1(x, y)} = [0, 1
2 ].

One can readily see that all requirements of Corollary 10 are satisfied. By direct checking one can see that any x̄ ∈ [0, 5
14 ]

satisfy the conclusion of Corollary 10.

Corollary 12. Suppose that:

(i) {x ∈ X : ∃y ∈ Q1(x) such that F1(x, y, z) ∩ C1(x, y, z) ≠ ∅ for all z ∈ P1(x, y)} is compact;
(ii) Q2 has nonempty values and open fibers, and X \ Q−

2 (y) is compact for at least one y ∈ Y ;
(iii) coQ2(x) ⊆ Q1(x) for all x ∈ X;
(iv) for each y ∈ Y there exists x ∈ X such that F1(x, y, z) ∩ C1(x, y, z) ≠ ∅ for all z ∈ P1(x, y);
(v) P1 is concave and P2-convex in y;
(vi) F1 is convex and F2-concave in the variables y, z;
(vii) C1 is convex and C

c

1 is C
c

2 -convex in the variables y, z;
(viii) for each y ∈ Y , P2(·, y) is lower semicontinuous and one of the set-valued mappings F2(·, y, ·) and C2(·, y, ·) is upper

semicontinuous with compact values and the other is closed.

Then there exists x̄ ∈ X satisfying
(1) F1(x̄, ȳ, z̄) ∩ C1(x̄, ȳ, z̄) ≠ ∅ for some ȳ ∈ Q1(x̄) and for all z ∈ P1(x̄, ȳ); and
(2) F2(x̄, y, z) ∩ C1(x̄, y, z) ≠ ∅ for all y ∈ Q2(x̄) and z ∈ P2(x̄, y).

Proof. Take the variational relations r1 and r2 defined as follows:

r1(x, y, z) holds iff F1(x, y, z) ∩ C1(x, y, z) ≠ ∅ and
r2(x, y, z) holds iff F2(x, y, z) ∩ C2(x, y, z) ≠ ∅.

We claim that r2 is r1-KKM in the variables y, z. If not, there exist x ∈ X , A = {(y1, z1), . . . , (yn, zn)} ⊆ Y × Z and a
convex combination (y, z) =

∑n
i=1 λi(yi, zi) (λi ≥ 0,

∑n
i=1 λi = 1) such that r1(x, y, z) holds and r2(x, yi, zi) does not hold

for all (yi, zi) ∈ A. This means that F1(x, y, z) ∩ C1(x, y, z) ≠ ∅ and F2(x, yi, zi) ⊆ C
c

2 (x, yi, zi), i = 1, . . . , n. By (vi) and (vii)
we have

F1(x, y, z) ⊆

n−
i=1

λiF2(x, yi, zi) ⊆

n−
i=1

λiC
c

2 (x, yi, zi) ⊆ C
c

1 (x, y, z),

which contradicts F1(x, y, z) ∩ C1(x, y, z) ≠ ∅.
We show that the relation r2 is closed in the variables x, z. Let y ∈ Y and {(xt , zt)} a net in X × Z converging to (x, z),

such that for each t there exists vt ∈ F2(xt , y, zt) ∩ C2(xt , y, zt). Suppose that F2(·, y, ·) is upper semcontinuous with
compact values and C2(·, y, ·) is closed. Then there exists v ∈ F2(x, y, z) and a subnet {vtα } of {vt} converging to v. Since
vtα ∈ C2(xtα , y, ztα ) and C2(·, y, ·) is closed, it follows that v ∈ C2(x, y, z). Thus v ∈ F2(x, y, z) ∩ C2(x, y, z), hence r is closed
in the variables x, z.

If r1(xi, yi, zi) holds, that is there exists vi ∈ F1(xi, yi, zi) ∩ C1(xi, yi, zi) for i = 1, 2, then for any λ ∈ [0, 1] we have

λv1 + (1 − λ)v2 ∈

λF1(x1, y1, z1) + (1 − λ)F1(x2, y2, z2)


∩

λC1(x1, y1, z1) + (1 − λ)C1(x2, y2, z2)


⊆ F1(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2, λz1 + (1 − λ)z2) ∩ C1(λx1 + (1 − λ)x2, λy1

+ (1 − λ)y2, λz1 + (1 − λ)z2).

