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Cracks of Unequal Length at the Edge of An 
Elliptic Hole in Out of Plane Shear 

J. TWEED, G. MELROSE 

Old Dominion University 

Abstract. Integral transforms are used to find mode III stress intensity factors for two unequal 
length cracks at the edge of an elliptic hole in an infinite claPtic solid. 

1. INTROJ~UCT~~N 

The problem we wish to discuss is that of finding the stress intensity factors for two cracks 
of unequal length at the edge of an elliptic hole in an infinite elastic solid which is subject 
to out of plane shear. 

In Cartesian coordinates (x, y) the ellipse is given by the equation 

(1.1) 

and the cracks by the relations -br < x 5 -c, y = 0 and c 5 x 5 bs, y = 0 respectively. 
The cracks and the hole are assumed to be traction free while the solid is subject to a uniform 
out of plane shear load uvz = T. We solve the problem for the case in which c > h. The case 
h > c can be dealt with in a similar fashion and leads to exactly the same expressions for 
the stress intensity factors. 

2. STATEMENT AND SOLUTION OF THE PROBLEM 

If we define elliptic coordinates (<, q) by 

x = Rchccosq , y= Rshfsinq (2.1) 

where f 1 0, 0 < ‘1 < 2n and R = (c’ - h2)‘i2, our ellipse becomes the coordinate line 

f=r = ch”(c/R), 0 5 17 < 2n and our solution takes the form 

UZ = y [sh f sin II + 4(f) cd (2.2) 

Q.9 = $[chfsint)+ $1 (2.3) 

(2.4) 

where 

K = (ch2f - cos’ v)I’~ (2.5) 

and $(f, q) is harmonic. 
By symmetry we need only find a harmonic function 4(<, 7) in the strip y < 6 < 00, 

0 < rj < A satisfying: 
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1. 

2. 

3. 

4(&V) + 0 as<-+oo. 

$7, ‘I) = -chysinn 

$$<, (2 - n)7r] = (-)“-lsh[ 

4[& (2 - 44 = 0 

where p,, = ch”(b,/R), n = 1,2. 

On introducing new variables X = .$ - 7, Y = V, B,, = A - 7, $(X,Y) = $([,q) we 

obtain an equivalent problem: 

P.D.E. 
as+ as* 
-+dya=O ax2 I o<x<co, O<Y<n 

B.C. 1. $(X,Y) - 0 asx --+ 60. 

2. $(O,Y) = -chysinY , O<Y<n 

3. g[X, (2 - r+r] = (-)“-‘sh(X + 7) , O<X<B, 

$[X, (2 - r+r] = 0 , B, < X < co. 
whose solution is clearly given by 

$qX,Y) = Fe 
Rl(p)shpY + fizb)sh~(a - y, ; p _ x 

pshpr pshpx I 

+ chyesx sinY 

provided RI(p) and as(p) satisfy the simultaneous dual integral equations 

Fr(X) = F&?r(p)cthpn- R2(p)cschpn;X] = eychX, 0 < X < BI 

F2(X) = Fc[n2(p) cthpn - %(p)cschpr;X] = e’chX, 0 < X < B2 

G1(X) = F,lp-‘S221(p);X] = 0 , BI < X < 00 

G2(X) = F&I-‘S&(p);X] = 0 , B2 < X < 00 

involving the Fourier Cosine Transform (Sneddon [l]). 

Let 

Q,(p) = 3 oB.p.(t)sinptdt, 
SJ 

n= 1,2 

then, in terms of the Heaviside function H(X), 

B, 
G,(X) = H(B, - X) 

J 
p,Jt)dt, n = 1,2 

X 

Additionally, 

Fr(X) = 
Qzz(P) cthpx - - 

P 
csch px; X 1 

1 Ba sh t p2(t)dt 
=- 

J 

B1 shtpI(t)dt 1 

A 0 cht-chX -F o J cht+chX 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

where we have made use of integrals 4.116.3 and 4.121.2 on pages 516- 517 of Gradshteyn 
and Ryzhik [2]. A similar expression holds for Fs(z) and therefore pi(t) and pz(t) must 
satisfy the singular integral equations 
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1 

-I 

B1 shtPl(W 1 -- 
J cht-chX K o 

El shtP&)dt = c7chX, 0 < X < B1 

= 0 cht + chX 

1 

-I 

El shtp,(t)dt 1 

A 0 cht+chX -?r o J 
‘a shtp2(t)dt = -eych X, 

cht - chX 
0 < X < & 

(2.11) 

with subsidiary conditions 

PI(O) = Pz(O) = 0 (2.12) 

Let 7 = cht, u =chX,6 = chBl, e= ch B2, pi(t) = ql(-r) and pz(t) = 42(r). Define 

1 a(r) I 

q(r) = 42(T) 
--6<r<-1 

, l<r<c 1 

and let L denote the set (-6, -1) U (1,~) then (2.11) yields 

1 

I 
‘(‘) dr = eyv -- > UcL 

lr LT_-b 

and (2.12) 

q(-1) = q(1) = 0 

It is now readily shown ([3], [4], [5]) that 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

where 

+> = J”w , reL, (2.17) 

and hence that 

(2.18) 

Therefore 
p1(t) = _ e7(ch BI - ch B2 - 2cht)sht 

2J(ch& - cht)(chB2 + chr) 
(2.19) 

and 

Pz(t) = 
ey(ch B1 - ch B2 - 2cht)sht 

S,/(ch B1 + cht)(ch B2 - cht) 
(2.20) 

THE STRESS INTENSITY FACTORS 

The stress intensity factors at the tips (-a,, 0) and (b2,O) are defined respectively by 

and 

ka(bl) = lim p[2(bl + z)]li2 
s--b? 

$$(z, 0) (3.1) 

h(h) = lim p[2(bz - a~)]~‘~ %(x,0). (3.2) 
sob; 



174 

It follows that 
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ks(h) . 

x = E&E- 
J 

2(ch A - chE) . pn(t - Y) 

cho, sh[ ’ 
n= 1,2 (3.3) 

and hence, by virtue of (2.19), (2.20), that 

h(bn > c+h -1 Sl + 
x= 2 

s; - 1 112 

bn[(c + h)s: - c + h] (3.4) 

where 

s, = 
b,,+,/m 

c+h 
, n=1,2 (3.5) 
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