Hence r1 is convex and, according to Lemma 7(i), the set-valued mapping W in Theorem 8 has the KKM property. It
remains to apply Theorem 8 to obtain the conclusion. �
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Corollary 13. Suppose that:
(i) {x ∈ X : ∃y ∈ Q1(x) such that F1(x, y, z) ⊆ C1(x, y, z) for all z ∈ P1(x, y)} is compact;
(ii) Q2 has nonempty values and open fibers, and X \ Q

−1
2 (y) is compact for at least one y ∈ Y ;

(iii) coQ2(x) ⊆ Q1(x) for all x ∈ X;
(iv) for each y ∈ Y there exists x ∈ X such that F1(x, y, z) ⊆ C1(x, y, z) for all z ∈ P1(x, y);
(v) P1 is concave and P2-convex in y;
(vi) F1 is concave, F

c

2 is convex and F1(x, y, z) ∩ F2(x, y, z) ≠ ∅ for all (x, y, z) ∈ X × Y × Z;
(vii) C1 is C2-concave in the variables y, z;
(viii) for each y ∈ Y , P2(·, y) is lower semicontinuous and one of the set-valued mappings F2(·, y, ·) and C2(·, y, ·) is upper

semicontinuous with compact values and the other is closed.

Then there exists x̄ ∈ X satisfying
(1) F1(x̄, ȳ, z̄) ⊆ C1(x̄, ȳ, z̄) for some ȳ ∈ Q1(x̄) and for all z̄ ∈ P1(x̄, ȳ); and
(2) F2(x̄, y, z) ∩ C2(x̄, y, z) ≠ ∅ for all y ∈ Q2(x̄), and z ∈ P2(x̄, y).

Proof. Apply Theorem 8 when the relations r1 and r2 are given by

r1(x, y, z) holds iff F1(x, y, z) ⊆ C1(x, y, z) and
r2(x, y, z) holds iff F2(x, y, z) ∩ C2(x, y, z) ≠ ∅.

We claim that r2 is r1-KKM(a) in the variables y, z. If not, there exist x ∈ X , A = {(y1, z1), . . . , (yn, zn)} ⊆ Y × Z and a
convex combination (y, z) =

∑n
i=1 λi(yi, zi) (λi ≥ 0,

∑n
i=1 λi = 1) such that r1(x, y, z) holds and r2(x, yi, zi) does not hold

for all (yi, zi) ∈ A. This means that F1(x, y, z) ⊆ C1(x, y, z) and C2(x, yi, zi) ⊆ F
c

2 (x, yi, zi), i = 1, . . . , n. Taking into account
(vi) and (vii) we obtain:

F1(x, y, z) ⊆ C1(x, y, z) ⊆

n−
i=1

λiC2(x, yi, zi) ⊆

n−
i=1

λiF
c

2 (x, yi, zi) ⊆ F
c

2 (x, y, z).

It follows that F1(x, y, z)∩ F2(x, y, z) = ∅, which contradicts the last part of (vi). From the proof of Corollary 12 it follows
that the relation r is closed in the variables x, z and from the proof of Corollary 10 we get that the set-valued mappingW in
Theorem 8 has the KKM property. From Theorem 8 we get the conclusion. �

Condition (i) in each of Corollaries Corollaries 10, 12 and 13 becomes superfluous when the convex set X is compact, the
maps P1, Q1 satisfy some conditions of continuity and the relation r1 is closed. In its turn, the closedness of r1 is assured
when F1 and C1 are closed.

5. A weak mixed variational relation problem

Another kind of mixed variational relation problem which is weaker than (I) is also worthwhile to be studied. It is
formulated below.

(II) Find x̄ ∈ X such that
(i) r1(x̄, ȳ, z̄) holds for some ȳ ∈ Q1(x̄) and some z̄ ∈ P1(x̄, ȳ)
(ii) r2(x̄, y, z) holds for all y ∈ Q2(x̄), and some z ∈ P2(x̄, y).

To establish existence conditions for this problem we apply the same technique of Problem (I). Namely we shall apply
Theorems 5 and 6 to the modified maps U : X ⇒ Y and W : Y ⇒ X defined by

U(y) = {y ∈ Y : r2(x, y, z) holds for some z ∈ P2(x, y)}
W (y) = {x ∈ X : r1(x, y, z) holds for some z ∈ P1(x, y)}.

Theorem 14. Assume that X is a topological space, Y , Z are convex sets and that the data of the problem (II) satisfy the following
conditions:

(i) P1 is P2-concave in the variable y and P2 is compact-valued, upper semicontinuous in the variable x;
(ii) Q2 has nonempty values and open fibers, and X \ Q−1

2 (y) compact for some y ∈ Y ;
(iii) coQ2(x) ⊆ Q1(x) for all x ∈ X;
(iv) r2(x, y, z) is r1-KKM in the variables y, z and closed in the variables x, z;
(v) W has the KKM property and the range of the map W ∩ Q−1

1 is compact.

Then the problem (II) has solutions.

Proof. The desired conclusion follows from Theorem 5 as soon as we prove that condition (iv) of that theorem is fulfilled.
For y ∈ Y , let {xt} be a net in U−1(y) converging to x ∈ X . Then, for each t there exists zt ∈ P2(xt , y) such that r2(xt , y, zt)
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holds. Since P2(·, y) is u..c with compact values, there exists z ∈ P2(x, y) and a subnet {ztα } of {zt} such that ztα −→ z. Since
the relation r2 is closed in x, z, it follows that r2(x, y, z) holds, hence x ∈ U−1(y). Thus U−1(y) is closed in X . To see that U−1

is W -KKM(a) let {y1, . . . , yn} be a finite subset of Y and x ∈ W (co{y1, . . . , yn}). Then x ∈ W (y), for some y =
∑n

i=1 λiyi
with λi ≥ 0 and

∑n
i=1 λi = 1. Suppose that x ∉

n
i=1 U

−1(yi). Then, there exists z ∈ P1(x, y) such that r1(x, y, z) holds and
for each i ∈ {1, . . . , n}, r2(x, yi, zi) does not hold for all zi ∈ P2(x, yi). In view of (i), z ∈ P1(x,

∑n
i=1 λiyi) ⊆

∑n
i=1 λiP2(x, yi),

hence there exist zi ∈ P2(x, yi), i = 1, . . . , n, such that z =
∑n

i=1 λizi. Since r2(x, y, z) is r1-KKM in the variables y, z, it
follows that r1(x, y, z) does not hold, a contradiction. �

We deduce next an existence result for the solutions of problem (II) when the relations r1 and r2 are defined as in
Example 1 in the first section of the paper.

Corollary 15. Let G1,G2 : X × Y ⇒ Z. Suppose that:

(i) {x ∈ X : ∃y ∈ Q1(x) such that P1(x, y) ∩ G1(x, y) ≠ ∅} is compact;
(ii) Q2 has nonempty values and open fibers, and X \ Q−

2 (y) is compact for at least one y ∈ Y ;
(iii) coQ2(x) ⊆ Q1(x) for all x ∈ X;
(iv) for each y ∈ Y there exists x ∈ X such that P1(x, y) ∩ G1(x, y) ≠ ∅;
(v) P1 is convex and P2-concave in y;
(vi) G1 is convex and G

c

1 is G
c

2 convex in y;
(vii) for each y ∈ Y , P2(·, y) is u.s.c. with compact values and G2(·, y) is closed.

Then there exists x̄ ∈ X satisfying
(1) P1(x̄, ȳ) ∩ G1(x̄, ȳ) ≠ ∅ for some ȳ ∈ Q1(x̄)
(2) P2(x̄, y) ∩ G2(x̄, y) ≠ ∅ for all y ∈ Q2(x̄).

Proof. It is a direct application of Theorem 14 when r1 and r2 are defined as follows:

r1(x, y, z) holds iff z ∈ G1(x, y), and
r2(x, y, z) holds iff z ∈ G2(x, y). �

Here is a numerical example to illustrate the above corollary.

Example 16. Let X = Y = (0, 4], Z = R,

Q1(x) = Q2(x) =


(x, x + 2) if x ∈ (0, 2] ,
[2, 4) if x = 2,
[2, 4] if x ∈ (2, 4) ,
(2, 4] if x = 4,

P1(x, y) =

ey−x, +∞


, P2(x, y) = [0, +∞) ,

G1(x, y) = (−∞, y − x + 1] , G2(x, y) =


−∞, y − x +

4
3

]
.

Direct calculation gives

Q−1
2 (y) =


(0, y) if y ∈ (0, 2)
(0, 4) if y = 2,
(y − 2, 4) if y ∈ (2, 4),
(2, 4] if y = 4,

hence Q−

2 (y) is open (in X), for each y ∈ (0, 4]. Note that P1(x, y) ∩ G1(x, y) ≠ ∅ iff x = y and, consequently,
{x ∈ X : ∃y ∈ Q1(x) such that P1(x, y) ∩ G1(x, y) ≠ ∅} = [2, 4].

One can readily verify that all requirements of Corollary 15 are satisfied. By direct checking one can see that any
x̄ ∈ [2, 10

3 ] satisfy the conclusion of Corollary 15.

Corollaries 10, 12 and 13 can be extended to the weak version of the problem given in Example 2. The method is the
same as for Example 1 and we leave it to the interested readers.
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